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The core Alzheimer’s disease (AD) cerebrospinal fluid (CSF) biomarkers; amyloid-β (Aß),

total tau (t-tau), and phosphorylated tau (p-tau181), are strong indicators of the presence

of AD pathology, but do not correlate well with disease progression, and can be difficult to

implement in longitudinal studies where repeat biofluid sampling is required. As a result,

blood-based biomarkers are increasingly being sought as alternatives. In this study, we

aimed to evaluate a promising blood biomarker discovery technology, Olink Proximity

Extension Assays for technical reproducibility characteristics in order to highlight the

advantages and disadvantages of using this technology in biomarker discovery in AD.

We evaluated the performance of five Olink Proteomic multiplex proximity extension

assays (PEA) in plasma samples. Three technical control samples included on each

plate allowed calculation of technical variability. Biotemporal stability was measured in

three sequential annual samples from 54 individuals with and without AD. Coefficients

of variation (CVs), analysis of variance (ANOVA), and variance component analyses were

used to quantify technical and individual variation over time. We show that overall, Olink

assays are technically robust, with the largest experimental variation stemming from

biological differences between individuals for most analytes. As a powerful illustration

of one of the potential pitfalls of using a multi-plexed technology for discovery, we

performed power calculations using the baseline samples to demonstrate the size of

study required to overcome the need for multiple test correction with this technology. We

show that the power of moderate effect size proteins was strongly reduced, and as a

result investigators should strongly consider pooling resources to perform larger studies

using this multiplexed technique where possible.
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INTRODUCTION

Diagnosis of Alzheimer’s disease (AD) and AD-related dementias
(ADRD) historically depended on clinical features (“typical”
symptoms, signs and course) and exclusion of other potential
causes of cognitive decline, with identification of abundant
plaque, tangle or other histopathologies such as lewy bodies and
TDP-43 inclusions at autopsy being the gold standardmethod for
definitive diagnosis. With the development of amyloid-β and tau
imaging and biofluid biomarkers, we can now come very close to
definitive diagnosis during life. However, our understanding of
the pathology and pathophysiology of AD, beyond the presence
or absence of amyloid-β and tau, requires identification and
characterization of a wide range of biological factors that drive
neurodegeneration over time and different stages of disease.
Repeat biofluid sampling to measure biomarker changes over
time is essential for further disease characterization, staging,
monitoring progression, and as secondary outcomes in clinical
trials (1, 2). Lumbar puncture for cerebrospinal fluid (CSF)
biomarkers in AD is useful to diagnose individuals in research
studies, but has not been widely adopted, at least in part because
of acceptability and challenges for repeat sampling (3–5). Thus,
there is immense demand for blood-based biomarkers in research
studies as well as clinical practice as plasma collection is easy and
practical, allowing more frequent measurements.

AD/ADRDs pose some unique challenges to the biomarker
discovery process given significant pathophysiological
heterogeneity within and between diseases and overlapping
comorbidities with systemic metabolic, cardiovascular, and
inflammatory diseases (6–8). The pathophysiological drivers
and associations of these comorbidities with neurodegeneration
may also change over time. Understanding the longitudinal
stability (intra-individual variation in a biological analyte over
time, or biotemporal stability) is a requisite for establishing a
candidate biomarker’s utility in clinical and research settings
(9). Repeat samplings over time inform analyte fluctuations
relative to an individual baseline, useful for evaluating
therapeutic effects of interventions in clinical trials or disease
progression monitoring (3, 10, 11). It is critical that the tools for
biomarker characterization are precise and reproducible to meet
these demands.

In order to explore the feasibility of this technology for
discovering blood-based biomarkers across all fields of medicine,
but with a focus on Alzheimer’s Disease, we independently
evaluated the technical performance of Olink Proteomics high-
throughput, multiplex proximity extension assays (PEA) for
protein screening (12, 13). Five commercial protein panels
were chosen for measurement precision and reproducibility
analysis. Our control structure included placing three plasma
samples, which were independent from the Olink control
samples, to be run in duplicate on every plate for analysis
of technical precision, and multiple annual samples from
the same subjects for analysis of biotemporal stability. For
the majority of analytes measured, Olink’s PEA technology
performed well, exceeding our standard performance criteria
while requiring small sample volume. A high degree of
intra- (within plate) and inter- (between plate) measurement

precision demonstrated technical robustness and performance
reliability, supporting its utility in simultaneous evaluation of
many analytes. Biotemporal variability is often unheeded in
biomarker studies. Our evaluation found the majority of analytes
to be relatively stable over time, with the preponderance of
inter-individual analyte variability attributed to diagnosis and
biological variations between individuals. Proteins with large
within group variability or with small to medium differences
between diagnostic groups are particularly impacted by stringent
statistical significance thresholds in multi-protein studies. For
this reason, a power calculation was performed to address sample
size requirements, as the need to correct for multiple tests is a
notable limitation of using this technology. Overall, the technical
robustness and reliable performance of this technology supports
its utility for simultaneous evaluation of many blood-based
candidate biomarkers.

METHODS

Experimental Cohort
Subjects were selected from the Massachusetts Alzheimer’s
Disease Research Center (MADRC) longitudinal cohort who
were classified as AD (n = 20), or cognitively unimpaired (CU-
N; n = 34) in standardized diagnostic consensus conferences
(Figure 1A). Data available for diagnostic decision included
at least one of detailed post-mortem neuropathology (n =

6), Amyloid β 11C-PiB-PET and 18F-flortaucipir PET imaging
(n= 27), cerebrospinal fluid biomarkers (n = 7), structural MRI
(n = 5), plasma tau levels (n = 2). For 7 subjects, the decision
was based on longitudinal cognitive testing and basic clinical
data only. Informed consent was obtained from all participants
and collection and analysis of plasma samples from these
individuals was approved by the Massachusetts General Hospital
Institutional Review Board under protocols 2006P002104 and
1999P003693. Plasma was collected once per year for 3 years,
a total of three time points per subject. Fourteen individuals
had one interval between samples that was greater than 1.25
years but less than 2 years. Ten individuals had an interval of 2
years between sample collection. The median intervals between
samples used in this study were 421 days for the interval between
Visit 1 and Visit 2, and 428 days for the interval between Visit 2
and 3.

Sample collection was performed according to a consistent
Standard Operating Procedure throughout the study, with
samples proceeding from blood collection to aliquot freezing
within 4 h. Blood was collected into EDTA collection tubes,
inverted 10 times, and centrifuged at 2000 x g for 10min at
room temperature. After centrifugation, plasma was aliquoted
into polypropylene tubes in 0.5mL volumes and frozen at−80◦C.

Olink Analysis
Codified samples were sent to Olink Proteomics (Watertown,
MA) for dilution and assays across five multi-analyte panels.
Multiple investigators selected the panels that contained
the highest number proteins of interest to AD biomarker
research: Olink Target 96 Cardiometabolic (v.3602), Olink Target
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FIGURE 1 | Performance evaluation schematic and Olink Proximity Extension Assay technology overview. (A) Plasma samples from 54 individuals of the

Massachusetts Alzheimer’s Disease Research Center Longitudinal cohort were analyzed by Olink PEA technology (B). Olink PEA technology uses

oligonucleotide-conjugated antibody pairs for targeting different epitopes of the same protein. Only when antibody pairs bind the same protein are the oligonucleotides

close enough to hybridize. Annealed sequences are then extended, amplified, and measured by microfluidic qPCR. (C) Three control samples were run in duplicate on

all plates and panels, allowing independent assessment of intra- and inter-plate assay precision.

96 Cardiovascular III (v.6112), Olink Target 96 Immuno-
oncology (v.3103), Olink Target 96 Inflammation (v.3021),
and Olink Target 96 Neuro Exploratory (v.3901). Olink’s
Proximity Extension Assay (PEA) technology uses antibody pairs
conjugated to unique oligonucleotides and is quantified via
PCR. When both antibodies of a pair bind the target protein
simultaneously, their respective conjugated oligonucleotides
are brought into proximity, facilitating hybridization. The

oligonucleotide sequence is then extended by DNA polymerase,
amplified, and measured by qPCR to determine the sample’s
initial protein abundance (12). Raw analyte expression values
after PCR underwent multiple rounds of transformation by
Olink, including a log2 transformation, and were returned as
normalized protein expression (NPX) values (13). NPX values
are not absolute quantifications, but an indication of relative
concentration of each analyte. In total of 414 unique analytes
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were measured across the five protein panels, with each panel
requiring only one microliter (µL) of plasma per sample.

Data Analysis
Missing values per protein were counted across all samples,
with those proteins with >20% missing values excluded from
further analysis. Out of 460 total proteins quantified, 45 had
>20 percent missing values and were excluded. Beyond Olink’s
internal controls, three technical control samples were included
in duplicate on every plate to evaluate technical precision and
reproducibility. Percent coefficient of variation (CV, variability
between measurements of duplicate samples expressed as a
percentage of mean abundance) was used as the measurement of
intra- and inter-plate precision. CVs were calculated as follows;
[(standard deviation / mean) ∗ 100]. For intra-plate CVs, a
CV was calculated for each same-plate duplicate sample pair,
then averaged across all duplicate pairs. For inter-plate CV, the
mean NPX value from each same-plate duplicate sample pair
was calculated, and CV calculated across all plates using these
mean values. Acceptable technical performance criteria were
defined as CV <15%, with the CV threshold relaxed to 20% for
biotemporal stability. Thirty six analytes are represented onmore
than one panel (for example, the ADA protein is measured on
both the Immuno-Oncology and Inflammation panels), allowing
additional calculation of multi-panel measurement correlations
of the same analyte.

Olink normalization methods minimize the CVs across their
in-house control samples, and the log2 transformation results
in compression of these values. We therefore used a second
approach to quantify the different types of variation inherent
in each experiment, applying mixed effect ANOVA models and
variance component analysis (VCA) to assess the proportion of
variance introduced through potential technical and biological
sources. For the technical variability experiments, the proportion
of variance for each of three contributing variables (intraplate-
, interplate-, and biological- variability) was computed as the
ratio of mean square error for each variable vs. the sum of
mean squares across all variables. For the analysis of biotemporal
variation, where class size was strongly imbalanced, VCA was
performed on these samples (using mixed-effect models via the
VCA package in R) to determine the proportion of variance
arising from diagnostic group, inter-individual differences, and
biotemporal differences for each individual.

Finally, when taking measurements of multiple proteins
simultaneously, consideration of initial sample size is critical.
To demonstrate optimal sample size, power calculations were
performed using baseline samples from all subjects. A two-
sample two-tailed t-test power calculation was conducted using
the base R power.t.test function. This was used to plot a
power curve and exemplify sample size requirements for three
analytes with markedly different effect sizes and inter-sample
variability. The significance levels used equated to a Bonferroni
corrected p-value for a one-protein experiment (0.05), 100-
protein experiment (0.0005), and a 450-protein experiment
(0.0001). All analyses were performed in R using the Table 1,
tidyverse, and VCA packages (14).

RESULTS

Experimental Design and Quality Control
Fifty four individuals (CU-N, n = 34; AD, n = 20) with three
approximately-yearly plasma samples available were selected
from the Massachusetts Alzheimer’s Disease Research Center
Longitudinal cohort (Figure 1A). These samples underwent
proteomic analysis across five Olink multi-analyte panels
(Figure 1B). An additional three control samples (from three
individuals) were run in duplicate across all plates and panels,
to allow for independent assay stability assessments (Figure 1C).
In total of 414 unique proteins were quantified across these
five panels, with 189 proteins having zero missing values. The
Cardiometabolic and Cardiovascular III panels had two and
zero proteins with >50% missing values respectively, while the
other three panels contained between 8 and 12 proteins with a
majority of values missing (Figure 2, Supplementary Table S1).
Proteins with over 20% missing values were excluded from
further analysis, leaving a total of 415 proteins across five panels
for assessment of technical performance. Due to the presence of
the same protein on multiple panels, these 415 measurements
corresponded to 377 unique proteins.

Technical Precision and Variability
The three technical control samples present in duplicate on
every plate and panel were used for calculation of intra-plate
(duplicate samples on the same plate) and inter-plate precision
(duplicate samples on different plates) analyses. Intra-plate CVs
were excellent, with only five measured analytes (CD59, FUT8,
GNLY, ITGAM and FAP) displaying CVs >15% (Figure 3A,
Supplementary Table S2). CVs were strongly related to analyte
abundance, with lower NPX values resulting in higher CVs
(Figure 3B). As expected, inter-plate CV distributions were
marginally worse but still met performance thresholds, with
19 out of 415 measured proteins displaying CVs over 15%
(Figure 3C, Supplementary Table S2). The majority of these
analytes were on the Neuro Exploratory plex. As we observed
with the intra-plate reliability, CVs were generally higher for
analytes with lower NPX values (Figure 3D). Thirty six proteins
were present on more than one panel that we tested, enabling us
to assess correlation of values obtained from the same protein on
different panels. Correlations were generally high, ranging from
0.73 (PD-L1) to 0.97 (CXCL9, Figure 4). However, as a result
of variable dilution factors between plexes, NPX values were
not in perfect agreement (Figure 4, dashed line shows perfect
correlation of absolute values) for most proteins, suggesting that
comparison between panels is only possible through relative
changes and not NPX values.

As NPX values are log2 transformed, we were concerned that
the CV statistic may not fully capture the technical variability in
the data. We therefore also performed an ANOVA on data from
the control samples, where we expressed the variation arising
from intra-, inter-, and biological (between-individual) sources
as a proportion of total variation for each protein. For all but
24 proteins (Figure 5B), individual differences among the three
subjects account for the majority of the variability in the data
(Figure 5A, Supplementary Table S3). Individual analytes are
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FIGURE 2 | Cardiovascular III and Cardiometabolic panels demonstrate the lowest percentage of missing values per number of proteins. Five of Olink’s multi-analyte

panels [Cardiometabolic (v.3602), Cardiovascular III (v.6112), Immuno-oncology (v.3103), Inflammation (v.3021), and Neuro Exploratory (v.3901)] containing

AD-relevant biomarkers were used to quantify 414 unique proteins. Across all five panels, 189 proteins had zero missing values. These proteins are shown with the

thin line at 0 on these plots. Note that 1 sample failed on the Cardiovascular III panel, and thus there are zero proteins with zero missing values. Cardiometabolic and

Cardiovascular III panels demonstrated the highest performance overall, with a very low number of proteins with a majority of missing values. Across all 5 panels,

45 proteins had over 20% missing values and were excluded from further analysis.

plotted by panel for inspection on Supplementary Figure S1.
Unlike with CV, the proportion of technical variation was
not related to absolute NPX value (Figure 5C). Comparison
between the two analyses for intraplate variation showed a low
Spearman correlation of 0.28, but concordance in identifying
high performing analytes was high. In total of 312 proteins
were identified as high performance by both analyses (intraplate
CV below 5% and intraplate variation less than 5% of total),
with 17 proteins identified as low performance by both analyses.
Eighty six proteins were discordant between the two analyses. For
interplate variation, Spearman correlation was slightly higher at
0.36, but concordance was lower. In total of 203 proteins were
identified as high performance by both analyses (interplate CV
below 5% and interplate variation below 20% of total), with 47
identified as low by both.

Biological Variability
For a marker to be useful over time in longitudinal studies,
including clinical trials, levels of the protein should be predictably
stable in healthy individuals and not fluctuate much in response
to common day-to-day factors such as diet, sleep, or diurnal
changes. As the progression of AD occurs over long timescales,
annual samples were selected that spanned a period of 3 years

from baseline. A long-term biotemporal CV was calculated using
the samples from each cognitively unimpaired individual. Only
cognitively unimpaired samples were used for this calculation,
as cognitive state was stable in these individuals. As observed
with previous technical measures, most biotemporal CVs were
acceptably low, with all but 9 proteins exhibiting a mean CV
of less than 20 % (Figure 6A). In addition, all the analytes with

high biotemporal variability had mean NPX values below 3.5,

suggesting that instability of values may be a reflection of the

previously observed relationship between high CV and low NPX
values as opposed to a genuine reflection of biotemporal stability.

Due to the relationship observed between CV and NPX
value, we also performed variance component analysis (VCA)

on the serial samples from the cognitively unimpaired and AD

samples and calculated the proportion of variance introduced
by diagnosis, inter-individual differences, and intra-individual
biotemporal differences/technical error. Only 9 proteins had
>10% of their variance explained by diagnosis, including
the well-established blood biomarker neurofilament-light (NfL,
Figure 6B NEFL, Supplementary Table S4). NfL exhibited the
third largest contribution from diagnostic contrast of any
protein, with diagnostic group variation accounting for 17.8%
of the total, and with biotemporal sources accounting for
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FIGURE 3 | Proteins measured on Olink panels consistently demonstrate low CVs. Three control samples were run in duplicate on each plate across all panels for

independent evaluation of assay precision and replicability. Coefficient of variation (CV) calculations were used to assess measurement reliability. The threshold of

acceptable CV (15%) is marked with a vertical red line. (A) Intra-plate CVs for duplicates on the same plates. (B) Intraplate CV is strongly related to absolute NPX

value. (C) Inter-plate CVs are marginally higher than intra-plate CVs. (D) As with intra-plate measurements, inter-plate CVs show a strong relationship to NPX value.

41.9%. For 112 proteins, biotemporal differences accounted
for >50% of the total variation, and for the other 320
proteins the majority of the variation is inter-individual
(Figure 6C, Supplementary Table S4). Proteins with greater
than 75% of variation arising from biotemporal instability
are shown in Figure 6D. All proteins can be visualized
by panel in Supplementary Figure S3. YKL40 showed a
large amount of between subject variability (78.6%), with
only 3% of total variability arising from diagnosis. Across
all proteins there was no relationship between biotemporal
variance component and absolute NPX value (Figure 6E),
suggesting that a VCA may be a more appropriate method
for assessing variability than a simple CV calculation. In

Supplementary Figure S2 we show the trajectories for each
individual sample of three proteins of interest to AD pathology.
SMOC1 had the lowest biotemporal stability (mean CV= 3.04%,
Supplementary Figure S2, Supplementary Table S2) and there
is less than a 2-fold change in range between the maximum
and minimum values. With specific relevance to established
biomarkers in use for AD/ADRD research, neurofilament light
(NfL) has a biotemporal CV of 5.1% and a broad range in
maximum and minimum values (Supplementary Figure S2),
while YKL40 (CHI3L1) has a biotemporal CV of 7.26%, with a
similar broad range of values (Supplementary Figure S2).

To explore how these distributions impact the power of
each marker to detect a change between AD and controls,
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FIGURE 4 | Proteins quantified on two different panels were highly correlated. Thirty six proteins were quantified on more than one panel (for example, the ADA

protein is measured on both the Immuno-Oncology and Inflammation panels), which allowed analysis of inter-panel measurement precision. Each plot shows an

individual analyte’s measurements across two panels. The dashed line represents a perfect correlation of absolute values. While correlations are high (0.73–0.97),

absolute values are not equivalent between panels.
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FIGURE 5 | Olink is technically robust; individual differences are the largest source of variability. The proportion of technical (intra- and inter-plate) vs. biological

sources of variance per protein was evaluated with an ANOVA on our independently included control samples. Variability arising from each source was expressed as a

proportion of the sum of Mean Squares for that protein. (A) For all but 24 proteins, sample variability was primarily due to individual biological differences (orange

bars), the dashed white line shows the 50% cut-off. (B) These 24 proteins, listed alongside their corresponding panel, were subject to a higher proportion of technical

variability (>50%), shown in yellow and blue. (C) There was no relationship between proportion of technical variations (intra- plus inter-) and absolute NPX value.
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FIGURE 6 | Inter-individual, not biotemporal, differences account for the majority of variance in most proteins. For the purpose of evaluating biotemporal analyte

stability, intra-individual CV was calculated using 3 yearly plasma samples from the cognitively unimpaired subgroup (n = 34). (A) All but nine proteins met the 20 %

threshold for acceptable biotemporal stability marked with the red vertical line. The Neuro-exploratory panel had the highest number of proteins whose biotemporal

CV was above the acceptable threshold. (B) A VCA analysis was performed to assess the proportion of variability for each protein arising from diagnostic group

(purple bars), Inter-individual (white), and intra-individual (biotemporal, green) sources. Nine proteins that have greater than 10% variation due to diagnostic group are

highlighted. These nine proteins include the well-established blood biomarker NfL (NEFL). (C) For the majority of proteins (n = 320), inter-individual variation (white)

was the largest source of variability. (D) Ninety three proteins demonstrated a high degree of biotemporal instability (green). Highlighted are proteins with biotemporal

variance >75%. (E) Unlike inter- and intra-plate CVs, biotemporal variation component had no direct relationship with absolute NPX value across all proteins.
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we took the baseline data from each individual (n = 54) and
used this information to simulate experimental power using a
simple two-sample t-test power calculation. To show the effect
that multiple testing correction of p-values has on experimental
power, we used significance levels that equated to a Bonferroni
corrected p-value for a one-protein experiment (0.05), 100-
protein experiment (0.0005), and a 450-protein experiment
(0.0001). As expected for an established biomarker, NfL required
approximately 20 samples per group to achieve 80% power in
a single protein experiment (Figure 7). When the number of
proteins increases to 450, approximately 60 samples per group
are required. YKL40 has a delta similar to that of NfL (0.45
against NfL’s 0.51, Supplementary Table S5), but a larger per
group standard deviation, making the effect of multiple-testing
correction much more severe. Approximately 95 samples per
group are required in a single protein experiment to achieve
80% power, but in a 450-protein experiment, more than 270
samples per group are required. For SMOC1, despite having a
low standard deviation, the between group delta is so small that
80% power is not reached in a 500-sample experiment (Figure 7,
Supplementary Table S5).

DISCUSSION

Olink proximity extension assays are a relatively new technology,
which is increasingly being used to try to identify novel
biomarkers for AD in both cerebrospinal fluid and plasma.
To our knowledge, the best powered plasma experiment to
date involved 415 control individuals and 428 individuals with
staged AD and the quantification of 250 proteins to identify a
number of potential biomarkers. In the large discovery cohort,
they identified 49 proteins changing in at least one disease
contrast, 6 of which (OSM, MMP-9, HAGH, CD200, AXIN1,
uPA) replicated in an independent cohort (15). In our study,
OSM and MMP9 were 2 of the 116 proteins that showed non-
zero contributions to variation from diagnosis by VCA. A smaller
cohort of Hong Kong Chinese (n = 180) found 429 differentially
abundant proteins in AD plasma (out of 1,160 tested), which
included AXIN1 and uPA (16). In a large study of protein
quantitative trait loci and Olink quantified serum proteomes
in 2,893 individuals, CD33 protein was causally linked to AD
disease traits (17). While AXIN, uPA, OSM and MMP9 may be
emerging as potential biomarker targets, their performance and
specificity is not yet well understood across multiple populations
and neurological diseases.

To enable future discovery experiments using Olink
technology, we comprehensively evaluated the performance of
these assays in a small plasma cohort. The precision of Olink PEA
technology was evaluated through an experimental design that
included technical control samples on five commercial protein
panels for biomarker discovery. Olink is an attractive technology
for biomarker analysis as it measures a large number of proteins
using a very small volume of sample (1µL). Frequently, samples
are measured in singlicate, which does not allow for careful
assessment of assay technical performance. Here, repeat sample
measurements were used to determine measurement precision
within and between plates, between panels, and with repeat
sampling over multiple long-term timepoints. In accordance

with standard criteria for immunocapture-based assays, Olink
technology proved to be technically robust, providing acceptable
performance for inter-and intraplate precision (CV < 15%)
for the majority of proteins. Analytes measured on multiple
panels had high measurement correlation, although absolute
NPX values were not always in agreement. NPX values are not
absolute quantifications, but are relative measures of analyte
concentration. These differences between panels are therefore
a result of the variable dilution factors of samples used on the
different panels. Despite the variable dilutions between panels,
all measurements from our samples fell within the quantifiable
range for these multi-panel proteins. Finally, CVs for long-term
biotemporal stability in healthy controls were also very low.

Across all three contexts (intra-plate, inter-panel, and
biotemporal), higher CVs were related to low NPX values,
demonstrating that the closer that measurements are to the
lower limit of detection (Supplementary Table S1), the more
variable they become. Out of concern that this technical
relationship and the log2 transformation of NPX values was
not appropriately describing variability in these assays, we used
additional approaches to model the impact of different sources of
variation. An ANOVA showed that between-subject differences
were the largest source of variation for the majority of analytes
across duplicate measures of the same samples, suggesting that
technical variability was acceptable for all but 24 proteins. Unlike
with the CVs, where we observed a clear relationship between CV
and absolute NPX value, there was no relationship between NPX
magnitude and the proportion of technical variationmeasured by
ANOVA. Although concordance between these two approaches
in identifying high and low performing proteins was generally
good, the comparison of these approaches suggests that CVs
may not fully describe the variation inherent in these assays, and
different approaches should be employed. In our analyses (VCA
and ANOVA) of biotemporal and diagnostic sources of variation,
we showed that while 93 proteins exhibited a large amount
of biotemporal instability, most proteins exhibited much larger
inter-individual differences. Again, there was no relationship
between variance component due to biotemporal differences and
absolute NPX value. The proteins that exhibited relatively higher
biotemporal variability included Complement proteins CA1 and
CA4, superoxide dismutase 1 (SOD1), and MMP9.

Large biotemporal variability within individuals may arise
from a number of factors including circadian rhythms,
environmental stressors, sleep, age, diet, disease processes, and
many more known or unknown factors. These factors may
complicate the use of such a protein as a biomarker in clinical
trials, requiring specific test conditions such as fasting or carefully
timed blood draws. In cross-sectional studies a protein with high
biotemporal instability would require much larger sample sizes
to overcome the day-to-day variability, or averaging of values
obtained over multiple blood draws. It is therefore critical to
examine the behavior of an analyte over relevant time periods.
Fortunately, for the majority of the proteins quantified on these
panels, there was greater inter-individual variation than intra-
individual, suggesting that the majority of proteins on these five
panels may be viable biomarkers for other disease conditions.
However, in the particular context of AD versus controls studied
here, only a small number of proteins varied in our diagnostic
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FIGURE 7 | Protein effect size determines the number of samples needed. Stringent significance thresholds are necessary when measuring multiple proteins in

parallel. Protein effect size becomes a significant determinant of the number of samples required to achieve confidence in any observed differences. A two-sample

t-test power calculation on each individual’s baseline data (n = 34 cognitively unimpaired and n = 20 AD) was used to simulate experimental power. Number of

samples required in experiments measuring a single protein, 100 proteins, and 450 proteins were calculated. Significance values used corresponded to Bonferroni

corrected p-values, 0.05 for a 1 protein experiment, 0.0005 for 100 proteins, and 0.0001 for 450 proteins. The power threshold of 80 % is represented here with the

horizontal dashed line. In this model, proteins with significant effect sizes, such as NfL, can achieve 80% power in a single protein experiment with close to 30

samples per group, increasing only to 100 samples in an experiment measuring 450 proteins. In contrast, a protein with a moderate effect size such as MCP-1

requires an n =170 when measured alone, n = 400 if measuring n = 100 proteins, and just under 500 in an experiment of 450 proteins. SMOC1, even with

500 samples, fails to reach 80% power.

contrast of cognitively unimpaired to AD. These proteins
included the established blood biomarker of neurodegeneration,
NfL (18, 19). Two proteins had a greater proportion of variance
arising from diagnosis than NfL; Neurotrophin-3 (NT3) and
Dipeptidase-2 (DPEP2). NT3 is a neurotrophic factor that binds
to TrkC receptors (20), may decrease with age in post-mortem
hippocampus (21, 22), and has been shown to be increased in
the CSF of elderly patients with Major Depressive Disorder (23),
a key comorbidity of AD. In studies of microglial activation in
aged mice, DPEP2 expression was coregulated with a biomarker
of glial activation, YKL-40 (CHI3L3), and upregulated in the
hippocampus after cerebral injections of cytokine cocktails (24),
but to our knowledge has not been studied directly in AD.

A key consideration when multiplexing or performing
unbiased discovery experiments on multi-analyte panels is the
need for stringent statistical significance thresholds and replicate
samples. This has a particularly strong effect on proteins with
medium to small differences between diagnostic groups or
with substantial within group standard deviations. To visualize
this for future experiments using this technology, we plotted
a power curve to model the influence of protein effect size
on sample size requirements. A two-sample t-test calculation
was performed using significance values that corresponded to
Bonferroni corrected p-values. To model these effects we used
Bonferroni correction, which only accounts for the number of
tests performed, and is thus generalizable across different forms
of experiment and different multiplexes. Alternative approaches

which may be less stringent include Benjamini-Hochberg
correction, which accounts for the p-value distribution, and thus
may have a more moderate effect on p-value adjustment on a
multiplex panel containing a number of proteins strongly related
to Alzheimer’s Disease.

With regard to experimental power in a 450-protein
experiment, a higher effect size protein such as NfL required
fewer than 50 samples per group to achieve confidence in
observed significant differences. In contrast, the moderate effect
size MCP-1 required almost 500 samples per group when 450
proteins are measured, decreasing to n = 170 if MCP-1 is
measured alone. It is therefore important to carefully consider the
number of proteins that are analyzed in multiplex experiments
such as these and the number of samples available. Where sample
numbers >500 are available, a hypothesis free approach that
assesses hundreds of proteins across multiple panels may be
taken. If only a small number of samples are available, then
a more targeted approach should be considered. In the latter
situation, it may be possible to formally develop a two-step
analytical strategy, starting with a targeted à priori hypothesis
analyzing one or two hypothesis-driven proteins, followed by a
discovery analysis of all remaining proteins on the panel. This
underpowered discovery analysis may be used to generate a
hypothesis for further targeted testing in a replication cohort.
As a resource for the community in planning future studies
in AD using the Olink technology, we have provided effect-
size and standard deviations, as well as pre-computed required
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sample sizes assuming an 80% power based on our data
(Supplementary Table S5).

Olink is not an unbiased proteomic technology, but relies
on the use of antibody pairs. As with all antibody-based
technologies, the detection of proteins relies on the interaction
of the antibody with the specific tertiary structure of the protein.
This has the advantage that relative changes may be compared
across multiple studies, as the antibody pair combinations will
presumably measure the same proteoform species in all studies
they are applied to. The use of antibodies allows PEA technology
to probe further into the low abundance proteome than most
standard current mass-spectrometry workflows. Compared to
unbiased technologies such as liquid chromatography mass-
spectrometry (2), missing data is very low, increasing the ability
to easily compare data across studies. Previous studies have
compared protein-level quantifications across PEA technology
and two forms of MS, and found strong correlation of
quantifications between technologies (25, 26). Depending on the
goal of the project however, this specificity of quantified species
may also be a limitation of these technologies. Unlike mass-
spectrometry, which can be used to flexibly identify and quantify
post-translational modifications such as phosphorylation, and
the presence of novel protease-cleaved fragments, such as C-
terminal TDP-43 (27), or specific processed peptides such as
those from amyloid-β (28) or VGF (29), antibody pair technology
does not have this flexibility.

In conclusion, Olink technology is technically reliable for
the majority of analytes, proving to be a practical method for
measuring a large number of proteins simultaneously while
requiring a tiny volume of sample. Variability between analytes
was due primarily to individual biological differences, as opposed
to technical imprecision. Careful consideration of sample size
should bemade when using this technology in highlymultiplexed
or discovery research.
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Supplementary Figure S1 | Proportion of variability arising from intra-plate (blue),

inter-plate (yellow), and biological (orange), sources in the technical control

samples, plotted per protein and panel.

Supplementary Figure S2 | Fluctuations over time in AD-associated proteins.

The trajectories over time of three analytes of interest is demonstrated by plotting

NPX value across each timepoint per each individual. NPX values are log2

transformed during data processing. YKL40 has the greatest biotemporal

instability (CV = 7.26%, Supplementary Table S2) of the three, with NPX value

often changing more than 0.5 NPX between time points, and the largest range in

values between subjects. NfL has a biotemporal CV of 5.1%

(Supplementary Table S2). SMOC1 is the most stable over time, with the lowest

biotemporal CV (3.04%, Supplementary Table S2).

Supplementary Figure S3 | Proportion of variability in the biotemporal sample

set arising from diagnostic group (purple), inter-individual (white) and

intra-individual (biotemporal, green) sources, plotted per protein and panel.

Supplementary Table S1 | Summary of the proportion of missing values (NA) per

protein and panel. Final column shows the Limit of Detection (LOD) for

each protein.

Supplementary Table S2 | Summary of intra-, inter-plate, and biotemporal CVs

of each protein per panel.

Supplementary Table S3 | ANOVA outcome results. The total Mean Squares

and the proportion of variance (Mean Square source/Sum of Mean Squares)

arising from each source of variation is shown.

Supplementary Table S4 | VCA outcome results. This table shows the

proportion of variance arising from diagnostic group, inter-subject, and

intra-subject (biotemporal) sources for each protein on each panel.

Supplementary Table S5 | Power calculations. This table shows delta, standard

deviation, and the required n per group for a 1 protein, 100 protein and 450

protein experiment to reach 80% power for each protein.
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