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In People with HIV (PWH), chronic immune activation and systemic inflammation are
associated with increased risk to develop comorbidities including bone loss. Numerous
cells of the immune system, namely, T cells are involved in the regulation of the bone
homeostasis and osteoclasts (OCs) activity. IL-27, a cytokine that belongs to the IL-12
family can regulate the secretion of pro- and anti-inflammatory cytokines by T cells,
however its role in the setting of HIV is largely unknown. In the present study, we
determined the impact of OCs in T cell secretion of cytokines and whether IL-27 can
regulate this function. We found that the presence of OCs in the T cell cultures significantly
enhanced secretion of IFNg, TNFa, IL-17, RANKL, and IL-10 in both PWH and healthy
controls. In PWH, IL-27 inhibited IL-17 secretion and downregulated surface expression
of RANKL in CD4 T cells. All together these results suggest that in the context of HIV
infection IL-27 may favor IFNg and TNFa secretion at the sites of bone remodeling.

Keywords: IL27, HIV, T cell immune activation, Th1, T cell:osteoclast
INTRODUCTION

In People with HIV (PWH), chronic immune activation and systemic inflammation are associated
with an accelerated course of chronic diseases including osteoporosis, an important contributor of
morbidity and mortality in these patients (1–5). Low bone mineral density (BMD) is multifactorial
and represents a complex interplay between HIV infection, traditional risk factors of osteoporosis,
and effects of the antiretroviral therapy. Reports have shown that HIV infection is a risk factor for
low BMD in young (6–11) and older individuals (12–16). The molecular mechanisms linking HIV
infection and bone disease are largely unknown.

In the bone, there is a coordinated balance between bone-forming osteoblast cells, and bone-
resorbing osteoclasts (OCs) cells. OC precursors are monocyte/macrophage lineage and are
recruited from the bone marrow and circulation into the sites of bone remodeling (17–23).
During bone remodeling, OCs precursors undergo differentiation through signals provided by
the macrophage colony-stimulating factor (M-CSF) and the receptor of activation of nuclear factor
org April 2022 | Volume 13 | Article 8186771
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kappa B (NF-kB) (RANK) ligand (RANKL) (24). Osteoblasts
were thought to be the main sources of RANKL promoting the
differentiation of OCs precursors, however new evidence has
determined that osteocytes produce RANKL and therefore are
important players in regulating adult bone remodeling (25–28).
The availability of RANKL in the microenvironment of the bone
is regulated by Osteoprotegerin (OPG), which acts as a decoy
receptor restricting osteoclastogenesis (17, 29–32).

Regulation of the bone homeostasis is modulated by cells of
the immune system (33). B cells and T cells secrete RANKL and
OPG, key factors involved in bone remodeling (34–38).
Particularly, T cells are sources of RANKL and other cytokines,
namely, IFNg, TNFa, and IL-17 regulating osteoclasts
differentiation and bone resorption (39). IL-17 synergizes with
RANK–RANKL pathway promoting OCs activity (33, 36, 40–
43). In contrast, IFNg has dual effects by interfering with OCs
differentiation; and indirectly IFNg enhances OCs antigen
presentation capacity promoting T cell activation and
consequently the T cell secretion of pro-osteoclastogenic
cytokines, including, RANKL and TNFa (44–47). In addition,
IL-10 a regulatory cytokine has inhibitory effects both direct and
indirect in osteoclastogenesis (48–51). In T cells, IL-10 has wide
regulatory functions and inhibit production of pro-inflammatory
cytokines (52).

In the setting of HIV infection, the role of T cell immune
activation in bone homeostasis is not totally understood. Reports
have shown that T cell reconstitution and immune activation is
associated with bone loss (53–56). In PBMCs (Peripheral Blood
Mononuclear Cells) from PWH, both CD4 and CD8 T cells
express higher RANKL and decreased OPG, and its ratio is
correlated with BMD suggesting a potential contribution of T
cells in bone loss (53, 54, 57, 58).

IL-27 a cytokine that belongs to the IL-12 family has been
shown to play a role in the bone remodeling (59). IL-27 is a
heterodimer formed by the IL-27p28 chains and Epstein–Barr
Virus-induced gene 3 (Ebi3) chain (60–63). IL-27 signals
through a heterodimer receptor composed of IL-27Ra and
gp130 and activates Janus kinase (JAK)-signal transducer and
activator of transcription (STAT-1 and -3), and the mitogen
activated protein kinase (MAPK) pathway (60, 63, 64). IL-27
plays a crucial role in immunity, balancing protective and
inflammatory responses including development of helper T
(Th)1 and inhibition of Th17 and Th2 differentiation (61, 65–
67). In addition, IL-27 induces upregulation of PD-L1
expression, and generation of IL-10-producing type 1
regulatory T (Tr1) cells (64, 67–75).

In the bone, recent evidence has shown that IL-27 is expressed
in both osteoblasts and osteoclasts and can directly modulate
bone turnover by downregulating RANK expression (59, 76–78).
In addition, in CD4 T cells, IL-27 inhibits RANKL secretion
modulating their pro-osteoclastogenic function and suppressing
T cell-mediated inflammatory bone destruction (79).

The impact of HIV driven T cell immune activation in the T
cell–osteoclast (T:OCs) crosstalk and whether IL-27 can
modulate T cell function in this setting is not well defined. In
the present study, we developed an in vitro coculture system and
investigated the cytokine networks involved, and their regulation
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by IL-27. We found that OCs significantly increased the secretion
of cytokines (IL-17, TNFa, IFNg, RANKL, and IL-10) by T cells
from healthy controls and PWH. In T cells from PWH, IL-27
downregulated IL-17 and RANKL surface expression, suggesting
that in the setting of HIV infection, IL-27 may favor a Th1
associated cytokines at the site of bone remodeling.
MATERIAL AND METHODS

Study Participants
Participants were studied under a MedStar Georgetown
University Hospital and an NIAID Institutional Review Board
approved HIV clinical research studies. Characteristics of the
study groups of PWH (n = 26) are described in Table 1. Healthy
volunteers (n = 19) were obtained from the MedStar Georgetown
University Hospital, and the NIH Blood Bank under an
institutional review board approved protocol (Table 2). All
study participants signed a written informed consent for the
collection of samples.

Tissue Culture
Osteoclasts Differentiation
Osteoclasts were differentiated from frozen PBMCs as described
(80). Briefly, frozen PBMCs from healthy donors (HC, n = 19)
and PWH (n = 26) were thawed and 1 × 106 cells were cultured
in a 12-well plate in conditioned media MEM-a (Gibco, MA)
containing 10% heat-inactivated FBS (Gemini, CA), and M-CSF
(20 ng/ml, R&D System, MN) at 37°C and 5% CO2. Cells were
fed with fresh media every three days. After 6 to 9 days of culture,
osteoclast precursors were differentiated by the addition of
RANKL (20 ng/ml, R&D System, MN) to the media (MEM-a
containing M-CSF (20 ng/ml, R&D System, MN)). At day 6,
osteoclast differentiation was determined by microscopy and
measuring tartrate-resistance acid phosphatase (TRAP) activity
as described (80, 81).

Microscopy
Cells were cultured in coverslips and fixed with 4%
paraformaldehyde for 15 min and washed with PBS. Hoechst
33342 (Invitrogen, MA) and Alexa Fluor 488-Phalloidin
(Molecular Probes, OR) were incubated in immunofluorescence
staining buffer (PBS + 5% FBS (Gibco, MD) + 0.1% Triton X-100).

For TRAP staining reagents were purchased from Cosmo Bio
Co, CA and used according to instructions of the manufacturer.
Cells were stained for ~45 min with chromogenic substrate.

Hoechst and Phalloidin staining fluorescent microscopy
images were collected using DAPI, GFP, and Phase Contrast
filter sets (BioTek, VT). For TRAP Staining Color brightfield
images of the resulting staining were collected. Both, images were
collected using a Lionheart FX microscope (BioTek, VT) using a
20×/0.45 NA Plan Fluorite WD objective and Gen3.20 software.

TRAP Activity
Differentiated osteoclasts were collected by using trypsin
(Corning, NY). A total of 30,000 osteoclasts were plated in an
OsteoAssay™ Human Bone Plate (Lonza, CA) and cultured for
April 2022 | Volume 13 | Article 818677
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72 h at 37°C and 5% CO2. The media alone was used as
background control. TRAP activity was measured in the
supernatants using a TRAP solution containing a synthetic
substrate (0.1 M sodium acetate (pH = 5.8), 1 mM ascorbic
acid. 0.15 M KCL, 10 mM 4-Nitrophenyl Phosphate).
Approximately 20 ml aliquot of culture supernatant was mixed
Frontiers in Immunology | www.frontiersin.org 3
with 80 ml TRAP solution and incubated at 37°C for 1 h. The
reaction was stopped by addition 100 ml 0.3 N of NaOH. The
absorbance was measured at 405 nm in a microplate reader
SpectraMax iD3 (Molecular Devices, CA). The background
absorbance was subtracted and the values were plotted and
used to represent the activity of TRAP.
TABLE 2 | Characteristic of the healthy controls.

Healthy controls HC (n = 10)a Figure 1 HC (n = 9)b Figure 2

Age, yr, median (IQR) 53 (38–60) 34 (29–43)
Gender n (%)
Male 4 (40) 5 (55.6)
Female 5 (50) 2 (22.2)
Race/Ethnicity n (%)
White 5 (50) 4 (44.4)
Black 3 (30) N/A
Other 1 (10) 3 (33.3)
April 2022 | Volume
aAge, gender and race data are not available in 1 out of 10 participants.
bAge, gender and race data are not available in 2 out of 9 participants.
N/A, Not Available.
TABLE 1 | Characteristic of the study participants.

HIV+(n = 9)a HIV+ (T)(n = 17)

Age, yr, median (IQR) 52.0 (44.5–57.5) 48 (42–53)
Gender n (%)
Male 7 (77.8) 14 (82.4)
Female 2 (22.2) 3 (17.6)
Race/Ethnicity n (%)
White 3 (33.3) 6 (35.3)
Black 5 (55.6) 9 (52.9)
Other 1 (11.1) 2 (11.8)
Years on ARV median (IQR) N/A 4.692 (3.221–9.166)
Clinical Characteristics
Viral load (copies/ml, IQR) <20 (20–20)b <50c

ASCVD risk median (IQR) 4.6 (3.4–20.2) N/A
FRS median (IQR) N/A 3.1 (2.2–6.5)d

Total Mass kg median (IQR) N/A 80.70 (66.70–87.85)
Total BMD g/cm2 median (IQR) N/A 1.165 (1.057–1.330)e

Spine BMD/cm2 median (IQR) N/A 1.109 (0.939–1.230)
T-score median (IQR) N/A −0.30 (−0.95–1.55)
BMI median (IQR) N/A 27.10 (23.06–29.80)
Metabolic syndrome n (%) N/A 6 (35.3)
DBP mmHg median (IQR) 85 (71–92) 76.0 (71.0–80.5)
T cell counts median (IQR)
CD4 counts (cells/ml) 524.0 (251.0–833.5) 525.0 (449.5–689.0)
CD8 counts (cells/ml) N/A 718.0 (571.0–1227.0)
Nadir CD4 N/A 241.0 (90.0–350.0)
Clinical Laboratory, median (IQR)
Total Cholesterol mg/dl 168 (152–207) 170.0 (134.5–196.0)
LDL mg/dl 76 (53–125) 96.00 (47.25–114.00) e

HDL mg/dl 67 (51–84) 45.0 (34.5–58.5)
Triglycerides N/A 118 (100–182)
D-Dimer N/A 0.270 (0.225–0.465)
CRP N/A 1.44 (0.77–5.01)
aTotal cholesterol, LDL and HDL, ASCVD data are not available in 6 out 9 participants.
b1 out of 9 had VL of 28 copies/ml.
c3 out 17 participants had VL >50 copies/ml.
dFRS. Not available in 2 donors.
eTotal BMD and LDL are not available in 1 out 17 participants.
ARV, Antiretrovirals; ASCVD, Atherosclerotic Cardiovascular Disease risk; FRS, Framingham Risk Score; BMD, Bone Mineral Density; BMI, Body Mass Index; DBP, Diastolic Blood
Pressure; LDL, Low-Density Lipid; HDL, High-Density Lipid; CRP, C Reactive Protein; IQR, Interquartile range.
N/A, Not Available.
13 | Article 818677
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Expansion of Autologous T Cells
T cells were isolated from the non-adherent fraction of the
osteoclast differentiation cultures and activated with CD3/
CD28 mAbs coated beads (T cell TransAct™, Miltenyi
Biotech, Auburn, CA). After 3 days of stimulation, IL-2 (50 U/
ml, TECIN™, National Cancer Institute, Frederick, MD) was
added to the media. At day 6, the phenotype of the expanded T
cells was analyzed by flow cytometry. Prior to surface staining, T
cells were stained with LIVE/DEAD staining (Invitrogen, MA),
followed by incubation with 1 mg/ml human IgG (Sigma, MO) to
block Fc receptors. Cell surface staining were performed using a
cocktail of mAbs: CD3 (clone UCHT1) and CD8 (clone RPA-T8)
both from BD Biosciences, CA. Cells were acquired using a BD
FACS Symphony flow cytometer and analyzed using FlowJo.

Coculture T Cell–Osteoclast (T Cell:OCs)
T cells (100,000 cells) were cultured alone and in the presence of
autologous osteoclasts (20,000 cells) at a ratio 5:1 in 96 well
plates. Cells were stimulated with CD3/CD28 mAbs coated beads
(Miltenyi Biotech, CA) and media as control. Cultures were
performed in the presence or absence of IL-27 (50 ng/ml,
PeproTech, NJ). Cells were cultured overnight at 37°C and 5%
CO2 and the supernatants were collected to the analysis of
cytokines IFNg , TNFa , IL-10, IL-17A, and RANKL
(LegendPlex™, Biolegend, CA).

For detection of IL-10 secreted by OCs, OCs cultured alone
were in vitro stimulated with R848 (10 mM, In vivogen, CA)
overnight and IL-10 measured in the supernatant (LegendPlex™,
Biolegend, CA).

Flow Cytometry
T cells were stimulated with CD3/CD28 mAbs overnight and
stained with an IL-10 Secretion Assay-Detection Kit (Miltenyi
Biotech, CA) or surface expression RANKL (clone MIH24,
Biolegend, CA). Cells were acquired using a BD FACS
Symphony flow cytometer and analyzed using FlowJo.

Statistical Analysis
Statistical analysis was performed by GraphPad prism software.
One-way ANOVA Friedman test and post hoc tests non-
parametric Wilcoxon test for comparisons between the culture
conditions and Mann–Whitney test for comparisons between
study groups were used. Bonferroni test was used to adjust for
multiple comparisons.

Correlations were performed using nonparametric Spearman
correlation and p-value ≤0.01 was considered significant.
RESULTS

T Cells Cocultured With Osteoclasts
Show Enhanced Cytokine Secretion
Upon TCR Stimulation
Osteoclasts (OCs) interaction with T cells leads to activation and
subsequently the T-cell derived cytokines can influence OCs
activity (36, 44–47). In this study, we hypothesized that in the
Frontiers in Immunology | www.frontiersin.org 4
setting of HIV infection, T cell immune activation alters the
network of cytokines involved in the T cell–OCs crosstalk. To
address this question, we developed an in vitro coculture system
of activated T cells and in vitro differentiated autologous
osteoclasts (OCs) from PBMCs to study their impact in T cell
secretion of cytokines. We evaluated cytokines that has been
shown to be “pro-osteoclastic”, TNFa, IL-17, and IFNg; and IL-
10 which modulates T cell function and have inhibitory
properties in OCs (44–46, 48–52).

PBMCs from PWH (n = 26, red and blue symbols) have
median CD4 counts of 524.5 (IQR: 442.3–678.5) cells/ml. The
characteristics of the study groups is shown in Table 1. A set of
participants (n = 17, Table 1, HIV+ (T), blue symbols) have
measurements of bone mineral density (BMD). This group have
a median age of 48 (IQR 42–53) years, median CD4 and CD8 T
cell counts 525 (IQR: 449.5–689.0) and 718 (IQR: 571.0–1227.0)
cells/ml respectively (Table 1, HIV+ (T)). PBMCs from healthy
volunteers (n = 10, back symbols) have a median age 53 (IQR: 38
to 60) years were used as controls (Table 2).

Total T lymphocytes from healthy controls and PWH groups
were expanded by TCR stimulation with CD3/CD28 mAbs. The
frequency of CD4 and CD8 T cells from healthy controls were
67.6% (IQR: 34.85–73.25) and 27.80% (23.25–60.8) respectively
(Figure S1A). In PWH, the frequency of CD4 and CD8 T cells
were 44% (IQR: 23.8–61.85) and 51% (IQR: 29.5–68.95)
respectively in PWH (Figure S1A). The frequency of expanded
CD4 and CD8 T cells was not different between the groups
(Figure S1A).

In vitro differentiation of OCs was monitored by microscopy
for the formation of multinucleated osteoclasts by staining the
actin cytoskeleton (Phallodin) and nuclei (Hoechst) before and
after differentiation, and chromogenic staining for TRAP
(Figures S1B, C). In addition, TRAP activity was measured in
the supernatants of OCs cultured in bone plates (Figure S1D).

Activated T cells from PWH (n = 26) and healthy controls
(n = 10) were cultured alone or in presence of OCs at 5:1 ratio
(T cells:OCs) and stimulated with CD3/CD28 mAbs. After 24 h
of culture, IFNg, TNFa, IL-17, and IL-10 were measured in the
supernatants (Figure 1). Unstimulated T cells cultured alone or
in presence of OCs showed low levels of cytokine secretion in
both healthy controls and PWH groups (Figures 1A-D).
Similarly, unstimulated OCs cultured alone showed low basal
level of cytokines secretion in the supernatants (Figure S2A).

TCR stimulation of T cells from healthy controls significantly
increases secretion of IFNg (p = 0.002), and it was enhanced by
the presence of OCs in the cultures (p = 0.002) (Figure 1A).
Similar effects were observed upon stimulation of T cells from
PWH (p <0.001) when compared to T cells cultured alone
(Figure 1A). The levels of IFNg in the supernatants of the T
cell cultures in the absence or the presence of OCs were similar
between healthy controls and PWH (Figure 1A).

In addition, OCs also significantly enhanced the secretion of
TNFa in healthy controls and PWH, p = 0.002 and p < 0.001
respectively (Figure 1B). Compared to stimulated T cells
cultured alone, the ability of T cells to secrete IL-17A was also
significantly enhanced by the presence of OCs in the cocultures
April 2022 | Volume 13 | Article 818677
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FIGURE 1 | T cells cocultured with osteoclasts (OCs) show enhanced secretion of IFNg, TNFa, IL-17, and IL-10 upon TCR stimulation. Activated T cells from PWH
(n = 9, red symbols, HIV+ (T) n = 17, opened blue symbols, Table 1) and healthy controls (HC, n = 10, black symbols) were cultured alone or in presence of in vitro
differentiated autologous osteoclasts at a 5:1 ratio (T cell:OCs). T cells cultured in media were stimulated with CD3/CD28 mAbs overnight and the supernatants were
collected to measure cytokines: (A) IFNg, (B) TNFa, (C) IL-17, and (D) IL-10. In the graph, solid blue symbols represent individuals with viral loads >50 copies/ml.
T cells cultured alone or in presence of OCs from PWH (n = 7, red symbols, HIV+ (T) n = 14, opened blue symbols, Table 1) and healthy controls (HC, n = 7, black
symbols) were stimulated with CD3/CD28 mAbs in the presence and absence of IL-27 (50 ng/ml) stimulated T cells overnight and the supernatants were collected to
measure cytokines: (E) IFNg, (F) TNFa, (G) IL-17, and (H) IL-10. One-way ANOVA was used for comparisons between culture conditions. Post hoc non-parametric
Wilcoxon was used for comparisons between culture conditions. Bonferroni test was used to adjust for multiple comparisons. P-value ≤0.003 was considered
significant. Post hoc nonparametric unpaired Mann–Whitney test was used for comparisons between the groups adjusted by Bonferroni test. P-value ≤0.01 was
considered significant.
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in both PWH (p <0.001) and healthy controls (p =
0.006) (Figure 1C).

We next evaluated the secretion of the immunomodulatory
cytokine IL-10 and asked whether OCs can modulate its
secretion (47, 49–52). Stimulation of T cells in the presence of
OCs significantly induced secretion of IL-10 relative to T cells
cultured alone in PWH and healthy controls p <0.001 and p =
0.002 respectively (Figure 1D). T cells from PWH expressed
lower basal levels of IL-10 and a trend was observed after
stimulation of T cells cultured alone but did not reach
statistical significance (Figure 1D).

These results suggest that OCs enhance the secretion of Th1
(IFNg, TNFa) and Th17 (IL-17) associated cytokines in both
healthy control and PWH groups. In addition to the
enhancement of pro-inflammatory cytokines, OCs also
promoted secretion of IL-10 in the T cell:OCs cocultures
suggesting a complex interplay between OCs and T cells.

IL-27 Modulation of IL-17 Secretion During
T Cell–Osteoclasts Interaction
The above data suggest that OCs enhance activation of T cells
promoting secretion of pro- and anti-inflammatory cytokines in
the bone (33). IL-27 is an immune modulatory cytokine that
inhibit OCs differentiation (76). In T cells, IL-27 promotes Th1
differentiation, suppresses Th17 differentiation and induces
secretion of IL-10 by regulatory T cells (46, 49–57). Whether
IL-27 can exert these functions in the setting of HIV infection is
not well defined. We next evaluated the effects of IL-27 when T
cells were TCR stimulated alone or in the presence of OCs
(Figure 1, right panels).

IL-27 showed no effect on IFNg and TNFa secretion by T cells
from both study groups (Figures 1E, F). In contrast, IL-27
induced a significantly downregulation in IL-17 secretion in
PWH but not in healthy volunteers (Figure 1G).

The secretion of IL-10 showed a trend of inhibition by IL-27,
however did not reach statistical significance (Figure 1H).
Because both T cells and OCs can secrete IL-10, to better
understand their relative contribution and its regulation by IL-
27 we examined the secretion of IL-10 in both cell types (47). T
cells were evaluated using a flow cytometric cytokine capture
assay in a set of HIV infected individuals (n = 10, Figures S2B,
C). We found that both CD4 and CD8 T cells produce IL-10, and
the frequency of IL-10+CD4 and IL-10+CD8 T cells was
significantly increased in the cocultures with OCs, however IL-
27 did not have an effect in either the frequency or median
fluorescence intensity of IL-10 secreting T cells (Figures S2B, C).
In addition, OCs cultured alone secrete low basal levels of IL-10
that was significantly increased upon stimulation with the TLR7/
8 agonist in both healthy controls and PWH. In this culture
condition, IL-27 showed no effect on IL-10 secretion
(Figure S2D).

Altogether these data suggest that IL-27 may not modulate
IFNg, TNFa and IL-10 in activated T cells. In contrast in
PWH, IL-27 showed downregulatory effect on IL-17 secretion
and overcame the cost imulatory effects of OCs in
the cocultures.
Frontiers in Immunology | www.frontiersin.org 6
IL-27 Modulates RANKL Expression in
CD4 T Cells From PWH
The data above suggest that IL-27 can modulate IL-17, a cytokine
that has been shown to synergized with RANKL, a major “pro-
osteoclastic” factor secreted by activated T cells (59, 79, 82). To
better understand the potential role of IL-27 in the regulation of
cytokines in the setting of HIV infection, we evaluated RANKL
expression in CD4 and CD8 T cells from PWH (n = 15) and
healthy controls (n = 9) by flow cytometry (Figure 2). In PWH,
both CD4 and CD8 T cells cultured alone showed upregulation
of surface expression of RANKL upon TCR stimulation, and only
a trend was noted in healthy controls (Figures 2A-C). The
presence of OCs in the T cell cultures increased the frequency
of RANKL+CD4 and CD8 T cells from PWH (Figures 2B, C).
Similar observations were noted in the median fluorescence
intensity of RANKL in T cells (Figures S3A, B)

We next evaluated the effects of IL-27 on RANKL expression
(Figures 2D, E). IL-27 showed an inhibitory effect on the
frequency of RANKL+ T cells cultured alone from PWH
(Figures 2D, E). IL-27 inhibitory effect was still observed in
CD4 T cells stimulated in the presence of OCs (p <0.001,
Figure 2D) but not in CD8 T cells. These effects were not
observed in the median fluorescence intensity (Figures S3C, D).
The effects of IL-27 on CD4 T cells were not reflected in the levels
of RANKL detected in the supernatants (Figure S3E).

These data suggest that activated CD4 and CD8 T cells
expressed surface RANKL and this expression is significantly
enhanced by OCs in PWH. In addition, IL-27 inhibited RANKL
expression in CD4 but not CD8 T cells cultured with OCs.

IFNg Secretion by T Cells is Associated
With Bone Mineral Density in PWH
In the context of HIV infection, systemic inflammation and
immune activation has been suggested as contributor of bone
loss (83). The data above suggest that T cell function is enhanced
by osteoclasts potentiating their ability to secrete pro-
inflammatory cytokines, namely, IFNg, TNFa, IL-17, RANKL,
and the anti-inflammatory cytokine IL-10.

To better understand the impact of HIV infection in the bone,
we investigated the relationship between cytokines and BMD (T-
score), markers of systemic inflammation and coagulation,
namely, CRP (C-reactive protein) and D-dimer (a bioproduct
of fibrin degradation). The study participants (n = 17, Table 1
HIV+(T)) had CD4 T cell counts of CD4 of 525.0 (IQR: 449.5–
689.0) cells/ml and CD8 T cell counts of 718.0 (571.0–1,227.0)
cells/ml. The median T score was −0.3 (IQR: −0.95–1.55), and six
out of 17 study participants had metabolic syndrome (Table 1).
We found a weak trend of an inverse correlation between the T
score and the ability of T cells to secrete IFNg in absence of IL-27
(R = −0.67, p = 0.011), (Figure 3A). This inverse association was
significant when T cells were cultured in the presence of IL-27
(R = −0.69, p = 0.008, Figure 3B) although the levels of IFNg
were not different between the culture conditions (Figure 1E).
This association was not observed when the levels of IFNg
secretion increased as a result of the costimulatory function of
the OCs (Figure 1E). In addition, the levels of IFNg in the T cell:
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OCs cocultures showed a weak association with the biomarker of
inflammation and coagulation D-dimer (R = 0.60, p = 0.010),
(Figure 3C). No association was observed with CRP
plasma levels.

Low bone mineral density has been associated with higher
lipid levels (84–88). Because some of the study participants had
metabolic syndrome, we evaluated the relationship between
lipids and cytokines. Total cholesterol and LDL and showed a
positive trend with the levels of TNFa secretion by T cells (R =
0.60, p = 0.016 and R = 0.60, p = 0.012 respectively) but did not
reach statistical significance (Figure S3F).

These data suggest that Th1 cytokines (IFNg and TNFa) in
PWH may be a contributing factor in maintaining levels of
inflammation and increased risk of bone loss.
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DISCUSSION

In PWH, systemic inflammation and immune activation is
associated with comorbidities including bone loss. In the
present study, in an in vitro coculture system of T cells and
OCs from PWH and healthy controls, we evaluated the effect of
T cell immune activation on cytokine secretion, and the potential
regulatory effect of IL-27. We found that OCs can significantly
enhance T cell function promoting the secretion of both pro-
(IFNg, TNFa, IL-17) and anti-inflammatory (IL-10) cytokines in
healthy controls and PWH. In addition, the presence of OCs in
the cocultures increased T cell surface expression of RANKL, a
major pro-osteoclastic factor secreted by T cells. IL-27 showed
no regulatory effects on the secretion of IFNg, TNFa, and IL-10
A

B D

C E

FIGURE 2 | IL-27 modulates the expression surface expression of RANKL in CD4 T cells from PWH. T cells from PWH (n = 3, red symbols, HIV+ (T) n = 12, opened
blue symbols, Table 1) and healthy controls (HC, n = 9, black symbols) were cultured alone or in presence of OCs at a 5:1 ratio (T cell:OCs) were stimulated with
CD3/CD28 mAbs. After overnight culture RANKL was measured by flow cytometry. (A) Gating strategy and representative contour plot of RANKL surface expression
in T cells, (B) Surface expression of RANKL in CD4 T cells, and (C) Surface expression of RANKL in CD8 T cells. T cells cultured alone or in presence of OCs were
stimulated with CD3/CD28 mAbs in the presence and absence of IL-27 (50 ng/ml) and RANKL surface expression was measure by flow cytometry: (D) CD4 T cells
and (E) CD8 T cells. Graph representing RANKL surface expression in T cells. In the graph, solid blue symbols represent individuals with viral loads >50 copies/ml.
One-way ANOVA was used for comparisons between culture conditions. Post hoc non-parametric Wilcoxon was used for comparisons between culture conditions.
Bonferroni test was used to adjust for multiple comparisons. P-value ≤0.003 was considered significant. Post hoc nonparametric unpaired Mann–Whitney test was
used for comparisons between the groups adjusted by Bonferroni test. P-value ≤0.01 was considered significant.
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by activated T cells. In contrast, IL-27 inhibited the secretion of
IL-17 and surface RANKL expression in CD4 T cells from PWH.
All together these results suggest that in the context of HIV
infection IL-27 may favor Th1 associated cytokines (IFNg
and TNFa).

IL-27 has been shown to have direct and indirect effects in
bone remodeling. In vitro, IL-27 inhibits RANKL dependent OCs
differentiation of human monocytes and also inhibits bone
resorption suggesting an anti-inflammatory function in bone
homeostasis (76, 77, 89). In vivo, in a murine model of collagen-
induced arthritis, IL-27 induced Th1 differentiation and IFNg
secretion constraining osteoclast differentiation (90–93). In
contrast, IFNg can stimulate osteoclast formation by
promoting T cel l act ivation and secretion of pro-
osteoclastogenic factors including RANKL and TNFa leading
to bone loss in in vivo models of bone resorption, namely,
ovariectomy, LPS injection, and inflammation (45, 59). Our
present study shows that in vitro OCs have a costimulatory
effect on secretion of cytokines including IFNg. The negative
association of IFNg levels with T-score may suggest a potential
contribution of T cell immune activation. One limitation of this
study is that the participants have normal T scores and future
studies should further investigate the cytokine secretion
networks involved in PWH with low BMD.
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IL-27 showed no effects in the regulation of IFNg in the
cocultures. In our recent report we found that IL-27 promotes
secretion of IFNg in TIGIT+HIVGag specific T cells by
upregulation of T-bet, a transcription factor associated with
Th1 differentiation (94). It is possible that in the present
studies the effects of IL-27 on IFNg secretion were not fully
appreciated in polyclonally activated T cells from healthy
controls and PWH. In addition, recent reports have shown
that OCs can be infected by HIV-1 (95, 96). OCs also can act
as antigen presenting cells and activate CD4 and CD8 T cells
(47). In this scenario, the interaction of T cells and OCs may
contribute to maintain T cell immune activation, secretion of
pro-osteoclastogenic cytokines and viral dissemination
impacting bone homeostasis in PWH.

In contrast to IFNg and TNFa, IL-27 inhibited IL-17
secretion in T cells cocultured with OCs. Th17 cells also
produce RANKL and promote IL-17-dependent osteoclast
differentiation by increasing expression of RANK receptor and
promoting secretion of RANKL by osteoblasts (82, 97, 98). In our
studies we found that IL-27 inhibited RANKL in CD4 T cells
suggesting that IL-27 may has an anti-inflammatory effect during
T cell interaction with OCs, whether RANKL inhibition was
achieved in IFNg and/or IL-17 secreting T cells needs to
be determined.
A

C

B

FIGURE 3 | IFNg secretion is associated with BMD in PWH. Relationship between IFNg secretion and BMD in T cells cultured: (A) alone (n=17), (B) in presence of
IL-27 (n = 14). (C) Relationship between IFNg secretion in the T cell:OCs cocultures (n = 17) and D-dimer. Correlations were performed using nonparametric
Spearman correlation and p-value ≤0.01 was considered significant.
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IL-27 has been suggested to have an anti-inflammatory
function; and in our in vitro coculture system, we found that
in the context of HIV infection favors a Th1 associated cytokines
by suppressing IL-17 secretion. The levels of IL-27 during HIV
infection seems to be unmodulated; similar plasma levels have
been reported in untreated, and successfully suppressed viremia
with cART PWH, and healthy controls (99). In contrast, two
small studies reported contradictory changes of plasma levels of
IL-27 during HIV infection (100, 101).

In addition, to its immunomodulatory functions, in vitro IL-
27 has antiviral properties, and inhibits HIV replication in CD4
T cells, monocyte-derived macrophages, and dendritic cells
(102–104). It has been determined that OCs can be infected by
HIV promoting their differentiation, whether IL-27 can protect
OCs from HIV infection is largely unknown (95, 96).

Future studies should evaluate the expression of IL-27 in the
bone and its potential overall impact on OCs activity at the sites
of bone remodeling in PWH.
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