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Abstract

Can metastatic-primary (M-P) genomic divergence measured from next generation

sequencing reveal the natural history of metastatic dissemination? This remains an open

question of utmost importance in facilitating a deeper understanding of metastatic progres-

sion, and thereby, improving its prevention. Here, we utilize mathematical and computa-

tional modeling to tackle this question as well as to provide a framework that illuminates

the fundamental elements and evolutionary determinants of M-P divergence. Our frame-

work facilitates the integration of sequencing detectability of somatic variants, and hence,

paves the way towards bridging the measurable between-tumor heterogeneity with analyt-

ical modeling and interpretability. We show that the number of somatic variants of the

metastatic seeding cell that are experimentally undetectable in the primary tumor, can be

characterized as the path of the phylogenetic tree from the last appearing variant of the

seeding cell back to the most recent detectable variant. We find that the expected length

of this path is principally determined by the decay in detectability of the variants along the

seeding cell’s lineage; and thus, exhibits a significant dependence on the underlying tumor

growth dynamics. A striking implication of this fact, is that dissemination from an advanced

detectable subclone of the primary tumor can lead to an abrupt drop in the expected mea-

surable M-P divergence, thereby breaking the previously assumed monotonic relation

between seeding time and M-P divergence. This is emphatically verified by our single cell-

based spatial tumor growth simulation, where we find that M-P divergence exhibits a non-

monotonic relationship with seeding time when the primary tumor grows under branched

and linear evolution. On the other hand, a monotonic relationship holds when we condition

on the dynamics of progressive diversification, or by restricting the seeding cells to always

originate from undetectable subclones. Our results highlight the fact that a precise under-

standing of tumor growth dynamics is the sine qua non for exploiting M-P divergence to

reconstruct the chronology of metastatic dissemination. The quantitative models pre-

sented here enable further careful evaluation of M-P divergence in association with crucial

evolutionary and sequencing parameters.
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Author summary

To properly translate the genomic divergence between paired metastatic and primary

tumors (M-P divergence) into the natural history of metastatic spread, it is fundamental

to understand what exactly is being captured on the trees of tumor evolution by such

divergence. Here, we take the first step towards analytically decomposing the elements of

the M-P divergence, and reveal the underlying principles that govern the relation between

M-P divergence, clonal dynamics, and detectability of somatic variants in the primary

tumor. In parallel to our mathematical framework, we further investigate the patterns of

M-P divergence by performing single-cell-based spatial tumor growth simulation studies.

Both methods demonstrate that the growth mode of the primary tumor modulates the

dependence of M-P divergence on the metastatic dissemination time, which has impor-

tant implications for the accurate translation of the measured divergence. Our study paves

the way towards bridging the measurable between-tumor heterogeneity with analytical

modeling and interpretability.

1 Introduction

Reconstructing the chronology of metastatic spread in human cancers [1–4] has profound

clinical importance [5, 6] and significant potential in improving cancer treatment. It is an

indispensable first step towards a deeper understanding of metastatic tumor progression. Eval-

uation of the genomic divergence between paired metastatic and primary tumors (M-P diver-

gence) has become the de facto starting point for tackling this challenging task. However,

despite the imperative need for accurate translation of M-P divergence measurements to meta-

static seeding times, disparate interpretations of such measurements still abide. Should we

read a small M-P divergence as an indication of “early” metastatic seeding [1, 7], or rather, as

evidence that metastatic potential is acquired at a late stage [4, 8, 9] of primary tumor growth?

This remains an open and challenging question. Before unraveling this puzzle, however, one

needs to carefully characterize what exactly is being captured on the trees of tumor evolution

by M-P divergence measurements arising from next generation sequencing.

Somatic evolution takes years to decades before the founder cell of the primary tumor gets

established [10]. As it is a descendant of the founder that will be equipped with the ability to

leave the primary site through the initial steps of the invasion-metastasis cascade [11], the dis-

semination event must happen late, in absolute terms. However, with the establishment of the

founder granted, the connection between the mode of primary tumor expansion [12, 13] and

the relative timing of metastatic seeding remains unclear. Moreover, the distinction between

the initiation of the founder and subsequent expansion is also blurred; for example, the defini-

tion of the tumor founder can be fuzzy, given the fact that it is still challenging to identify the

true “clonal” variants using a limited number of tumor samples [14, 15].

While the expansion dynamics of the primary tumor in vivo are largely undetectable, sev-

eral hypothetical modes of growth have been proposed. Namely, effective neutrality mode,

where clonal composition progressively diversifies [16]; branching evolution mode, where sev-

eral subclones appear late and dominate the growth [17]; as well as, linear evolution mode

with continuous clonal replacement [12]. The latter two modes differ from progressive diversi-

fication due to the presence of ongoing clonal sweeps at regional (branching evolution) or

broad (linear evolution) scales, which leads to patterns of sub-clonal convergence rather than

divergence. These modes represent possible tumor growth dynamics, which are determined by

evolutionary and ecological forces, such as selection upon (epi)genetic alterations [18, 19],
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spatial structure [13, 20], as well as, tumor micro-environments [21–23]. Accordingly, differ-

ent tumor types and even different stages of a tumor may involve various growth dynamics

[24–26].

To correctly translate experimental measurements of M-P divergence into cancer cell’s

migration history, it is necessary to decompose its intrinsic elements and understand their

relation to the metastatic dissemination time under different tumor growth dynamics. A

recently published deme (or compartment) based spatial tumor growth model suggests that

small divergence reflects early metastatic seeding [1]. A caveat, however, is that deme-based

models (by treating 5,000-10,000 genetically homogeneous cells as a single unit) are tailored to

colorectal cancers and can translate only approximately the fitness of single cells (individuals)

into deme-based growth rates [27]; furthermore the currently deployed strategy of randomly

picking one compartment at a time for division [28] imposes additional limitations on the

expressiveness and the biological plausibility of the model. By exploring limited conditions,

the deme-based model mainly depicts the patterns of progressive diversification [13, 18].

Hence, other growth dynamics, such as branching and linear evolution, have not been investi-

gated for this question. More importantly, despite some qualitative discussions [1, 9], a careful

mathematical analysis relating measurable M-P divergence to the underlying phylogenetic tree

patterns under different tumor growth dynamics, is still missing in the literature.

Genomic heterogeneity among tumor cells is notably fueled by the passenger somatic vari-

ants, which occur several orders of magnitude more frequently than the driver variants during

cell divisions [29]. On the other hand, the bulk sequencing of tumor samples can only reveal

variants that are present in a detectable fraction of cancer cells. Therefore, in conjunction with

the underlying evolutionary forces, the observed M-P divergence is actively shaped by the

experimental limitations in detectability of somatic variants as well. Multi-region sampling of

longitudinal tumor samples emerges as a powerful tool to resolve the spatial and temporal het-

erogeneity patterns during cancer evolution [30–32]. However, the convolution between the

detection process itself and the underlying evolutionary process, could potentially confound

the conclusions drawn by solely analyzing the multi-region sequencing data. This is evidenced

by the disparate interpretations of M-P divergence in relation to the metastatic seeding time.

Overcoming such challenge calls for additional theoretical studies that aim to decompose the

genomic divergence measures into their fundamental components. Our motivation, in this

work, is aligned with explorations of the utility of phylogenetic metrics in informing particular

evolutionary parameters [33]; however, we also aim to illuminate the intrinsic complexities of

the system under study, by highlighting the evolutionary determinants of M-P divergence (Fig

1), as well as, the circumstances under which the divergence may be informative for inferring

relevant parameters. As such, we take the first step towards a quantitative characterization of

measurable M-P divergence as a function of seeding time and sequencing detectability; our

analysis starts from the establishment of the founder, and our approach involves both mathe-

matical modeling of the fundamental M-P divergence patterns under distinct tumor growth

dynamics, as well as computational modeling of spatial growth kinetics subject to elaborate

local density constraints (Fig 1).

2 Results

2.1 The elements of M-P divergence on the clonal evolutionary tree

We assume that the primary tumor growth begins with a single founder cell [34]. We focus on

monoclonal seeding [35] at a time during the growth of the primary, i.e., individual progeny

cells of the founder disseminate when the primary tumor reaches a size of Nd (see Methods).

The terms “dissemination” and “seeding” are used interchangeably in this paper as we do not
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model the processes in between. For models regarding other parts of the metastatic cascade,

see [36, 37]. The primary and the single-clone-seeded metastatic tumor are detected until they

reach size N, respectively. On the phylogenetic tree built from metastatic and primary tumor

sample(s), the M-P divergence typically involves the metastatic specific Branch (B), i.e., num-

ber of (#) somatic variants (v, referred to as variants hereafter) found in the metastasis (m)

but not in the primary (p): Bm ¼ #fvjf mv > g; f pv < ag and the primary specific branch

Bp ¼ #fvjf pv > g; f mv < ag, respectively [1, 9, 38] (Fig 2A). Here γ is the variant allele frequency

threshold above which substantial presence of a variant may be deemed. We assume that the

Fig 1. The main research question and the study design. Quantifying and interpreting the genomic divergence between

paired primary and metastatic tumors (M-P divergence, top right panel) utilizing the ever-growing amount of multi-region/

longitudinal cancer sequencing data (top left panel) is becoming increasingly important. It can facilitate a deeper

understanding of metastatic progression, and thereby, improve its prevention. Here, we sought to ask what exactly is being

captured on the trees of tumor evolution by M-P divergence measured in such datasets. We adopt mathematical modeling

(non-spatial multi-type branching processes) to illuminate the key evolutionary determinants of M-P divergence; and

computational modeling to simulate the three dimensional cancer clonal evolution, and we investigate how the M-P

divergence is regulated by the evolutionary forces under various growth dynamics of the primary tumor (bottom panel).

The detailed model setting, including the parameters used in both modeling approaches, can be found in Methods and

Table 1.

https://doi.org/10.1371/journal.pcbi.1008838.g001
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variant detection is fair, i.e., any variant in the tumor with a frequency above a detectability

threshold α will be detected e.g., through extensive multi-region sequencing [32]. Note that γ
and α are introduced to deal with the noise of bulk sequencing data in practice. For a variant

to be considered condition-specific (i.e., primary- or metastatic-specific), one would avoid

overestimating the divergence (e.g., control for false positive rates) by requiring that (1) the

variant allele frequency is higher than a threshold γ suggesting the substantial presence in a

condition; and (2) the frequency in the other condition is lower than a threshold α suggesting

the absence. Also note that γ is greater than α. The variants are assumed to be heterozygous,

i.e., the cancer cell fraction thresholds will be at 2γ and 2α, respectively. While the somatic var-

iants usually refer to point mutations and small indels, the framework could be extended for

large structural changes and copy number alterations as well. Bm can be further divided into

Fig 2. Elements of Metastatic-Primary genomic divergence and their potential pattern in tumor evolution. (A) A sample tree (schematic) based

on somatic variant analysis of paired Metastatic (M) and Primary (P) tumor samples depicts the two branches involving the number of metastatic

specific (Bm, dashed green line) and primary specific somatic variants (Bp, dashed blue line), respectively. We focus primarily on the variants

accumulated in the metastatic seeding cell (green circle) before its dissemination (Bmd), as it is directly related to the primary tumor growth and the

genetic determinants of metastatic dissemination. Below the sample tree shown a genealogy tree focusing on the lineage of the seeding cell, where we

note the branches that represent Bmd and Bp, respectively. Detectable ancestors in the primary at a frequency of γ (DAγ) and the most recent

detectable ancestor at α and γ (MRDAα and MRDAγ) of the seeding cell are also indicated, respectively. Here γ is the variant allele frequency

threshold above which substantial presence of a variant may be deemed; α is the frequency threshold of sequencing detectability. (B) If a cell with k
variants “cancels” its dissemination (i.e., stays in the primary tumor) and its progeny cell with k + 1 variants migrates instead, the resulting Bmd can

drop if the progenitor cell with k variants eventually grows into a detectable subclone in the primary tumor. In this case, it becomes the most recent

detectable ancestor of the seeding cell. More generally, Bmd can decrease if an ancestor along the genealogy the the seeding cell becomes detectable

due to subclone expansion. (C) We hypothesize that Bmd and Bp are affected by the kinetics of primary tumor growth. Under the growth pattern of

progressive subclonal divergence, late seeding would lead to larger Bmd than early seeding as only the early subclones are detectable; Bp stays constant

as the detectable portion of the seeding cell lineage is restricted. By contrast, detectable subclones can appear late leading to the pattern of sub-clonal

convergence (due to selection or other ecological forces), under which scenario seeding from early or late detectable subclones may lead to similar

Bmd, but differs in Bp.

https://doi.org/10.1371/journal.pcbi.1008838.g002
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variants accumulated before (Bmd) or after dissemination. We focus on Bmd as it is related to

the primary tumor growth and the genetic determinants of dissemination [5]. Bmd refers to

those variants that are NOT detectable in the primary tumor. Bp, on the other hand, includes

all the variants with a frequency above γ in the primary tumor except those appearing on the

metastatic seeding cell. To illustrate Bmd and Bp on the single-cell-based clonal evolutionary

tree of primary tumors, we refer to the progenitor cells whose descendant population occupies

a fraction of the primary greater than 2α as “Detectable Ancestors at α” (DAα). Bmd is the

branch length (measured in variants) from the metastatic seeding cell to its most recent DA at

α (MRDAα). Bp is the total branch length of the genealogies of DAγ, after subtracting the

branch between the founder and the MRDAγ of the seeding cell (Fig 2A). Accordingly, the

variants accrued in the DAα are Detectable Variants at α (DVα). Bmd and Bp involve the most

recent detectable variants at α (MRDVα) and γ (MRDVγ), respectively.

To realize the definitions of Bmd and Bp, we implemented Comet, a single-cell-based spatial

tumor growth model to simulate virtual primary and metastatic tumor pairs and collect the

corresponding virtual sequencing data (see Section 4, and Methods). The phylogenetic dis-

tance that defines Bmd on the evolutionary trees of the virtual primary tumor explains more

than 80% of the variance of Bm measured from virtual sequencing data. By contrast, the tumor

size (as a surrogate of time) when the seeding cell disseminates does not explain reliably the

measured divergence (Fig 3A). Notably, although Bm seems to be positively associated with

tumor size when the primary tumor grows rapidly, i.e., with a small death-to-birth ratio (ρ =

0.72) [39] and weak subclonal selection (s< 0.05), it displays a characteristic “zig-zag” pattern

when the tumor expands under high death rate (ρ = 0.99) [40] and strong selection (s� 0.1)

(Fig 3B). On the other hand, Bp displays little variability when tumor proliferates quickly,

whereas it exhibits a “decreasing staircase” pattern when the tumor grows under strong selec-

tion (S1(B) Fig). The phylogenetic definition of Bp in the single cell trees explains 90% of the

variance of the measured Bp under models involving strong selection (S1(A) Fig)). Moreover,

the ranges of Bm and Bp become wider as the tumor grows larger. The time-series that depict

Bm and Bp across seeding times are heteroscedastic under selective growth modes, i.e., their

variability is different across time (Median p − value< 0.01 for s� 0.1, White’s test for hetero-

scedasticity [41], S2 Fig).

2.1.1 Non-monotonic dependence of M-P divergence on dissemination time. The zig-

zag pattern of Bm suggests that the number of metastasis-specific variants accumulated before

dissemination, Bmd, is not monotonically related to the metastatic dissemination time. Assume

that seeding of a cell that has k variants results in Bkmd. We want to calculate Bkþ1
md when this cell

stays in the primary tumor and one of its progeny cells, which has just acquired one more vari-

ant, seeds the metastasis instead (i.e., the new seeding cell has k + 1 variants in total). Assume

that the progenitor cell which stays in the primary eventually grows into a subclone that occu-

pies a fraction f of the entire tumor. If f is too small to be detectable (f< 2α), Bkþ1
md would

increase from Bkmd by one. However, if f is large enough to be detectable (f� 2α), the progenitor

cell with k variants would become a detectable ancestor (DAα), and so do all of its ancestors.

In this case it would be the most recent detectable ancestor at α (MRDAα) of the new seeding

cell and Bkþ1
md would only refer to the newborn variant (Fig 2B). More generally, the birth of a

detectable subclone ensures detectability of the variants harbored by the subclone founder,

and when the seeding cell belongs to its progeny, the variants in MRDAα will be subtracted

from k to yield the corresponding Bkmd. Therefore,

Bkmd ¼ k � VMRDAðk; aÞ ð1Þ

where VMRDA(�, �) is a function that takes as an input a given seeding cell with k variants and a
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detectability frequency threshold α, and outputs the number of variants in its MRDAα. Simi-

larly, if we use Bkp to express the number of detectable primary-specific variants that are absent

in the seeding cell, we have

Bkp ¼ VPRIMARYðgÞ � VMRDAðk; gÞ ð2Þ

where VPRIMARY(γ) denotes the number of variants with frequency above a threshold γ.

Fig 3. Single-cell-based spatial simulation of paired metastatic and primary tumors validates the phylogenetic definition of Bmd and emphasizes that

Bm can appear sensitive or insensitive to seeding time based on the kinetics of primarty tumor growth. (A)Bmd, the sub branch length (measured in cell

generations) from the metastatic seeding cell to its most recent detectable ancestor (MRDAα) captures the majority of the variance of Bm measured from

the virtual tumors (green density curves). By contrast, the tumor size at metastatic dissemination, as a surrogate of dissemination time (gray density curves)

does not faithfully explain the measured Bm. (B) Two virtual tumors with distinct kinetics exemplify the conditional dependence of Bm on metastatic

dissemination time. Upper panel: the genealogy trajectories (gray lines) of metastatic seeding cells (green dots) along the expansion of the primary tumor in

a three dimensional lattice. The Euclidean distance from a cell to the center of the lattice is shown against the tumor size fraction when the corresponding

cell disseminates. A cell’s distance to the center is strongly correlated with its mutation burden (S3 Fig), reflecting the spatial constraints imposed in our

model. The tumor size fraction is plotted at its cube root scale to reflect the clock of actual time. Ancestor cells that are detectable at a frequency greater than

0.01 are marked as blue dots; Middle panel: Bm is plotted against the tumor size fraction when the seeding cell (green dots) disseminates, the running mean

(black dots) and standard deviation (gray bars) is also shown; Lower panel: Bm is shown against the Bmd, the sub-branch length from the seeding cell to its

MRDAα. The slope of the linear regression is consistent with the passenger variant rate (0.15) used in the model, CI: 95% confidence interval.

https://doi.org/10.1371/journal.pcbi.1008838.g003
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While the total number of variants in the seeding cell indeed increases with dissemination

time, the number of detectable ones is heavily influenced by the probability of subclonal

expansions; a fact that further complicates the study of the relation between Bkmd and Bkp and

seeding time (Fig 2C).

2.1.2 Mathematical insights on the expected Bmd patterns. Let dcj denote the probability

variant cj ends up being detectable in the primary tumor. In Methods we show that under the

infinite allele model, the probability Bkmd takes the value i can be expressed in a surprisingly

simple form in terms of dcj , as

Pr ½Bkmd ¼ i� ¼ dck� i � dck� iþ1
: ð3Þ

Eq (3) essentially relates the length of Bmd with the probabilistic decay in detectability along

the lineage of the seeding cell (Fig 4C). Parameter k refers to the number of variants that are

present in the seeding cell, effectively acting as a clock for the dissemination time. Calculating

Bkmd for different values of k enables us to reason about the expected Bmd under settings of early

(small k) or late (large k) dissemination. It also allows us to reason about the monotonicity of

Fig 4. Characteristic Bmd and Bp patterns. (A) Example phylogenetic tree of somatic variants under neutral model of growth. Notice that the

expected Bmd time series are increasing with seeding time since the number of detectable variants along a general branch are expected to reach a

fixed limit, beyond which new variants are almost surely undetectable. Similarly, the expected Bp patterns are decreasing (cf. (8)) up until a

point where they stabilize to a fixed small number. (B) Example tree depicting the introduction of a new type of cells. Notice that Bmd at time

kseed is radically different when seeding originates from type-0 as opposed to type-1. Assuming that seeding is proportional to the fitness of the

types, the expected Bmd time series are expected to drop abruptly for seeding times right after the introduction of the new type. Similarly Bp
tracks these drops. (C) The connection between the decay in detectability of the variants along the seeding cells lineage and the distribution of

the Bkseedmd lengths. Notice that a sudden drop in the detectability probabilities along this path, leads to a spike in the probability of the

corresponding length of Bkseedmd .

https://doi.org/10.1371/journal.pcbi.1008838.g004
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the sequence fBkmdgk¼0;1;...
, which is crucial for accurate estimation of seeding time, based on

specific genomic divergence measurements. In particular, notice that a strictly increasing

fBkmdgk¼0;1;...
would allow, in principle, to unambiguously relate divergence measurements

with seeding times; on the contrary, if the monotonicity of fBkmdgk¼0;1;...
is not guaranteed, an

unequivocal interpretation of generic divergence measurements cannot be guaranteed in

advance—at least not without further assumptions regarding the growth dynamics of the

tumor under study, or additional information that could allow one to break this ambiguity.

To further explore the implications of Eq (3) in the analytically tractable case of neutral

growth, building on the results of [29], we derive an approximate form for the expected Bmd as

a function of the seeding time K, the detectability threshold f, the mutation rate u, and the

death-to-birth ratio of the tumor cells ρ

E½Bneutral
md ;K; f ; r� ¼

¼
XK

j¼1

j
u

u � log ð1þ ðr � 1Þf Þ

� �gðcK� jÞ

�
u

u � log ð1þ ðr � 1Þf Þ

� �gðcK� jþ1Þ
" #

ð4Þ

where g(�) is an approximate mapping that associates the variants that are particular to the

seeding cell, with their absolute order of appearance in the overall primary tumor (specified in

Section 4.1.2).

Importantly, we find that under neutral growth the resulting sequence

fE½Bneutral
md ;K; f ; r�gK¼0;1;...

is in fact monotonically increasing with time (Fig 4A). In particular,

one can discern two distinct phases, the shape of which is modulated by the parameters of the

model; an initial phase where the increase in expected Bmd is almost imperceptible (the length

of this phase is controlled by ρ); and a later phase of steady increase in expected Bmd at almost

constant rate (that is not particularly sensitive to ρ). S5 Fig demonstrates the related patterns.

Observe that larger values of ρ are indeed associated with larger periods of time for which Bmd
is expected to be very small. However, invariably, as more and more variants are being intro-

duced in the primary tumor, their detectability probability plummets, thereby leading to a

predictable increase in expected Bmd in late seeding settings. This is a direct consequence

of the exponential decay in detectability probabilities of newly emerging variants down the

phylogenetic tree. Intuitively, when seeding happens late under neutral growth, the later accu-

mulating variants on the seeding cell are almost surely undetectable, and the depth of the

MRDAf converges to a fixed value that is no longer affected by K.

The situation, however, is markedly different in the non-neutral growth setting. To see this

consider the case where a new type of advantageous cells is introduced to the primary tumor at

time T1. Also assume that the overall population of cells that carry the beneficial variant in the

primary tumor (the one that characterizes the advantageous type) reaches a fraction f1. When

dissemination happens at time k< T1 the seeding cell originates necessarily from the original

type of cells, and thus, the above reasoning still applies subject to a modification of the detect-

ability threshold which now needs to account for the fact that the relative frequency that a

variant needs to achieve to become detectable in the overall tumor at detection time is now

f/(1 − f1). On the other hand, if dissemination happens at time k> T1, the value of Bmd will be

predominantly determined by whether the seeding cell carries the beneficial variant or not.

Indeed, if the seeding cell originates from the beneficial subpopulation, the expected Bmd will

be inevitably smaller since only variants that are introduced after the beneficial one (variants

arising after time T1) could end up being undetectable. The detectability of the beneficial type

itself ensures such outcome (Fig 4B).
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Thus, to reason about the effect of the introduction of new types on the expected Bmd, we

need to explicitly account for the probability the seeding cell originates from the subpopulation

of advantageous cells as a function of seeding time, k. We denote such probability �
k
1

(similarly

we use �
k
0
¼ 1 � �

k
1

to denote the probability of seeding from the original type of cells), and

express fE½Bmd; k�gk¼1;...
as

E½Bmd; k;T1; f1� �

� �
k
1
� E Bneutralmd ; k � T1;

f
f1
; r1

� �

þ �
k
0
� E Bneutralmd ; k;

f
1 � f1

; r0

� �

:
ð5Þ

In Methods we explore several different choices of f�
k
0
gk¼1;...

; f�
k
1
gk¼1;...

that can capture differ-

ent assumptions regarding the underlying seeding potential of the different types of cells that

are present in the population. Notably, our findings suggest that the monotonicity of the

sequence fE½Bmd; k�gk¼1;...
is expected to break by the introduction of newly emerging advanta-

geous types. Such effect is unavoidable when dissemination capability is positively associated

with fitness advantage, however we find that the expected drop in Bmd remains significant

even when seeding happens uniformly at random from all living cells.

2.2 Single-cell spatial tumor growth simulation reveals that dependence of

M-P divergence on seeding time is conditional on the underlying modes of

tumor growth

To corroborate the mathematical insights in a spatial growth setting, we develop Comet; a

state-of-the-art simulator of paired primary and metastatic tumor growth. From a technical

point of view Comet extents the single cell-based spatial tumor growth model [42]. Various

parameter settings of driver genomic variants and cell death-to-birth rates enable our model to

encompass three distinct and representative tumor growth dynamics: progressive diversifica-

tion, branching, and linear evolution (see Methods, Table 1). We imposed strict spatial con-

straints to reflect the patterns of peripheral growth (S3 Fig) which were observed in solid

tumors [43]. In addition to driver events, we simulate passenger variants that occur at a given

rate u, and record variant lineages as the tumor expands. To track the changes of M-P diver-

gence along with the expansion, our model allows monoclonal dissemination and metastatic

seeding as the population size of the primary tumor increases (every 25,000 cells). Both virtual

primary and metastatic tumors reach a final volume of 107 cells [19]. We perform multi-region

Table 1. Parameters and settings in Comet, the single cell based spatial computational modeling of evolving

tumors.

Parameter Value Meaning

λ 0.25 initial birth rate per unit time

μ 0.2475, 0.18 intial death rate per unit time

ρ 0.99, 0.72 the ratio between the initial death and birth rate

ψi stochastic proportion of empty neighobring sites of the i-th cell

mi 0 Intra-tumoral migration rate

u 0.15 passenger variant rate

ub 1 × 10−5, 5 × 10−5, 5 × 10−4 beneficial variant rate

s 0, 0.02, 0.05, 0.1, 0.2, 0.5, 1 mean selection coefficient

sd a half of the corresponding s standard deviation of selection coefficient

Ns 25,000 (12,500, 50,000) tumor size increment to trigger seeding

N 1 × 107 final tumor size

https://doi.org/10.1371/journal.pcbi.1008838.t001
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sampling of the virtual tumors and calculate the variant allele frequencies by assuming a nega-

tive binomial distribution of the sequencing depth [44] for each sample. Bm and Bp is measured

from the virtual sequencing data accordingly.

Our model makes it possible to study both subclonal diversification and subclonal conver-

gence in the spatial tumor growth setting (Figs 5 and 6A). We note that while the parameters

used are model-dependent, the clonal evolutionary patterns realized by different levels of posi-

tive selection and death-to-birth ratio are compatible with those caused by other evolutionary

and ecological forces. For example, competition between tumor and normal cells, which is not

modelled here, can amplify clonal selection [13]. Weak selection (s< 0.05) coupled with small

death-to-birth ratio (ρ = 0.72) leads to a pattern of progressive diversification which has been

discussed previously [45]. Interestingly, increasing the selection coefficient further facilitates

Fig 5. Spatial computational model verifies that the growth mode governs the dependence of M-P divergence on seeding time. (A) Mathematical

models illuminate the expected patterns of Bmd and Bp under neutral (left) and selective dynamics (right, corresponding to the second and third columns of

panel B), respectively. Detailed example plots of mathematical analyses can be found in Fig 7 and S1 Appendix. The variant genealogy schema of seeding

cells is also shown. (B) Virtual tumors with three representative clonal kinetics and the changing patterns of M-P divergence along with the metastatic

seeding time. Upper panel: the genealogy trajectories (gray lines) of metastatic seeding cells (green dots) during the expansion of the primary tumor in a

three-dimensional lattice. The Euclidean distance from a cell to the center of the lattice is shown against the fraction of the final primary tumor size when

the corresponding seeding cell is born and disseminated. A cell’s distance to the center is strongly correlated with its mutation burden (S3 Fig), reflecting

the spatial constraints imposed in our model. The tumor size fraction is plotted at its cube root scale to reflect the clock of actual time. Blue dots represent

progenitor cells that are detectable at a frequency higher than 0.01. Middle panel: Bm is plotted against the tumor size fraction when the seeding cell

disseminates, where black dots and gray bars indicate the running mean and standard deviation of Bm, respectively. Lower panel: change of Bp with

different seeding time, blue dots and bars represent the running mean and standard deviation of Bp, respectively. (C) The subclonal expansion occurrence is

strongly associated with drops and valleys of Bm in spatial simulations (see Methods).

https://doi.org/10.1371/journal.pcbi.1008838.g005
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late subclonal sweeps at different scales (Fig 5B, upper panel). Moderately strong selection

(s = 0.1) leads to a branched evolution pattern where a few detectable subclones jointly consti-

tute the whole tumor. High death-to-birth ratio (ρ = 0.99) coupled with strong selection (s = 1)

introduces a linear growth pattern, where advantageous subclones broadly sweep the popula-

tion from time to time and dominate each “wave” of growth.

The results of the spatial tumor growth model are aligned with our mathematical insights

(Fig 5), suggesting that the non-monotonicity of M-P divergence is ubiquitous in representative

Fig 6. Summary of the virtual tumor dynamics and the mapping between seeding time and M-P divergence. (A) For each simulation (a circle),

we calculated the average pair-wise Fst (Fixation index) of ten randomly sampled regions of the virtual primary tumor, to reflect the between-

region genetic divergence. We plotted the Fst against the average fraction of variants of the seeding cell that fell above the detection limit in the

primary tumor. The size of the circle increases with the selection coefficient. For each selection level, the crossbars show the standard deviation

along the two axes. Color scale indicates the proportion of variance of Bm explained by the seeding time (based on 10-quantile of all the values). (B)

We group the various simulations into three representative clonal dynamics: progressive diversification (s� 0.05), branched evolution (s = {0.1,

0.2}) and linear evolution (s� 0.5). For each group, we plot the actual seeding time (color hues, using the fraction of the final primary tumor size at

metastatic dissemination as a surrogate) on top of the corresponding Bm and Bp values. A smoothed layer shows the general distribution of the

seeding time.

https://doi.org/10.1371/journal.pcbi.1008838.g006
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tumor growth models, regardless of the specific parametric settings. When the clonal composi-

tion of the primary tumor progressively diversifies, Bm increases with seeding time (Fig 5B, left

column), and Bp remains small. However, Bm starts to become less sensitive to metastatic dis-

semination time when the tumor grows under deep branching evolution (Fig 5B, middle col-

umn). Under linear growth dynamics, Bm’s non-monotonic relationship with seeding time is

evident (right column). Notably, the mathematically predicted zig-zag pattern of the expected

Bmd is evident in all virtual tumors. Consistent with results from the non-spatial mathematical

modeling, the subclonal expansion in the virtual primary tumors significantly co-occurs with

the drop of Bm (Fig 5C). This consistency is also strongly supported by the fact that Bmd, mea-

sured from the genealogy of the seeding cells, explains Bm much better than the seeding time

(Fig 3). Under the dynamics of clonal convergence, Bp has the tendency to transit to lower levels

if the seeding cell disseminates later. The “decreasing staircase” pattern of Bp is particularly evi-

dent for the linear growth mode.

In the virtual primary tumors, the between-region genetic divergence (measured by the Fix-

ation index [46]) initially increases with the selection coefficient when s< 0.05, in agreement

with our previous findings using a deme-based model [18]. However, higher and more influ-

ential selection levels (s� 0.1) reduce the genetic diversity in the primary tumor and create the

dynamics of subclonal convergence (Fig 6A and S4 Fig). In the meantime, more variants of the

seeding cell become detectable in the primary tumor on average (i.e., less variants contribute

in Bm) as we raise the selection coefficient. When s� 0.1, more than 50% of the seeding cell

lineage on average is detectable in the primary tumor, and Bm starts to become much less sen-

sitive to seeding time (Fig 6A).

In summary, the metastatic seeding time is a radically different function of Bm and Bp
under distinct dynamics of primary tumor growth (Fig 6B). Under the mode of progressive

diversification (s� 0.05), Bm is the most informative indicator. For linear evolution (s� 0.5),

the associated step-wise drops in Bp may be leveraged to inform the timing. Under branched

evolution, however, the situation is significantly more perplexed; large Bm and Bp readings

point to late seeding, whereas mid-range readings suggest a non-trivial—possibly non-linear—

relationship between Bp, Bm pairs and metastatic dissemination time. These patterns are repro-

ducible under different values of parameter Ns (S9 Fig). Furthermore, the non-monotonicity

of M-P divergence over time leads to increased uncertainty in mapping certain pairs of Bm and

Bp onto metastatic initiation times (variegated pattern, Fig 6B). In the latter setting, additional

indicators may be necessary to allow an accurate statistical reconstruction of the metastatic dis-

semination chronology.

3 Discussion

To reliably bridge the scales between the divergence at the genomic level and the metastatic

spread at the cellular level, we focus on if and how dissemination time and tumor growth

dynamics remold the between-tumor heterogeneity. The major findings are (1) Depth of most

recent detectable variant characterizes the M-P divergence; (2) Decay in the probability of a

variant being detectable by sequencing determines the expected observable M-P divergence;

(3) Dissemination from late detectable subclones leads to an abrupt drop in M-P divergence

and (4) Spatial model verifies that the growth mode governs the dependence of M-P diver-

gence on seeding time.

Our results pave the way towards building effective statistical models that connect M-P

divergence to a metastatic timeline. Firstly, the growth-dependent relationship between Bm, Bp
and seeding time indicates that knowing the primary tumor growth dynamics is the prerequi-

site for translating M-P divergence. For example, a small Bm and Bp [1, 4] may suggest early
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seeding for a tumor grown under progressive diversification, but late dissemination under lin-

ear evolution (Fig 6B). For neoplasms characterized by deep branching evolution, the timing

of metastatic spread may be more difficult to identify. This is particularly relevant for tumors

showing invasive glandular structure, which have been associated with deep branching mode

[13]. Secondly, the analytically predicted—and computationally verified—Bm, Bp patterns indi-

cate that more elaborate statistical models, that take into account non-monotonic dependen-

cies, are necessary to utilize such measurements effectively. Lastly, the difference between Bm
and Bp, with the latter also being measured based on a lowered substantial presence threshold

(α), in theory cancels out the drop effect upon the introduction of a new detectable subclone

and may inform better the seeding time. However, this quantity can be heavily affected by the

noise in variant detection at low frequencies. As the M-P divergence alone, may not always

carry enough information to accurately infer the seeding time (under branching growth mode

in particular), additional indicators, as well as other clinical information may be leveraged to

increase the confidence of the inference [47].

We mathematically showed that the M-P divergence also reflects the interplay between

clonal dynamics and the subclonal preference of seeding [2], which may imply the genetic

determinants of metastatic dissemination [48]. Based on our discovery, one may quantitatively

test hypotheses about such determinants using multi-region sequencing of multiple metastases

and paired primary tumor of the same patient. For example, always seeding from a rare sub-

clone that has metastatic-specific driver variants may lead to a Bm that is more monotonically

related to seeding time compared to planting from a major subclone which appears late and

possesses a growth advantage. Moreover, the step-wise decrease of Bp, if seen in patients with

multiple metastases, could suggest an increased probability of seeding from actively growing

subclones [49, 50]. On the other hand, the actual pattern of M-P divergence could also hint on

an evolutionary bottleneck caused by microenvironmental factors. For example, seeding cells

that carry fewer unique variants may experience a safer passage to distant sites, by reducing

the chance of being eliminated by immune surveillance [11].

The measured M-P divergence from Next Generation Sequencing is not only determined

by evolutionary forces but also affected by the detection regime. Usually, only a handful of

samples of each lesion are collected for sequencing [5, 51], and their spatial location in the cor-

responding tumor is either unknown or recorded with poor resolution. Depending on the

sampling location and clonal structure of the tumors, Bm and Bp can be artificially enlarged or

reduced. For example, if we reduce the number of virtual samples from ten to five, while the

effect of evolutionary determinants is still evident, the same M-P divergence could map to a

different seeding time due to the change in sampling alone (S10 Fig). In addition, primary

tumor samples often come from formalin-fixed, paraffin-embedded tissues that have been

stored for much longer than the paired metastatic samples, leading to unequal DNA quality

between the two [52]. Between-sample heterogeneity can be further over- or under-estimated

due to low tumor purity. As the ploidy and purity are often jointly estimated [53], the copy

number evolution in the metastatic progression of certain tumor types [54, 55] may confound

the quantification of genomic divergence between samples. Therefore, an assessment of the

variability in heterogeneity due to suboptimal detection is necessary before comparing the real

data with computational models, and is thus, beyond the focus of this study. Given the comple-

mentarity between bulk longitudinal sampling and single-cell sequencing, we envision that

some hypotheses generated by our models may be better tested by combining these two

sequencing data sources, as they provide the ultimate resolution in distinguishing the mode of

clonal dynamics and tracking the genealogies among tumor cells.

In our framework, time zero is set at the birth of the tumor founder cell, for which the full

metastatic competence may not necessarily have been bestowed. We make minimal
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assumptions about the determinants of seeding potential by only requiring that it is the prog-

eny cell of the founder that spreads, owing to genetic or non-genetic factors. If one assumes

that the founder is a fully transformed (malignant) cancer cell [1], which grows under progres-

sive diversification in vivo [16], early seeding is more likely given a small M-P divergence.

However, this is circular reasoning as the starting cell already has the full potential of metasta-

sis, and short waiting time before seeding is not surprising. Another related consideration is

that the actual primary tumor size, as a surrogate of time, should be determined by all leaves

originated from the founder cell, not just those of the more malignant subclone [56]. Our

model also considers several distinct but representative growth dynamics of the founder cell’s

expansion. This flexible setting helps us to chart the landscape of connections between M-P

divergence and metastatic seeding times.

Since this is the first attempt to analytically characterize M-P divergence patterns, we

focus on key but inevitably simplified considerations; nevertheless, our framework can serve

as a foundation for future data-driven efforts aiming at understanding more complex meta-

static dynamics. The actual mode of primary tumour growth may vary when the physiologi-

cal conditions of the micro-environments vary, resulting in complex dynamics that our

model does not capture. For example, clonal competition could increase, and the tumour

may slow down in terms of growth on account of crowding over the available resources [57].

As a result, M-P divergence generated by a real patient tumor is even less likely to be mono-

tonic as the tumor expands. On the other hand, while we do leave the dynamics of metastatic

tumor unexplored by focusing on Bmd, the modes of the primary tumor can also be applied

to the secondary tumor. We expect that the length of Bm rather than Bp is affected by the

growth pattern of metastatic tumor given its fitness in the distant site and possible iatrogenic

perturbations [58]. We analyzed monoclonal seeding solely, which accounts for the majority

of distant metastasis [35], but the analytical thinking is extendable to reason about more

complex poly-clonal seeding [59, 60]. Poly-clonal seeding (or multi-cell seeding, under the

strict definition of a clone) involves the following two scenarios: monophyletic (genetic

homogeneity among the seeding cells) and polyphyletic (genetic heterogeneity instead) [5].

Our framework can be applied directly to monophyletic seeding (note that in terms of the

resulting M-P divergence, seeding from a single cell is genomically equivalent to the coloni-

zation by a group of cells in the monophyletic lineage). In contrast to monophyletic dissemi-

nation, polyphyletic seeding would lead to a reduction in M-P divergence as more genetic

diversity in the primary is transmitted to the metastasis (e.g., suggested by subclonal sharing

between primary and metastasis sequencing data [60], assuming that purity and local copy

number differences are taken into account). Nevertheless, the tumor growth mode and seed-

ing tempo are still expected to regulate the observed M-P divergence. For example, seeding

simultaneously as a cluster, or consecutively could lead to distinct patterns in M-P diver-

gence [61]. Our framework can be used to study the divergence between the primary and

each seeding subclone characterised from sequencing data [62] but more specialized consid-

erations are required to fully model the polyphyletic seeding. Moreover, here we do not

model the circulatory phase of metastasis, a bottleneck that could confound the M-P diver-

gence further. Unified mathematical models have been proposed to understand the full pic-

ture of this phase [36, 37, 63], which would aid the decomposition of the complexity of

metastases. While our analysis here is applied to the specific case of metastatic progression,

the usefulness of our approach extends to the case of comparing longitudinal tumor samples,

as well. Finally, our findings emphasize that investigating tumor growth dynamics in detail

has important analytical purchase, particularly for the efforts that seek to translate heteroge-

neity among longitudinal samples to the evolutionary timeline of progression.

PLOS COMPUTATIONAL BIOLOGY Modeling primary tumor-metastasis genomic divergence

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008838 March 17, 2021 15 / 29

https://doi.org/10.1371/journal.pcbi.1008838


4 Methods

4.1 Mathematical modeling

4.1.1 Tree-based characterization of Bmd and Bp. Consider the phylogenetic tree of the

surviving variants in the primary tumor, i.e., the tree rooted on the variant that characterizes

the founder cell, as well as the additional variants that are accumulated in the primary tumor

as it evolves over time. Let us index such variants according to their order of appearance in the

primary tumor, as V ¼ ðv0; v1; . . . ; vkprimaryÞ. At a certain point in time a cell departs from the

primary tumor and becomes the founder cell of a metastatic tumor. We call this event, meta-

static seeding, and we refer to the time this event takes place, as seeding time; henceforth

denoted as kseed. Notice that the variants that are present on the seeding cell, C, at seeding time,

are by definition, also present in the primary tumor, i.e., C � V. However, the final frequencies

reached by a certain subset of such variants upon observation of the primary tumor, can poten-

tially fall below the detectability threshold of current sequencing technology. This implies that

only a subset of the variants, Cdet � C, will be registered, in practice, as being part of the pri-

mary tumor. On the other hand, all such variants will be detectable on the metastatic tumor,

since they will be present in 100% of the metastatic cells as part of the founder of the metasta-

sis. Here we are interested in characterizing the number of variants in C, that end up not being

detectable in the primary tumor, Bkmd, as well as the number of frequent variants in V that are

absent from the metastatic tumor, Bp.
Let c be a seeding cell and also let C ¼ ðc0; c1; . . . ; ckseedÞ be its associated set of variants,

indexed according to the order of appearance in the tumor. Let dcj denote the probability vari-

ant cj is detectable in the primary tumor, and also let Bkmd be the random variable that counts

the number of variants in C that are not detectable in the primary tumor at observation time.

Under the infinite allele model if a seeding-cell specific mutation cj, becomes detectable in the

primary the same will be true for all ci< cj. Thus, fdcjgj¼0;1;...
will be a decreasing sequence that

starts from dc0 ¼ 1 and goes to 0 with j. Notice that for Bkmd to take the value j, the final frequen-

cies of variants ckseed ; ckseed� 1; . . . ; ckseed � jþ1 are necessarily below the detectability threshold, while

ckseed � j is above. This leads to the probability distribution

Pr ½Bkseedmd ¼ kseed � j� ¼
dcj � dcjþ1

; j < kseed

dckseed ; j ¼ kseed

8
<

:
ð6Þ

For a detailed derivation of (6) see S1 Appendix.

We now turn our attention on Bp. Let M be the set of variants that reach a frequency of at

least γ< fp< 1 in the primary tumor. By definition we have

Bkseedp ¼ jMj � Vkseed
c ð7Þ

where Vkseed
c ¼ jCkseed

\Mj is the number of variants of the seeding cell that are also included

in M. Taking into consideration the phylogenetic view detailed above, in conjunction with

the definition of M, reveals that Vkseed
c is, in fact, equivalent to VMRDA(k, γ). This allows us to

express (cf. (1)) the sought quantity (also explicitly considering the reference frequency γ) as

BkpðgÞ ¼ jMj � kþ B
k
mdðgÞ ð8Þ

In practice, jMj can be inferred from multi region sampling of the primary tumor at detec-

tion time [14] and is, therefore, assumed known for the scope of our analysis. Importantly,

Eq (8) reveals that BkpðgÞ decays linearly with seeding time, kseed, while it is positively
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correlated with Bkseedmd ðgÞ. Intuitively this suggests that sudden drops in the sequence

fBkmdðgÞgk¼0;1;...
are expected to be mirrored by similar drops in fBkpðgÞgk¼0;1;...

, whereas ranges

where fBkmdðgÞgk¼0;1;...
is increasing linearly with time, would be mapped to BkpðgÞ subse-

quences that remain constant.

Having characterized the general form of Bkmd and Bkp, we will now investigate how can the

Bkmd probability mass function can be approximated for the analytically tractable case of the

exponential growth model without spatial structure. We first restrict our attention to the case

of neutral growth, while also considering the accumulation of passenger variants that may

become detectable in the observed tumor. We will then proceed to the investigation of the

effects of the introduction of advantageous types of cells in the population.

4.1.2 Bk
md under neutral growth. Following [29], we model tumor growth using a multi-

type branching process that starts with a single type-0 cell. The cells divide with rate λ and die

with rate μ. Upon each division, one of the daughter cells acquires a new passenger variant

with probability u, which denotes the birth of a new type. Such type, while not being differenti-

ated in terms of λ and μ from type-0, it is uniquely characterized by the newly-acquired genetic

variant. To emphasize the fact that from a fitness point-of-view such new types are not advan-

tageous with respect to type-0, we henceforth refer to them as subtypes of type-0. Any new vari-

ant that appears in the population can be lost due to stochastic fluctuations. The probability

that its lineage will not survive is ρ = μ/λ, the ratio of the death and the birth rates.

Now consider a seeding cell c and let ðc0; c1; . . . ; ckseedÞ be the set of variants that it

carries, indexed according to their order of appearance in the tumor as above. Within the

aforementioned tumor growth setting we are interested in deriving an approximation of the

probability any given variant that is present in the seeding cell will be detectable in the final

primary tumor. In particular, we are interested in an expression that also takes into account

the limitations of sequencing technology. Therefore, we assume that in order to be detect-

able a variant needs to be present in a fraction of cells of the overall population larger than

f = 2α. [29] established that the final frequencies of passenger variants in the population is

primarily affected by the order by which these variants appeared in the tumor. Therefore,

a necessary step towards obtaining the sought approximation utilizing the results of [29] is

to derive a mapping between the relative ordering of the variants that are particular to the

seeding cell, to their absolute order of appearance in the overall tumor population (see

example Fig 4).

Note that such mapping is exactly specified by the topology of the resulting phylogenetic

tree that arises by a realization of the aforementioned branching process. It is, therefore, inher-

ently random in itself. However, for the purpose of our analysis, opting for simplicity, we treat

this mapping as deterministic, utilizing basic properties of branching processes with exponen-

tially distributed lifetimes. Concretely, consider the lineage of the seeding cell c, i.e., the path in

the phylogenetic tree, from the root (founder variants, i.e., c0) to the leaf (the last appearing

variant, i.e., ckseed). The number of nodes in this path is by definition kseed + 1 and they depict

the different variants that are present on the seeding cell c. Now, let’s associate each node with

a positive real number referring to the time of appearance of the corresponding variant in the

population. Due to the assumption of exponentially distributed waiting times between cell

divisions, it follows that the time difference between the appearance of two consecutive vari-

ants along this path is going to also be exponentially distributed with rate u × λ. Thus, the dis-

tribution of the time needed for variant cj to appear in the population, can be expressed as the

sum of j independent exponentially distributed random variables with identical rates equal to

u × λ. Therefore the successive expected times of appearance of the variants along the seeding
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cell’s lineage are given by t0 = 0 (by assumption the time starts when the founder cell is born),

and tj ¼
j

u�l ; for j = 1, . . ., kseed.

Now, the expected number of cells in the population at a given time (conditioned on long-

term tumor survival) can be calculated (see e.g., [2]) as

NðtÞ ¼
1

r
elt �

1

r
� 1

� �

e� lt: ð9Þ

Thus, substituting the expected times of appearance of the variants of the seeding cell, tj, to Eq

(9) we can get an estimate of the expected number of cells in the population, at the time each

of the seeding-cell-specific variants appeared. Utilizing also the fact that the expected number

of passenger variants with surviving lineage that are present in a population of N cells is N × u
[64], we derive the final expression that maps the j-th seeding-cell-specific variant, cj, to its

absolute ordering in the overall tumor population, vg(cj):

gðcjÞ ¼ u e
r
u�

1
uð Þj þ 2

sinh 1

u �
r

u

� �
j

� �

r

� �

: ð10Þ

Having obtained the approximate mapping g(�), we can utilize the results of [29], and express

the sought probability dcj as

dcj ¼ Pr ½the frequency of cells that carry variant cj is at least f �

�
u

u � log ð1þ ðr � 1Þf Þ

� �gðcjÞ

:
ð11Þ

Hence, the final expression of the expected Bkmd, is specialized for this setting, as

E½Bneutral
md ;K; f ; r� ¼

¼
XK

j¼1

j
u

u � log ð1þ ðr � 1Þf Þ

� �gðcK� jÞ

�
u

u � log ð1þ ðr � 1Þf Þ

� �gðcK� jþ1Þ
" #

:
ð12Þ

E½Bneutral
md ;K; f ; r� and Std ½Bneutral

md ;K; f ; r� over seeding times for different values of ρ and f can

be found in S5 and S6 Figs.

4.1.3 On the effects of the introduction of advantageous types. We study how the intro-

duction of advantageous types affects the monotonicity of fBkmdgk¼0;...;kseed
. Our approach is

based on a straightforward generalization of the neutral-growth setting, and our analysis

assumes phylogenetic independence between the passenger variants accumulated on the origi-

nal type-1 cell, and is also conditioned on explicit knowledge of the final population frequen-

cies achieved by the different beneficial variants (in practice, the subclonal architecture of a

tumor can be inferred from deep sequencing data [65, 66]).

For simplicity we consider the case where there are two types of cells in the population:

(a) type-0 cells, which are characterized by death-to-birth ratio ρ0 and are originated at time

T0 = 0 (i.e., type-0 is the type of the founder cell); and, (b) type-1 cells, which are characterized

by death-to-birth ratio ρ1 < ρ0 and are originated in the population at time T1, reaching a final

frequency f1 at the time of detection. When seeding happens at time k, the seeding cell origi-

nates from the type-1 cell population with probability �
k
1

and from the type-0 cell population

with probability �
k
0
¼ 1 � �

k
1
. Of course, �

k
1
¼ 0 for k< T1, since there exist no type-1 cells

in the population. Note that different choices of f�
k
0
gk¼1;...

; f�
k
1
gk¼1;...

can capture different
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assumptions regarding the underlying seeding potential of the different types of cells that are

present in the population. Here we consider three representative cases:

(a) Seeding from the most advanced type. When seeding happens before the introduction

of the advanced type, the seeding cell is a type-0 cell, whereas when seeding happens after

the introduction of type-1, the seeding cell is a type-1 cell. Concretely,

�
k
1
¼

0; k < T1

1; k � T1

; �
k
0
¼ 1 � �

k
1
:

(

ð13Þ

Such approach models the assumption that disseminated and circulating tumor cells are

associated with advanced stage cancers and the rate of shedding generally increases with

tumor size [48, 67].

(b) Seeding proportional to fitness. If λ0 is the birth rate of type-0 cells and λ1 the birth rate

of type-1 cells,

�
k
1
¼

0; k < T1

l1

l0þl1
; k � T1

; �
k
0
¼ 1 � �

k
1
:

8
<

:
ð14Þ

The coupling of dissemination and growth advantage is partly supported by the evidence

that seeding cells more likely come from the tumor invasive front, where blood vessels

are enriched [68].

(c) Seeding uniformly over all living cells in the tumor. In this approach the probability

the seeding cell comes from a specific type is proportional to the number of cells in the

population of such type. Concretely

�
k
1
¼

0; k < T1

N1

N0þN1
; k � T1

; �
k
0
¼ 1 � �

k
1
;

8
<

:
ð15Þ

where N0, N1 the population of cells of type 0 and 1, respectively, at seeding time. This

scenario does not assume dissemination advantage of the new type, and the seeding is

purely stochastic. This case is also considered here to account for the fact that few con-

vincing recurrent genetic mutations have been identified so far that characteristically

empower the metastatic dissemination in human cancers [11].

We can now focus on Bkmd. Consider first the case where the seeding cell originates from the

type-0 cell population. When k< T1 this event occurs with probability 1, whereas when k� T1

it occurs with probability �
k
0
. Notice that while different cells in the population can accumulate

different passenger variants as the type-0 population grows over time, all cells share the same

fitness characteristics, i.e., their death-to-birth ration is equal to ρ0. Therefore, from a modeling

perspective we fall within the setting analyzed in Section 4.1.2, and the expected Bkmd can thus

be given by (12) parametrized by ρ = ρ0 and f ¼ 2a

1� f1
. Similarly, if we condition on the seeding

cell originating from type-1 we can calculate the expected Bmd based on (12) upon using

the parametrization ρ = ρ1, f ¼ 2a

f1
and K = kseed − T1. Therefore, a joint expression for
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approximating the expected Bmd in the case of two types is given by

E½Bmd; k;T1; f1� �

� �
k
1
� E Bneutralmd ; k � T1;

2a

f1
; r1

� �

þ ð1 � �
k
1
Þ � E Bneutralmd ; k;

2a

1 � f1
; r0

� �

:
ð16Þ

Note that the above approach can be extended to three or more types, in a straightforward

way, and it thus omitted for the sake of brevity.

A fundamental implication of the above analysis is that the monotonicity of the sequence

fE½Bmd; k�gk¼1;...
is expected to break by the introduction of newly emerging advantageous

types. Such effect is, of course, inescapable when dissemination is assumed to be intertwined

with fitness advantage (as in cases (a) and (b) described above), however the expected drop

remains prominent even when no such assumption is enforced (Fig 7; top row, third column).

Introduction of advantageous types affects Bp in a way that mirrors the related effects on Bmd.
Notice that when new types lead to rapid drops in Bmd, Bp tracks these drops with abrupt

decays (as seen in the bottom row of Fig 7), whereas when Bmd increases linearly with seeding

Fig 7. Illustrative Bmd and Bp patterns, in the exponential growth setting, under different seeding scenarios explored in Section 4.1.3. In this example

two advanced types of cells are introduced in the population; type-1 is introduced when there are 600 cells, whereas type-2 is introduced when there are

approximately 460K cells. The parametric values are: ρ0 = 0.95, ρ1 = 0.93 ρ2 = 0.83, u = 0.15, fm = 0.02, fp = 0.4; the overall population at detection time is

1.06 × 109 cells; finally, the advantageous types 1 and 2 are present on 87.3% and 77.1% of the cells in the population, respectively, and the number of clonal

and subclonal variants of the primary tumor with frequency at least 40% is assumed to be 50. Type-2 is a subtype of Type-1. The variability reported on the

subplots in the second and third column, captures the effects of uncertainty in seeding origination under seeding scenarios (b) and (c) (note that such

variability is absent in the first column which corresponds to seeding scenario (a) which is deterministic; see also Section 4.1.3). Observe that the

introduction of advanced cells results in a drop of the expected Bmd and Bp. This drop is more sudden and emphatic in the case where the probability of

dissemination is strongly associated with the genetic properties of the seeding cells (as e.g., in the first two columns of the plot, which showcase the resulting

patterns under seeding scenarios (a) and (b), discussed in Section 4.1.3), however, even on the other extreme (when seeding is equiprobable among all

living cells at the time of dissemination; i.e., seeding scenario (c), detailed in Section 4.1.3), a gradual change in monotonicity of Bkmd is also present. Similar

patterns arise under different parametric choices (see S7 and S8 Figs).

https://doi.org/10.1371/journal.pcbi.1008838.g007
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time, the corresponding Bp regions appear flat. This is in accordance with our discussion in

Section 4.1.1, and, in particular, with Eq (8). The variability due to the uncertainty in seeding

origination, under scenarios (b) and (c), is increasing as new detectable types are introduced

in the population—leading to the characteristic heteroscedastic patterns, also observed in Sec-

tion 2.1. This is expected, as seeding from a new detectable type leads to a markedly smaller

Bmd, compared to seeding from previous types that are also present in the population. Note

that this variability arises from the seeding origination distribution over time (½�
k
0
; �

k
1
; . . .�) and

is, of course, absent under seeding scenario (a) which is deterministic (Fig 7; first column). For

additional plots reporting Bmd and Bp patterns under different parametric choices, see S7 and

S8 Figs.

4.2 Computational modeling

The primary goal of the above analysis was to reason mathematically about the expected

behaviour of Bmd and Bp across seeding times, as well as to derive example plots of such pat-

terns for the case of analytically tractable growth models. Interestingly, such patterns remain

true even under the more realistic setting, when tumor growth dynamics are governed by spa-

tial 3D tumor structure (birth rate limitations imposed by local cell density etc). To study the

behavior of the sought quantities at such more realistic settings we recur to our computational

modeling framework, the details of which are presented below.

4.2.1 Birth death process on a three-dimensional lattice. We extend an existing single-

cell-based spatial tumor growth model, named Tumopp [42], to simulate paired primary and

metastatic tumors. Tumopp provides a flexible yet computationally efficient framework for

investigating various parameter settings for tumor growth, making it an ideal foundation for

our implementation. We name our simulation framework Comet (COmputational Modeling

of Evolving Tumors). In our model, tumor expansion starts with a single founder cell located in

the center of a three dimensional lattice with the Moore neighborhood. Cells divide at rate λ and

die at rate μ per unit time. The waiting time between two consecutive division events is assumed

to be exponentially distributed with mean 1/λ. We set λ = 0.25 by assuming that the average cell

cycle is four days. The death rate is chosen according to experimentally estimated death-to-birth

ratios ρ = μ/λ in human cancers. For the slow growing scenario (e.g., early primary tumor), we

set μ = 0.2475 to achieve a ρ = 0.99 [40], and for the fast growing scenario (e.g., metastatic

tumor), we set μ = 0.18 to achieve a ρ = 0.72 [39]. When a cell divides, one of its daughter cells

stays at the original position on the grid, whereas the other fills one of the neighboring empty

sites uniformly at random. When a cell dies, it is removed from the lattice. The local density is

taken into consideration such that the actual birth rate of the i-th cell is λi = λ × ψi, where ψi is

the proportion of empty neighboring sites for this cell. Intra-tumoral migration rate mi is set to

be zero. This setting naturally reflects the spatial constraints in solid tumors and could lead to a

pattern of peripheral growth consistent with experimental observations [43].

4.2.2 Simulating various tumor expansion kinetics and metastatic seeding. Comet
allows passenger variants to occur at a rate of u per cell birth. We randomly assign a virtual

genomic coordinate for each variant by assuming that the variant resides in the broadly

defined sequencing targetable region, such as the whole exome including UTRs (5 × 107bp).

Beneficial (or driver) variants which increase the birth rate by s, i.e., λdaughter = λmother × (1 + s),
occur at a rate ub per cell birth. The virtual genomic coordinate for a driver variant is sampled

from a pool of 2 × 105bp in size. Although a smaller number of positions that confer fitness

advantage have been assumed for point mutations [2], here we assume that a variant captures

any type of somatic alterations, including the breakpoints of structural and copy number vari-

ants, as long as they can be resolved at the single nucleotide resolution. These settings are all
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configurable and prepare our model to be comparable to other types of genomic divergence in

the future. We employ various levels of the selection coefficient, in conjunction with the two

levels of ρ, to model distinct growth dynamics. The selection coefficient is sampled from the

Gaussian distribution with mean s and standard deviation s/2. When s = {0, 0.02, 0.05} and

ρ = 0.72, the virtual tumor grows with a pattern of progressive diversification; s = {0.1, 0.2} and

ρ = {0.72, 0.99} leads to a branching evolution and s = {0.5, 1} and ρ = 0.99 realize the dynamics

of linear evolution (Fig 5B). Although the parameter setting is model specific, the resulting

clonal dynamics may also be realized by other forces that are not modeled here, such as micro-

environmental forces [22] and purifying selection [69].

When the population size of the primary tumor increases by Ns (25,000) cells (Nd = I × Ns,
where I = 1, 2, . . .), we allow the next cell that is born, to disseminate and seed a metastatic

tumor. This strategy takes into account both the impact of growth advantage and the existent

population size of a subclone on metastatic dissemination potential. In other words, it falls

between scenarios (b) seeding proportional to fitness and (c) seeding uniformly over all living

cells in the tumor as discussed in the mathematical analysis in Section 4.1.3. Once a cell dis-

seminates, it is removed from the lattice of the primary tumor, and is placed at the center of a

new lattice devoted to the metastatic tumor. We also verified the model predictions by halving

or doubling the value of Ns. We apply small ρ (0.72) to metastatic tumor growth [39] and we

let it inherit the rest of the parameter values of the corresponding primary tumor. We do not

explore the dynamics of metastatic tumor expansion, as we focus on variants accrued in the

seeding cell before dissemination, as well as variants in the primary tumor.

4.2.3 Lineage tracing and virtual multi-region sampling. Comet assigns a unique id

to a cell when it is born, and tracks its location on the lattice, the id of its parent, the time of

birth, the time when it divides or dies, as well as, the passenger and driver alterations (if any)

occurred at cell’s birth. Such detailed information allows us to reconstruct the full genealogy

map and all the variants in every cell after simulation. Both the virtual primary and metastatic

tumors reach a final volume of N (107) cells. We use this number to strike a balance between

computational efficiency in the single-cell-based setting, and practical relevance of the corre-

sponding final physical size of the tumor [19]. Using this setting, we get a sequence of 400 vir-

tual metastases as the primary tumor expands.

We randomly sample ten spherical regions (with a radius of 6.3 lattice units, leading to

approximately 1,000 cells each) from the final primary and metastatic tumors, respectively.

The variant repertoire of each region is reconstructed based on the genealogy relationship and

variant history. A virtual sequencing experiment is performed to generate allele frequencies

for each variant. The sequencing depth count is assumed to follow a negative binomial distri-

bution [44] D�NegBinom(md, σd), with mean md = 100, and dispersion σd = 10. The resulting

read counts of the variant allele having a true allele frequency of F follows a binomial distribu-

tion M� Binom(D, F).

4.2.4 Analysis of virtual genomic divergence and tumor genealogy. The allele frequency

of a variant v in a region r is defined as f rv ¼ Mr
v=D

r
v. We evaluate the average between-region

genomic divergence in the primary tumor based on the Fixation index (Fst) estimate [18] and

the Fst between region r and r0 is computed as follows:

Fst rr0 ¼

PV
v¼1
ðf rv � f

r0
v Þ

2
�

f rv ð1� f
r
v Þ

Drv � 1
�

f r
0

v ð1� f
r0
v Þ

Dr0v � 1

h i

PV
v¼1
½f rv ð1 � f r

0

v Þ þ f r
0

v ð1 � f rv Þ�
: ð17Þ

The genetic variance components (numerator and denominator) are averaged separately to

obtain a ratio combining the Hudson Fst estimate [46] across all V variants in the two regions.

To obtain a global allele frequency of the variant v in the entire tumor, we calculate a pooled
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allele frequency across all the sampled regions for primary (f pv ¼
P

Mr
v=
P

Dr
v) and metastatic

tumor (f mv ), respectively [1]. The number of metastatic specific variants is calculated from the

virtual sequencing data as Bm ¼ #fvjf mv > g; f pv < ag. Primary specific variants are calculated

as Bp ¼ #fvjf pv > g; f mv < ag. In this study, we use substantial presence threshold γ = 0.2 and a

sequencing detectability threshold α = 0.01 to demonstrate our findings.

The clonal evolutionary tree of a virtual tumor is being analyzed as a directed graph with

vertices denoting cells and edges representing birth events. The branch length between two

cells (e.g., a seeding cell and its most recent detectable ancestor at frequency α) is calculated as

the number of edges between them. The total branch length of a group of cells (e.g., all detect-

able ancestors at frequency γ in the primary tumor) is the sum of all edges in the sub-graph

representing the genealogy of these cells.

To check if the subclonal expansion is associated with the drop of Bm, we first identified the

time (e.g., the size of the primary tumor during its expansion) when a cell is born who eventu-

ally reach 5% of the final sampled population. To identify the time interval when Bm drops, we

then partitioned the zigzag pattern of running means of Bm series to increasing and decreasing

phases in each simulation by using the function ZigZag in R package TTR [70]. We also

defined the valleys of Bm as the time interval when Bm lies below 5% of the means of the ran-

domized data sampled (1000 times) from the original Bm series. We then tested if the subclonal

expansion is associated with the drop and valleys of Bm significantly by performing a permuta-

tion test using the R package regioneR [71], by focusing on the interval where the primary

tumor grows beyond 20% of its final size.

4.3 Code availability

Code for our single-cell based spatial tumor growth simulation studies and mathematical anal-

ysis is available at https://github.com/SunPathLab/Comet

Supporting information

S1 Appendix. Derivation of Formula (6) of the main document.

(PDF)

S1 Fig. Patterns of Bp. (A) The single-cell evolutionary tree based definition of Bp: the total

branch length of all Detectable Ancestors at γ (DAγ) minus the branch length of the most

recent detectable ancestor (MRDAγ) of the metastatic seeding cell, captures the majority of the

variance of Bp measured from the virtual tumors (blue density curves). By contrast, the tumor

size at metastatic dissemination, as a surrogate of dissemination time (gray density curves) has

much less explanatory value for Bp. Note that we focus on moderate and strong selection only,

since the variability of Bp under weak selection (s< 0.05) is negligible. (B) Two virtual tumors

with distinct kinetics exemplify the conditional dependence of Bp on metastatic dissemination

time. The measured Bp from virtual tumors is plotted against the tumor size fraction when the

seeding cell (green dots) disseminates, the running mean (blue dots) and standard deviation

(blue bars) of Bp is also shown.

(TIF)

S2 Fig. Heteroscedasticity of the time-ordered vector of M-P divergence. The time-ordered

vector of Bm and Bp are heteroscedastic under growth modes involving strong selection

(s� 0.1). The p-value of White’s test for heteroscedasticity [41] is shown at negative log10

scale. A p-value of 0.05 is marked as the dashed red vertical line.

(TIF)
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S3 Fig. The strong positive correlations between the mutation burden (or count) of the

seeding cells and their Euclidean distance to the center of the 3D lattice. We used the

Euclidean distance of a cell to the center of the simulation lattice (Distance to Center) to plot

the spatial cell genealogy trees (Figs 3B and 5B in the main manuscript). Here it is shown that

the majority of the variance of this distance metric is captured by the mutation burden across

our simulations (left panel). The right panel shows such strong positive correlations for two

example simulation runs with distinct selection coefficients. This pattern is consistent with

peripheral growth, attributable to the spatial constraints in the computational modeling.

(TIF)

S4 Fig. Pairwise variant allele frequency (VAF) histograms for virtual primary tumors.

Representative pairwise VAF histograms derived from three spatially separated regions

(labeled Region 1 to 3) within the same virtual primary tumor (PT) are shown for tumors sim-

ulated under different evolutionary modes. The pairwise histograms illustrate the number of

variants detected at a given VAF for the two tumor regions shown above and below the x axis.

The bin width was optimized for visualization purposes on the basis of the number of variants

[72]. Variants were classified as public (gray), shared (green, subclonal variants shared in the

two regions in comparison), or region specific (blue) on the basis of their presence in the vir-

tual multi-region sequencing (5 regions in total) [18]. The number of public variants, as well

as the Fixation index (Fst) are indicated (see Methods). Whereas the between-region genetic

divergence increases when we raise the selection coefficient from 0.02 to 0.05, raising the selec-

tion coefficient further facilitates late subclonal sweeps, which can decrease the between-region

genetic divergence. Note the increasing number of public variants and decreasing Fst on the

lower panel (s = 0.2 and s = 0.5).

(TIF)

S5 Fig. Bmd under neutral growth for different values of f.
(TIF)

S6 Fig. Bmd variability for different values of ρ.

(TIF)

S7 Fig. Example Bmd and Bp plots for low death birth ratio. The growth parameters of the

example are: ρ0 = 0.72; variant probability: u = 0.15; detectability frequency: f = 0.02; fitness of

type 1: ρ1 = 0.64; fitness of type 2: ρ2 = 0.12. The population at detection time is 1.95e9; type-1

mutation appears in 41.18% of the population; type-2 mutation appears in 20.49% of the popu-

lation.

(TIF)

S8 Fig. Example Bmd and Bp plots for high death birth ratio. The growth parameters of the

example are: ρ0 = 0.99; variant probability: u = 0.15; detectability frequency: f = 0.02; fitness of

type 1: ρ1 = 0.984; fitness of type 2: ρ2 = 0.967. The population at detection time is 1.30e9; type-

1 mutation appears in 91.84% of the population; type-2 mutation appears in 44.48% of the

population.

(TIF)

S9 Fig. The mapping between seeding time and M-P divergence measured by running sim-

ulations with two alternative Ns. The upper panel: Ns = 12, 500, i.e., a half of the original set-

ting used in the main manuscript; the lower panel: Ns = 50, 000, i.e., a double of the original

setting. We group the various simulations into three representative kinetics of primary tumor

growth: progressive diversification (s� 0.05), branched evolution (s = {0.1, 0.2}) and linear

evolution (s� 0.5). For each kinetics, the actual seeding time is shown as color scales on top of
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the corresponding Bm and Bp values. A smoothed layer is added to show the general distribu-

tion of the seeding time.

(TIF)

S10 Fig. The mapping between seeding time and M-P divergence measured by sampling

five random regions of the virtual tumors. We group the various simulations into three rep-

resentative kinetics of primary tumor growth: progressive diversification (s� 0.05), branched

evolution (s = {0.1, 0.2}) and linear evolution (s� 0.5). For each kinetics, the actual seeding

time is shown as color scales on top of the corresponding Bm and Bp values. A smoothed layer

is added to show the general distribution of the seeding time.

(TIF)
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