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Hsp90s, members of the Heat Shock Protein class, protect the structure and function of proteins and play a significant task
in cellular homeostasis and signal transduction. In order to determine the number of hsp90 gene copies and encoded
proteins in fungal and animal lineages and through that key duplication events that this family has undergone, we collected
and evaluated Hsp90 protein sequences and corresponding Expressed Sequence Tags and analyzed available genomes
from various taxa. We provide evidence for duplication events affecting either single species or wider taxonomic groups.
With regard to Fungi, duplicated genes have been detected in several lineages. In invertebrates, we demonstrate key
duplication events in certain clades of Arthropoda and Mollusca, and a possible gene loss event in a hymenopteran family.
Finally, we infer that the duplication event responsible for the two (a and b) isoforms in vertebrates occurred probably
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Introduction

Heat Shock Proteins (HSPs) facilitate protein folding and guard
the proteome from the dangers of misfolding and aggregation [1].
They are expressed as responses to adverse environmental or
chemical stresses, such as heat or cold shock, hypoxia, salinity,
heavy metals and pathophysiological situations and play important
role in cell survival [2,3].

Hsp90s account for 1-2% of all cellular proteins in most cells
under non-stress conditions. Their function is dependent on the
interaction with many co-chaperones [4]. They either prevent
aggregation of newly synthesized or misfolded proteins, assisting in
their proper folding, or direct them for proteasomal degradation
[5,6]. Their client proteins are involved in signal transduction,
transcription and apoptosis [7-9]. In recent years, many studies
have focused on the role of this family in cancer [10,11].

HSP90s are essential for viability under all conditions in
eukaryotes; in contrast, deletion of the bacterial HtpG (High
temperature protein G) is not lethal [12,13]. Hsp90s are found in
all organisms, except Archaea [14], and are highly conserved, thus
providing an excellent model for evolutionary studies.

Results from previous analyses in eukaryotes indicate that
members of the Hsp90 gene family have undergone major
duplication events, which led to isoforms with cellular compart-
mentalization, namely cytoplasmic, endoplasmic, mitochondrial
and chloroplastic forms [15-18]. In all vertebrates studied so far,
there are two known cytoplasmic isoforms, namely inducible (a)
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and cognate (b) (or AA and AB, respectively, according to [19])
which are considered the result of a duplication event that
occurred within the vertebrate lineage [15,20,21]. Several
additional duplication events at different lineages seem to have
resulted in the variable number of total cytoplasmic gene copies
observed among vertebrate species [18]. In human, for example,
13 cytoplasmic genes have been identified, 9 of which are
pseudogenes [19]. In invertebrates, the numbers of cytoplasmic
gene copies and encoded proteins are not uniform. There exist
some invertebrate species in which a single gene encodes for a
unique cytoplasmic Hsp90 (e.g. nematodes and Drosophila) [22—
25]. Two gene copies seem to encode for a unique cytoplasmic
homolog in Anopheles albimanus (Diptera) and Mytilus galloprovincialis
(Mollusca) [26,27], while two cytoplasmic Hsp90s with tissue-
specific expression patterns and differing roles in physiological
and stressful conditions have been identified in the crab Portunus
trituberculatus (Crustacea) [28]. In Fungi, single cytoplasmic genes
have been reported [29-31] with the exception of Saccharomyces
cerevisiae, which expresses an inducible and a cognate isoform
[32-34].

Whole-genome duplication (WGD) and small-scale duplications
(SSD) are considered important evolutionary mechanisms [35].
Some of the models (reviewed in [36]) developed in order to
explain the retention of both genes following gene duplication,
include the evolution of a new function in one of the duplicates,
the division of ancestral functions among duplicates and the
retention of all functions in both duplicates. The rate of retention
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of duplicates varies after a WGD or a SSD, depending on the gene
functional or developmental specialization. For example, for stress
response genes, higher duplicate retention has been noted after
SSD [35].

Numerous studies have focused on the identification and
expression patterns [28,37-40], as well as on the phylogenetic
relationships across the HSP90 family members [15,17,18,41-43].
Development of tools and accumulation of genome-wide infor-
mation could facilitate the elucidation of distribution patterns and
evolutionary relationships of HSP90 family members. In the
present study, we aimed at determining the number of extant
HSPI0 cytoplasmic family members in fungal and animal lineages
and describe the minimal history of their putative duplication
events. We collected Hsp90 sequences available in UniProtKB
[44] and the NCBI Protein database [45] and we enriched this
dataset with newly identified /sp90 genes and their predicted
protein sequences, according to complete genomes as well as
Expressed Sequence Tags (ESTs).

Methods

Protein sequences retrieval

Fungal and Metazoan sequences belonging to the HSP90
family, bearing the consensus signature of the family, were
retrieved from PROSITE [46] and UniProtKB [44]. There are a
total of 3,668 Hsp90 sequences in PROSITE Release 20.85 (27-
September-2012), 170 of which originate from Fungi and 655
from Metazoa. Hsp90 protein sequences were also collected
through BLASTP searches against the NCBI Protein database
[45], using the Mytilus galloprovincialis MgHsp90 (UniProtKB AC
CAJ85741) and the human cytoplasmic isoforms (AC P07900 and
P08238 for a and b isoforms, respectively) as queries. Complete or
nearly complete cytoplasmic sequences (>630aa), ending with the
characteristic carboxy-terminal motif MEEVD [15], were further
analyzed at the level of either Phylum (e.g. Chordata) or Kingdom
(e.g. Fungi). We wanted to elaborate on previously reported gene
duplications and document other possible duplication events in the
same lineages, not described to date. Therefore, we focused on
phyla/kingdoms for which different representatives both with
single and multiple copies have been described. Besides Arthrop-
oda, Mollusca and Chordata, data concerning the rest of Metazoa
phyla were either absent or consisted of partial sequences or single
sequences per taxon, thus they were omitted from further analysis.

Whole-genome analyses

Available genomes analyzed in the present study were retrieved
from the FlyBase [47], AphidBase [48], VectorBase [49], Ensembl
[50] and GenBank (WGS division, [51]) databases as well as from
the JGI [52], the OIST Marine Genomics Unit, the Broad
Institute of Harvard and MIT, the Elephant shark genome
sequencing Project and the FUGU Genome Project websites. In
order to determine the /sp90 gene copy number of each species,
BLAST [53] searches were performed against the corresponding
genomes using as queries known Hsp90 sequences of the same or
closely related species (accepted E-value was zero). GENSCAN
[54] and BLASTX [53] were used for the prediction of putative
coding sequences (cds), SpliceView [55] was used for the
prediction of possible splicing sites, while predicted coding
sequences were translated with Transeq [56].

ESTs (Expressed Sequenced Tags) retrieval and analysis
For various taxa or taxonomic groups (e.g. Chondricthyes), only

few available genomes, but no Hsp90 sequences were available in

public databases. In order to include representatives from these
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groups, we performed BLASTN and TBLASTN searches, in
order to retrieve ESTs from GenBank (ESTs division, [51]), that
exhibit homology to known /sp90 sequences (accepted E-value was
zero or very close to zero). The MgHsp90 and the human
cytoplasmic isoforms were used as queries, for molluscan and
chordate ESTs respectively. Wise2 (EMBOSS, [57]), GENSCAN
[54], ORFinder (NCBI) and BLAST [53] were used for the
assembly of putative amino-acid sequences from collected ESTs.
ESTs were not used as a confirmation of the functionality of genes.

Alignments and tree construction

Pairwise identities and similarities for protein sequences were
calculated using the Needle module (EMBOSS, [57]), applying the
BLOSUMG62 matrix. Multiple alignments were performed using
ClustalW [58]. Alignments were manually inspected to avoid
errors owing to the program settings and in order to remove 1) low
complexity regions or ambiguously aligned regions of the
sequences, i.e. parts of the N-terminal and C-terminal ends and
of the middle variable region (according to [15]), 2) parts of the
alignment where some sequences contained gaps due to non-
sequenced regions in the genome. Phylogenetic analysis using
multiple protein sequence alignments was performed under
Bayesian inference (BI) in MrBayes 3.1.2 [59] on XSEDE
(Extreme Science and Engineering Discovery Environment)
through the CIPRES (Cyberinfrastructure for Phylogenetic
Research) Science Gateway v3.3 [60]. The best substitution model
predicted by the Model Selection tool incorporated in MEGA)
[61] was the Jones, Taylor, and Thornton (JTT) model (gamma
distributed). Two independent, simultaneous analyses were run for
107 generations, each starting from different random trees with
four chains (one cold and three incrementally heated) and
sampling every 1000 generations. 2500 sampled generations were
discarded as “burn-in”. A majority-rule consensus topology was
created with the remaining samples, pooled together from the
independent runs. The frequencies of each node of the consensus
tree were represented as posterior probabilities. MEGA) was used
for the construction of Maximum Likelihood (ML) [62] trees. Tree
topologies were evaluated applying the bootstrap test (100 pseudo-
replicates) [63]. In regard to gaps handling, the “include all sites”
option was used. The accession numbers of sequences used in the
phylogenetic tree construction are included in Figures 1-4,

Figures S2-S5 and Tables S1-S2.

Results and Discussion

The cytoplasmic Hsp90s and putative duplications in
Fungi

Our analyses of fungal genomes supports the presence of more
than one gene copies in several species (Figure 1, Figures S1 and
S2, Table S1), besides the known case of two cytoplasmic isoforms
in Saccharomyces cerevisiae [33,34]. Analysis of the available genome
from Ajellomyces capsulatus strain H143, through the BROAD
Institute (Table S1, Figure S1), reveals that there are actually two
identical /sp90 copies (both at nucleotide and aminoacid level),
tandemly arranged; one of them is complete (702 aa) and one
truncated (612 aa), due to non-sequenced regions in the genome
(data not shown). Duplicated genes have been also observed in
species from Ascomycota, Basidiomycota and Mucoromycotina.

In the constructed trees (Figure 1 and Figure S2), the grouping
of the cognate and inducible isoforms of S. cerevisiae with the
proteins from the other Saccharomyces species is not highly
supported. On the other hand, clustering of each of the two
copies from the non ATCC S. cerevisiae strains with either the
cognate or the inducible isoform from the ATCC S. cerevisiae is
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Figure 1. Bayesian inference phylogenetic tree based on Hsp90 protein sequences from Fungi. Species in which multiple hsp90 genes
have been detected are in dark blue. Filled diamonds denote putative species-specific duplication events, predicted by this study. Stars represent
whole-genome duplications reported by previous studies. Numbers at nodes represent Posterior Probability (PP) values. Scale bar: substitutions/site.

doi:10.1371/journal.pone.0073217.g001

highly supported. It should be noted, however, that cognate and
inducible genes have been experimentally verified only for the
ATCC S. cerevisiae strain [33,34]. Two sub-clades are formed
within the clade of Saccharomyces genus (Figure 1); one consists of
the isoforms from S. cerevisiae, S. paradoxus, S. kudriavzevii and S.
mikatae; in the other sub-clade, the lager brewing yeast S. pastorianus
Weihenstephan, an allopolyploid interspecies hybrid, is clustered with
S. bayanus, one of the two species from which it originates [64].

The two Hsp90 proteins in Saccharomyces species are probably
the result of the Whole-Genome Duplication supported by several
studies [65—68], after which both copies were retained in the
genome. The most striking physiological difference between
Saccharomyces and other yeasts is its ability to ferment sugars
vigorously under anaerobic conditions, producing ethanol [68].
Hsp90s are implicated in alcoholic fermentation [69], hence, their
retention after the WGD may have been instrumental in its
evolutionary adaptation to anaerobic growth. The retention and
differential regulation of the /sp genes in the Saccharomyces genome
1s also in accordance with the observation that paralogs in yeast
genomes diversify most frequently at the regulation level, in order
to meet with diverse ecological niches [70].

An independent duplication probably led to the copies observed
in A. capsulatus. Evidence has been found that an ancient WGD as
well as recent gene duplications in Rhizopus delemar (Fungi;
Mucoromycotina) led to the expansion of gene families related,
among others, to signal transduction [71]. An interpretation for
our data (Figure 1 and Figure S2) could be that independent
duplication events took place also in Mucor circinelloides and
Phycomyces blakesleeanus.

The cytoplasmic Hsp90s and putative duplications in
Arthropoda

Through our genome analyses we identified several arthropod
species, not included in previous studies, with one or more /£sp90
cytoplasmic copies. For some species we verified the number of
protein sequences recorded in databases, whereas for others we
showed that additional £sp90 copies exist (Figure 2, Figures S1 and
S3 and Table S1).

Even though single copies have been identified in all available
representatives from the orders of Coleoptera and Lepidoptera,
two or more gene copies exist in the genome of several dipteran
species, notably Drosophila willistoni, Glossina morsitans and  Culex
quinquefasciatus (Figure 2, Figure S3 and Table S1). We also show
that in Hymenoptera two copies encoding for two different Hsp90
1soforms exist in several species from the superfamilies of Apoidea
and Chalcidoidea, yet, there are single copies in the family of
Formicidae, with the sole exception of Linepithema humile (Ta-
ble S1). Lack of complete genomes from representatives of
Ichneumonoidea does not allow us to conclude as to the gene
copy number in this superfamily.

Using representative protein sequences (Table S2) and se-
quences assembled in the present study (Table S1 and Fig-
ure S1), BI and ML trees were constructed (Figure 2 and
Figure S3). Several duplication events seem to have taken place
at various points during the evolution of Arthropoda, most of
them species-specific (e.g. G. morsitans, L. humile). In all studied
mosquito species multiple /sp90 copies have been found (Figure 2,
Figure S3 and Table S1), which probably resulted from inde-
pendent duplications in each species. For Hymenoptera, it
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appears that the isoform previously characterized as ‘traditional’
[72] existed in the common ancestor of all Endopterygota
according to the constructed trees (type 1, Figure 2 and
Figure S3), but was lost in the family of Formicidae. One
duplication event probably took place after the radiation of
Hymenoptera from the rest of the Endopterygota, leading to the
second isoform of Hymenoptera (type 2, Figure 2 and Figure S3).
This isoform was previously considered as Apis melifera-specific
[72], yet our study shows that it is also present in Apoidea,
Chalcidoidae and Formicidae. The two types differ both in
nucleotide sequence and genomic structure (data not shown).

Our trees also suggest the occurrence of at least two duplication
events in the crustacean lineage (Figure 2 and Figure S3). The first
one, supported by the two isoforms from Portunus trituberculatus,
probably took place within Decapoda before the divergence of
Pleocyemata and Dendrobranchiata. The second one, responsible
for the Penaeus monodon isoforms, seems to have taken place within
Dendrobranchiata.

Several factors, such as transposable elements and habitat
preferences, can account for the duplication events and retention
of multiple gene copies observed in various lineages of Arthropoda
[73-90].

The expression of heat shock protein genes in insects, as a
response mechanism to stress, has been the object of several studies
(reviewed in [73]) and revealed that insects adopt different
defensive strategies, correlated with exposure to various biotic
and abiotic agents. For example, up-regulation of Hsps contributes
to dehydration tolerance in some insects [74], nonetheless their
expression is not influenced by dehydration in D. melanogaster [75].
D. willistoni, a tropical species and the only Drosophila species found
to bear two hsp90 copies, has habitat differences with related
species, including acclimation of metabolic rates [76,77]. Expres-
sion patterns of the A. melifera (Hymenoptera) specific isoform
(Figure 2, type 2) are caste- and age- dependent [78]. Retention of
this isoform and loss of the insect specific isoform in ants
(Formicidae) could correlate with the significant diversity in their
lifestyles, their organization in populous colonies and delegation of
reproductive and non-reproductive roles among the members of
the colonies [79]. L. humile is one of the most widely distributed
destructive invasive ant species [80]; it seems to have several
species-specific duplications not found in other taxa [81] and a
similar duplication could account for the two ksp90 genes copies.

Transposable Elements (TEs) have a well-established role in the
origin of new genes and genome evolution of eukaryotes [82—84]
and could also be correlated with the duplicated genes in dipteran
species. D. willistoni is considered an exceptional outlier in regard
to other Drosophila species by several criteria, among which the
increased content in TEs (15.57% as opposed to just 5.35% in D.
melanogaster), some of which seem to be ancient in the D. willistoni
genome [85-87]. TEs also constitute approximately 16% of the
eukaryotic component and more than 60% of the heterochromatic
component of the Anopheles gambiae genome [88,89] and 50% of the
Aedes aegypti genome [90]. Furthermore, remnants of different TE
families have been identified in the regions flanking the /sp90
copies of several mosquito species (NW_001810125.1,
NW_001811357.1, data not shown).

Up to now, the majority of arthropods were considered to
possess a single cytoplasmic £sp90 [18]. Nevertheless, it has been
reported that two genes encoding the same aminoacid sequence
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Figure 2. Bayesian inference phylogenetic tree based on Hsp90 protein sequences from Arthropoda. Species in which multiple hsp90
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doi:10.1371/journal.pone.0073217.g002
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Figure 3. Bayesian inference phylogenetic tree based on Hsp90 protein sequences from Mollusca. Species in which multiple hsp90
genes have been detected are in dark blue. Filled diamonds denote putative species-specific duplication events, predicted by this study. Numbers at
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doi:10.1371/journal.pone.0073217.g003

exist in the genome of the mosquito 4. albimanus [26], that A.
melifera possesses two cytoplasmic Hsp90 isoforms [72] and
multiple genes exist in A. gambiae [18]. The only case where two
isoforms have been reported in Crustacea is that of P. trituberculatus
[28]. The fact that single genes have been reported for specific
arthropoda species could be attributed to lack of genome-wide
studies (e.g. due to the nature of experimental approaches) or loss
of duplicated genes. Our analyses support the existence of multiple
genes in different species and point out the need for high-
throughput analyses of genomes from crustacean and other

PLOS ONE | www.plosone.org

arthropod lineages (e.g. Ichneumonoidea), in order to delineate
the actual gene copy number and evolutionary course of HSP90
family in this Phylum.

The cytoplasmic Hsp90s and putative duplications in
Mollusca

In order to enrich the existing dataset of available molluscan
Hsp90 sequences and investigate the existence of single or multiple
Hsp90 genes/isoforms within Mollusca, we analyzed recently
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Figure 4. Bayesian inference phylogenetic tree based on Hsp90 protein sequences from Chordata. Species in which multiple hsp90
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released genomes of bivalve and gastropod species, as well as
publicly available ESTs from bivalve, gastropod and cephalopod
species (Figure S1, Tables S1 and S3).

In Bivalvia, our analysis of the Crassostrea gigas genome verified
that there is a single gene copy encoding for an Hsp90 homolog
(Figure 3, Figure S4 and Table S1). The current release of Pinctada
Jucata genome consists of scaffolds with relatively small size.
Combining the results from TBLASTN comparisons against its
genome with the available P. fucata cDNA sequences, we were able
to assemble a unique Hsp90 sequence (Figure S1). A single gene is
also supported by available ESTs from M. californianus (T'able S3),
yet only a partial sequence could be assembled (Figure S1). The
gastropod Lottia gigantea seems to possess a single gene copy, as
verified by analysis of genome and available ESTs (Table S1 and
Table S3). On the contrary, three contigs have been identified to
contain /sp90 sequences in another gastropod, Aplysia californica.
The Asp90 coding sequences (cds) in cont2.59716 and cont2.16119
are 86% and 94% identical at nucleotide and protein level,
respectively, while those in cont2.30811 and cont2.59716 difter by
three nucleotides and one amino-acid residue; flanking regions are
dissimilar in both comparisons. Few ESTs were collected from the
cephalopods Euprymna scolopes and Idiosepius paradoxus (T'able S3);
there seem to be different populations of ESTs in each species
(data not shown), but a complete sequence could not be assembled
due to limited data availability.

In the constructed trees (Figure 3 and Figure S4), cytoplasmic
Hsp90s from Mollusca are clustered in clades according to their
taxonomic classification. The A. californica proteins form a separate
clade, indicating that they are the result of on independent
duplication event.

Members of the Mollusca were either absent or under-
represented in previous phylogenetic analyses concerning the
Hsp90 family [15,18], since there are only few Hsp90 cDNA
sequences publicly available for the Phylum. We show here, that
besides the two /Asp90 gene copies recently isolated in AMytilus
galloprovincialis [27,91], other molluscan taxa seem to possess
multiple /sp90 gene copies. A recent comparative genome
structure analysis of three molluscan species, i.e. scallops
(Bivalvia), pygmy squid and nautilus (Cephalopoda) showed that
large-scale duplication events occurred after divergence from
Gastropoda [92]. Phylogenetic trees point to a single duplication
event that occurred in the cephalopod lineage, yet it is not clear
whether the duplication events can be traced back to a common
molluscan ancestor of these species [92]. Due to the lack of
sufficient number of complete molluscan genomes, it is not
feasible to determine whether the observed copies in M.
galloprovincialis and A. californica and the different ESTs popula-
tions in the two cephalopods are the result of a species-specific
duplication event or are related to an old event that took place in
a common molluscan ancestor.

The cytoplasmic Hsp90s and putative duplications in
Chordata

Data in public databases concerning the HSP90 family in the
class of Chondrichthyes (Craniata; Vertebrata; Gnathostomata)
are restricted to one partial Hsp90 sequence from Scyliorhinus
torazame (AC AAG22091), few ESTs and the Callorhinchus malii
genome. Analysis of the low-coverage (1.4x) C. muli genome
revealed at least one /£sp90 locus (Table S1); in combination with
available ESTs (Table S4), a complete Hsp90 sequence was
assembled (Figure S1), while a second group consisting of only few
ESTs was identified (Table S4). Our analysis of overlapping EST's
from Leucoraja erinacea (T'able S4) resulted in a complete amino-acid
sequence (Figure S1). ESTs collected from Torpedo californica and
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Squalus acanthias were only partially overlapping, thus a complete
sequence could not be assembled.

For Petromyzontiformes (Craniata; Vertebrata; Hyperoartia),
two scaffolds encoding for Hsp90 homologs were detected through
BLAST searches against the sea lamprey Petromyzon marinus
genome (Table S1). A partial amino-acid sequence is predicted
to be encoded by scaffold GL.498392. Using this sequence, as well
as overlapping ESTs collected from P. marinus cDNA libraries
(Table S4, second group) an amino-acid sequence of 611 residues
was assembled (Table S1 and Figure S1).

Takifugu rubripes and Tetraodon nigrovindis (Vertebrata; Gnathos-
tomata; Teleostomi; Euteleostomi; Actinopterygii) possess some of
the smallest known vertebrate genomes, whose analyses and
comparison with the human genome supports a Whole-Genome
Duplication in the teleost fish lineage [93,94]. For T. rubripes, we
verified (Table S1) that the three cytoplasmic Hsp90 homologs
recorded in PROSITE are encoded by distinct genomic regions
located on the 14™ chromosome; the first two copies (character-
ized as AAI) are tandemly arranged and are in a head-to-head
arrangement with the third gene (AB). Our analysis of 7. nigroviridis
draft genome reveals that similarly to 7. rubripes, T. nigroviridis
seems to possess one AB and two AA isoforms, still, non-sequenced
regions in the genome allowed us to assemble only the complete
AB isoform (Table S1 and Figure S1).

For the subphylum of Cephalochordata, we found two
uncharacterized sequences from Branchiostoma floridae (Table S1)
that bear all seven signatures of the HSP90 family [15], show
approximately 80% identity with the Mytilus and human
cytoplasmic Hsp90 isoforms, indicating that they belong to the
HSP90 family, and verified that they are encoded by two discrete
hsp90 copies tandemly arranged in the B. floridae genome
(Table S1, data not shown).

The subphylum of Tunicata was represented in a previous study
[18] by a single sequence derived from a Ciona intestinalis (class
Ascidiacea) cDNA clone (AC AK115284). The predicted amino-
acid sequence (Figure S1) was used in TBLASTN searches against
the C. wtestinalis and C. savignyi genome assemblies and revealed the
existence of single loci coding for a cytoplasmic Hsp90 in each
species (Table S1 and Figure S1).

BI and ML trees were constructed (Figure 4 and Figure S5),
using publicly available complete sequences from Chordata
(Table S2), as well as the deduced complete sequences identified
in the present study (Figure S1). Another tree was constructed
using additionally the partial P. marinus Hsp90-2 sequence (data
not shown). The deduced C. mulii Hsp90 clusters with the a
1soforms, the L. erinacea sequence is clustered with the cytoplasmic
b isoform, while the sequences from P. marinus form a branch
separately from the a and b isoforms of Gnathostomata. The two
sequences from Branchiostoma cluster in a separate clade, sister to
the clade of Craniata (Figure 4 and Figure S5).

To date, chordate representative sequences used in Hsp90
phylogenetic analyses were derived mainly from the classes of
Actinopterygii and Sarcopterygii [15,18]. Our search through
complete genomes and available ESTs resulted in the identifica-
tion/chacterization of additional Hsp90 Craniata sequences from
the class of Chondrichtyes and the order of Petromyzontiformes,
as well as sequences from the subphyla of Cephalochordota and
Tunicata. Evidence has been found for two rounds of genome
duplication (namely 1R and 2R) both before and after the split
between jawless vertebrates (Hyperotreti and Cephalochordata)
and jawed vertebrates (Gnathostomata), approximately 520 to 550
MYA [95-97]. These genome duplications took place after the
divergence of tunicates but before the split between Chondrich-
thyes and Euteleostomi (bony vertebrates). Most of the duplicate
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genes resulting from these whole-genome events have been lost;
yet, a number of genes involved in developmental processes are
retained [95]. The lamprey appears to have diverged between the
two rounds of duplication; therefore, it is possible that the two
genes in P. marinus are the result of the first round. On the other
hand, an independent duplication event is required to account for
the different copies of the cytoplasmic £sp90 genes detected in B.
Sloridae. 'The clustering pattern of AA isoforms in Takifugu and
Tetraodon maybe indicative of the fishes-specific genome duplica-
tion, namely 3R, estimated to have taken place around 350 MYA
[93,94].

It has been suggested that the duplication event which
generated the a and b Hsp90 isoforms took place within the
lineage of vertebrates, shortly before the emergence of the
teleosts from the rest of the vertebrate lineage, approximately
500 MYA [15,20,21]. Ouwur results indicate that the two
cytoplasmic isoforms also exist in Chondricthyes; therefore we
set this gene duplication event earlier in the vertebrate evolution,
probably within Gnathostomata, before the separation of
Euteleostomi and Chondricthyes and after their separation from
Hyperoartia.

Conclusions

In the present study we sought to analyze the evolution of the
HSP90 family, through the gene copy numbers and putative
duplication events, focusing on the cytoplasmic members of Fungi
and Metazoa. We detected and retrieved Hsp90s in sequence
databases, analyzed genome and ESTs sequences, in order to
enrich our dataset with taxonomic groups not present in previous
studies. Overall, we provide evidence for duplicated genes in
several fungal and animal species that in most cases seem to be the
outcome of independent duplication events within each species;
nonetheless we suggest that some duplication events affected a
wider taxonomic group. The duplicated genes detected in some
species could be the result of known whole-genome duplications,
as in the case of Saccharomyces, or the result of small-scale
duplications. In addition, we infer that a gene loss took place in
a hymenopteran family. Retention or loss of duplicated genes
could be correlated to environmental stimuli or the habitual needs
of various taxa. Finally, we were able to make a more precise
estimation concerning the duplication event responsible for the
cognate and inducible isoforms in vertebrates, and place it shortly
after the split of Hyperoartia from Gnathostomata. Even though
there is a significant increase of genome-wide information, still the
need for high-throughput analyses of various taxonomic groups
(e.g. Mollusca) is compelling, in order to infer the steps in the
evolution of the HSP90 family in a more conclusive manner.
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