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Objectives. Human adenoviruses (HAdV) are classified as 7 HAdV species, and some serotypes in species B like HAdV 3, HAdV 7,
HAdV 21, and HAdV 55 caused severe symptoms, even fatalities. Patients may be misdiagnosed and inadequately treated without
reliable and practical methods for HAdV serotyping. Developing rapid, sensitive, and specific diagnostic methods for HAdV is
critical. Methods. Detection methods were established based on a recombinase polymerase amplification (RPA) assay and
lateral flow (LF) test. Specific target sequence was screened, targeting which, primers and probes were designed, synthesized,
and screened for establishing assay with high amplification efficiency. Primer or probe concentrations and amplification time
were optimized. Detection limit, sensitivity, and specificity were evaluated. Results and Conclusions. Simple, sensitive, and
specific RPA-LF methods for detection of four serotypes of HAdV together or separately were established, which had detection
limits of 10 to 280 copies/reaction comparable to real-time PCR without recognizing other pathogens. The sensitivity and
specificity were >92% and >98%, respectively, evaluated by limited clinical samples. The detection can be completed in 25min
without requirement of any instrument except a constant temperature equipment, showing superior detection performance and
promising for a wide use in the field and resource-limited area.

1. Introduction

Human adenoviruses (HAdV) are nonenveloped double-
stranded DNA viruses, which are classified as 7 HAdV spe-
cies (HAdV-A to HAdV-G) including no less than 100 sero-
types [1, 2]. Different HAdV serotypes have been associated
with different clinical syndromes such as fever, acute respira-
tory disease (ARD), gastroenteritis, and conjunctivitis [3].
Among these serotypes, HAdV 3 and HAdV 7 are the main
causative pathogens of lower respiratory tract infection epi-
demics that cause fatalities [4, 5] and are epidemic in many
countries [6], including Singapore, the United States, the
United Kingdom, Korea [7], and Canada [8]. In China,
except for HAdV 3 and HAdV 7 [9, 10], HAdV 21 [11] and

HAdV 55 [12, 13] that also cause severe symptoms and
belong to species B were reported sporadically.

HAdV are one of the major pathogens associated with
approximately 5% to 10% of the lower respiratory tract
infections in infants and children [14, 15]. Patients may be
misdiagnosed and inadequately treated without reliable
and practical methods for HAdV typing [16]. Therefore, it
is critical to develop rapid, sensitive, and specific diagnostic
method for HAdV. Traditional detection methods, such as
viral culture, are time-consuming and laborious [17]. Sero-
logic tests rely on the antibody generating time and are fre-
quently negative at the beginning of the disease. Commonly
used molecular diagnostic assays, such as polymerase chain
reaction (PCR) [18], real-time PCR [19, 20], and nested PCR
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Table 1: The designed primers and probes for RPA and PCR.

Usage Type ID Sequence (5′-3′)

RPA-HAdV

Forward primer HAdV-UniF ACATCGCCGGACAGGATGCTTCGGAGTACC

Reverse primer HAdV-UniR3/7 Biotin-GGCCATGTCAAGCACTCTGTTGTCGCCTAC

Reverse primer HAdV-UniR21/55 Biotin-GGCCATATCCAGCACTCTGTTGTCGCCCAC

Probe HAdV-UniP3/7
FAM-GGTCTGGTGCAGTTCGCCCGTGCAACAGAC-[THF]-

CCTACTTCAGTATGG-PO4

Probe HAdV-UniP21/55
FAM-GGTCTGGTGCAGTTCGCCCGCGCCACAGAC-[THF]-

CCTACTTCAATCTGG-PO4

RPA-HAdV3

Forward primer HAdV3-F1 ACCGGGAAGACAATACCTACTCTTACAAAG

Forward primer HAdV3-F2 ACGCTGGCTGTAGGCGACAACAGAGTGCTT

Forward primer HAdV3-F3 GCCATATTCCGGCACAGCTTACAATTCACT

Reverse primer HAdV3-R1 Biotin-TTCTTCTCCAACTTGAGGCTCTGGCTGATA

Reverse primer HAdV3-R2 Biotin-TTGTCTCCCTTCATGGAAGCAATGCCAAAT

Reverse primer HAdV3-R3 Biotin-GTAGCATGGCTTCATGTTGGTAGCTGGTTT

Probe HAdV3-Probe
FAM-ATAGTTACAACGAATCGAGACAATGCAGTA-[THF]-

CTACCACCACAAACA-PO4

RPA-HAdV7

Forward primer HAdV7-F1 TGACCACCGACCGTAGCCAGCGACTGATGC

Forward primer HAdV7-F2 GCCATATTCCGGCACAGCTTACAATTCACT

Forward primer HAdV7-F3 ATACATACTCTTACAAGTGCGGTACACCC

Reverse primer HAdV7-R1 Biotin-TTCTTCTCCAACTTGAGGCTCTGGCTGATA

Reverse primer HAdV7-R2 Biotin-TTCAACATCTCCTTCGGTTGGTGTTACTTT

Reverse primer HAdV7-R3 Biotin-CTACAAAGTTATCCCTGAAGCCAATGTAAT

Probe HAdV7-Probe
FAM-TCTCAGTGGATAGTTACAACGGGAGAAGAC-[THF]-

ATGCCACCACATACA-PO4

RPA-HAdV21

Forward primer HAdV21-F1 TTTGTGCCCGTTGACCGGGAAGACAATACC

Forward primer HAdV21-F2 AATACCTACGCATACAAAGTTCGATACACC

Forward primer HAdV21-F3 ATACAAAGTTCGATACACCTTGGCTGTGGG

Reverse primer HAdV21-R1 Biotin-TGCATAAATTGGTTTGGCTTCGCCGTCTGT

Reverse primer HAdV21-R2 Biotin-TCCCACCTGAGGTTCTGGTTGGTATAGTTT

Reverse primer HAdV21-R3 Biotin-GCTCTACCACCATACTTCTCAGTTGTTCCA

Probe HAdV21-Probe
FAM-AGTGGATTGCTGAAGGCGTAAAAAAAGAAG-[THF]-

TGGGGGATCTGACGA-PO4

RPA-HAdV55

Forward primer HAdV55-F1 GCTCCTAAAGGCGCTCCAAATACATCTCAG

Forward primer HAdV55-F2 TCAAACCCTATTCTGGTACGGCTTACAACT

Forward primer HAdV55-F3 CCGTTGACCGGGAGGACAATACATACTCTT

Reverse primer HAdV55-R1 Biotin-CGACTTTCTGATTTGGCTGCTCCGTTGTTT

Reverse primer HAdV55-R2 Biotin-CCATCAAGGTCAGTCCAAGTTTCATCTCCC

Reverse primer HAdV55-R3 Biotin-AACTTTCAAACCTATTGGGAGTCCTTCTTT

Probe HAdV55-Probe
FAM-CGCGTAACAGAAGAGGAAAACAATACTACT-[THF]-

CTTACACTTTTGGCA-PO4

PCR for HAdV 3 (2835 bp)
Forward primer Hexon3-F CGAGGCTGAGTTGCTTTCA

Reverse primer Hexon3-R TCGGACGATGGCTTTGAG

PCR for HAdV 7 (2814 bp)
Forward primer Hexon7-F CGAGGCTGAGTTGCTTTCA

Reverse primer Hexon7-R TCGGACGATGGCTTTGAG

PCR for HAdV 55 (2847 bp)
Forward primer Hexon55-F CGACGCTGAGTTACTTTCA

Reverse primer Hexon55-R TTGGACAATGGCTCTGAG

Quantitative PCR

Forward primer qPCR-F ATGGCCACCCCATCGAT

Reverse primer qPCR-R ACTCAGGTACTCCGAAGCATCCT

Probe qPCR-P FAM-TGGGCATACATGCACATCGCCG-BHQ1
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[21], perform high sensitivity and specificity. However, they
require a thermal cycler and well-trained specialists. These
methods are not suitable for rapid disease diagnosis in the
field or resource-limited areas. Compared with traditional
methods, isothermal nucleic acid amplification methods such
as loop-mediated isothermal amplification (LAMP) [22] are
simple, rapid, and cost-effective.

Recently, a new isothermal amplification method named
recombinase polymerase amplification (RPA) assay, which
relies on a recombinase, a polymerase, and a single strand
binding protein, was developed and could complete amplifi-
cation in 5-20min at around 37°C with a detection limit of
lower than 10 copies/reaction [23]. Moreover, when com-
bining RPA with lateral flow (LF) test, the target sequence
can be detected in a simple, fast, and visual way that is useful
in the field and resource-limited areas. In the present study,
such universal and typing detection methods towards four
serotypes of HAdV were established and evaluated.

2. Materials and Methods

2.1. Ethics Statement and Sample Preparation. A total of 200
clinical samples (throat swabs) from patients (age from 17 to
50) with febrile respiratory syndrome were collected from
2015 to 2017. They were stored at −80°C until extraction
of nucleic acids using a MiniBEST Viral RNA/DNA Extrac-
tion Kit (Takara, Beijing, China). These specimens had pre-
viously been tested using real-time PCR or real-time RT-
PCR kit for respiratory disease, including Influenza Virus
A Real-Time RT-PCR Reagent (Shanghai ZJ Bio-Tech Corp,
Shanghai, China) and Respiratory Adenovirus Real-Time
PCR Kit (Shanghai ZJ Bio-Tech Corp). Then, they were
tested using corresponding real-time PCR/RT-PCR kit for
various types from the same company. Fifteen specimens
were found to be positive for HAdV 3, 89 specimens positive
for HAdV 7, 17 specimens positive for HAdV 55, and 79
specimens positive for influenza virus A (41 H1 positive
and 38 H3 positive).

HAdV 21 DNA-spiked human samples were prepared to
simulate patient samples for lack of actual patient samples.
Briefly, throat swab samples were collected from healthy vol-
unteers. Various concentrations of genomic DNA of HAdV
21 were mixed with each of 200μL of the samples to make
DNA-spiked samples. DNA of the spiked samples were
extracted using a MiniBEST Viral RNA/DNA Extraction
Kit (Takara) as described previously.

Genomic DNA of Coxiella burnetii and Chlamydia psit-
taci were kindly given by Professor Bohai Wen and Lihua
Song from the State Key Laboratory of Pathogens and Bio-
safety of China. Genomic DNA of Streptococcus suis, Escher-
ichia coli, and Staphylococcus aureus was extracted from the
corresponding bacteria using a QIAamp Blood and Tissue
Mini DNA kit (Qiagen, CA, USA). For quality control, the
existence of the corresponding genomic DNA in the samples
was detected using real-time PCR methods as described pre-
viously [24].

The use of human samples was approved by the Ethics
Committee of Huadong Research Institute for Medicine
and Biotechniques, and consent form was signed.

2.2. Primers and Probe Design and Synthesis. Hexon gene
from each serotype (GenBank AB330084.1 for HAdV 3;
GenBank AC_000018.1 for HAdV 7; GenBank AB053166.1
for HAdV 21; and GenBank KF911353.1 for HAdV 55)
was selected as target sequence and aligned using Multiple
Sequence Alignment function of the DNAman software.
The conserved sequence (about 300 bp) with high identical
rate among hexon genes from those serotypes was used as
target to design primers and probes to establish universal
RPA assay (RPA-HAdV), which could detect all the four
serotypes. It is difficult to screen serotype-specific sequences
with lengths of over 100 bp as targets, considering that dif-
ferent serotypes have very minute variations in terms of their
genetic organization. So the serotype-specific sequences with
lengths of 30 to 50 bp were screened for specific probe
design, and the sequences about 200 bp upstream and down-
stream of the specific sequence were used as targets to estab-
lish typing RPA assay for HAdV 3 (RPA-HAdV3), HAdV 7
(RPA-HAdV7), HAdV 21 (RPA-HAdV21), and HAdV 55
(RPA-HAdV55), respectively.

The probes (46 bp) were designed using Primer Premier
5 software (PREMIER Biosoft International, CA, USA). Sev-
eral sets of primers were designed upstream and down-
stream of the probe. The 5′ end of the probes was labeled
with carboxyfluorescein (FAM), the 3′ end blocked with a
phosphate group, and a base analog tetrahydrofuran (THF)
inserted to replace the 31st base. The 5′ end of the reverse
primers was labeled with biotin. All the primers and probes
were synthesized by GenScript company (Nanjing, China).

2.3. Positive Plasmid Construction. The hexon gene sequence
of each serotype was either amplified using corresponding
primers (Table 1) and genomic DNAs (for HAdV 3, 7, or
55) or directly synthesized by GenScript company (for
HAdV 21). A 25μL of PCR reaction system with 12.5μL
of 2x PCR Mix (Takara), 1.5μL forward or reverse primer
(10 nM), 7.5μL of ddH2O, and 2μL of template DNA was
used to amplify the target DNA. The amplification product
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Figure 1: Verification of the positive plasmids with (a) double-
enzyme digestion or (b) PCR following gel electrophoreses. Lane
M: DNA marker; lane 1: plasmid HAdV21-Hexon-pUC57
digested by EcoR I and Hind III; lanes 2 to 4: PCR results with
plasmids HAdV3-Hexon-pMD18T, HAdV7-Hexon-pMD18T,
and HAdV55-Hexon-pMD18T as templates. The size is indicated
on the left.
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was analyzed by agarose gel electrophoresis, purified using a
SanPrep Agarose Gel DNA Purification Kit (Sangon, Shang-
hai, China), and ligated to pMD 18-T using a pMD 18-T
vector cloning kit (Takara). The recombinant plasmids
HAdV3-Hexon-pMD18T, HAdV7-Hexon-pMD18T, and
HAdV55-Hexon-pMD18T were transformed into DH5α E.
coli cells and scrubbed onto solid LB culture with ampicillin,
X-Gal, and IPTG added. The white bacterial colony was
picked up, and the existence of the target recombinant plas-
mids was confirmed using PCR as described above. The syn-
thesized hexon gene of HAdV 21 was ligated to pUC 57
plasmid to construct a recombinant plasmid HAdV21-
Hexon-pUC57, which was then transformed into DH5α E.
coli cells as described previously [24]. The recombinant plas-
mid HAdV21-Hexon-pUC57 was digested by both EcoR I
and Hind III and analyzed by gel electrophoreses to verify
its successful construction. All the recombinant plasmids
were purified, sequenced, and stored at −80°C before use.

2.4. Establishment of RPA-LF Assay. For RPA assay, each
reverse primer and probe (Table 1) were combined to make
various groups and the best one was screened using a prelim-
inary RPA reaction system recommended in the commercial

TwistAmp® RPA nfo kit (TwistDx Limited, Cambridge,
UK). Briefly, 2.1μL of forward primer (10μM), 2.1μL of
reverse primer (10μM), 0.6μL of probe (10μM), 1μL of tem-
plate (1:66 × 101 fM or 1 × 104 copies/μL), 12.2μL of DNase-
and RNase-free water, and 29.5μL of rehydration buffer (pro-
vided in the kit) were mixed together to rehydrate the enzyme
pellet (provided in the kit). Then, 2.5μL of MgAc (280mM)
was added to initiate the reaction following with incubation
at 37°C for 20min. For the universal RPA assay RPA-HAdV,
the recombinant plasmids HAdV3-Hexon-pMD18T and
HAdV55-Hexon-pMD18T were used as templates, and for
the typing RPA assays, the corresponding recombinant plas-
mids were used.

After the reaction, the entire reaction tube was inserted
into a cross-contamination-proof (XCP) lateral flow cassette
(BioUstar, Hangzhou, China) and the cassette was closed as
per the manufacturer’s instruction. Results were judged visu-
ally by the naked eyes. A positive result was determined
when both test line (T line) and control line (C line) devel-
oped, indicating sequences labeled with both FAM and bio-
tin existed in the product. Only C line developing indicated a
negative result, and if C line did not develop, the cassette
should be replaced.
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Figure 2: Primers and probes designed for RPA assay. (a) Primer and probe sequences (dark blue) screened from hexon genes of HAdV 3
and HAdV 7 for RPA-HAdV; (b) primer and probe sequences (dark blue) screened from hexon genes of HAdV 21 and HAdV 55 for RPA-
HAdV; (c) probes (red underlined) screened for typing RPA assay.
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Figure 3: Continued.
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2.5. Reaction Condition Optimization. The concentrations of
reverse primer and probe and the amplification time in each
RPA assay were optimized. Briefly, various concentrations
(10μM, 5μM, or 2.5μM) of reverse primer and probe were
used to conduct the RPA-LF method as mentioned above,
and the best concentration combination was determined
through the developing strips in the cassette. Moreover, var-
ious amplification times (10min, 15min, or 20min) were
also evaluated. Positive or control plasmid at a concentration
of 1 × 104 copies/μL was used as template in the reaction.

2.6. Detection Limit Evaluation. The positive plasmids were
diluted into serial dilutions from 1 × 104 to 1 × 100 copies/μL
and used as templates to evaluate the detection limit in
detection of positive plasmids.

Genomic DNA of various serotypes of HAdV was
diluted into serial dilutions, and their concentrations were
determined using quantitative PCR (qPCR) as described
previously [25]. The primers and probe used in qPCR are
indicated in Table 1. Then, the serial dilutions were used
as templates to evaluate the detection limit of the optimized
RPA-LF methods in detection of genomic DNA.

The detection limit was determined as the concentration
of the highest dilution that gave a positive detection result.
The evaluation with each dilution of positive plasmid or
genomic DNA was done in duplicate.

2.7. Specificity and Sensitivity Evaluation. To determine the
specificity of the established RPA-LF assays, their cross-
reaction possibilities with genomic DNA of other pathogens,
including various serotypes of HAdV, C. psittaci, C. burnetii,
S. suis, E. coli, and S. aureus, were tested. Also, the extracted
nucleic acids from 200 clinical samples and 10 HAdV 21
DNA-spiked samples were used as templates to determine
the specificity and sensitivity of the established methods.

3. Results

3.1. Construction of Positive Plasmids. Positive plasmid for
each serotype was constructed and verified. HAdV21-
Hexon-pUC57 was digested by enzymes to verify its success-

ful construction. As shown on Figure 1(a), the target
sequence was exactly the same size as expected. The success-
ful constructions of HAdV3-Hexon-pMD18T, HAdV7-
Hexon-pMD18T, and HAdV55-Hexon-pMD18T were veri-
fied by PCR, and the amplified products were also exactly
the same size as expected (Figure 1(b)).

3.2. Design of Primers and Probes. Primers and probes were
designed in the target sequences. In RPA-HAdV, the nucleic
acid sequence from base 1 to 300 of hexon gene in each sero-
type, which shared an identity rate of 95.6%, was selected as
the target sequence (Figures 2(a) and 2(b)). Actually, it is
hard to screen a probe around 46 bp that is exactly identical
among the four serotypes. So 2 probes with 4 bases of diver-
sity separately from HAdV 3/7 and HAdV 21/55 were
designed for further screening (Table 1). One common for-
ward primer and 2 unique reverse primers were designed
(Table 1). The 2 reverse primers, which were from HAdV
3/7 and HAdV 21/55, respectively, had 3 bases of diversity.

In the typing RPA assays, specific probes were screened
firstly using DNAman as shown on Figure 2(c) (sequences
underlined). The probes varied a lot in sequences. Three for-
ward primers and 3 reverse primers upstream and down-
stream the probe were designed as shown in Table 1.

3.3. Screening of the Best Primer and Probe Combinations.
Several sets of primers or probes were designed for each
RPA assay as shown in Table 1, and the best combination
was screened. As shown on Figure 3(a), the second group,
using HAdV-UniP3/7 as probe, HAdV-UniF as forward
primer, and HAdV-UniR21/55 as reverse primer, could
detect both positive plasmids without detecting the control
plasmid. This group of primers and probe was screened to
establish the RPA-HAdV assay for all the four serotypes.

For typing methods, the best combinations were screened
as HAdV3-F3&HAdV3-R1 for HAdV 3 (Figure 3(b)),
HAdV7-F2&HAdV7-R1 for HAdV 7 (Figure 3(c)),
HAdV21-F1&HAdV21-R3 for HAdV 21 (Figure 3(d)), and
HAdV55-F2&HAdV55-R1 for HAdV 55 (Figure 3(e)). The
RPA-LF assays using these primers and probes could detect
the corresponding positive plasmid with deep dark color on
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Figure 3: Evaluation of various combinations of forward primer, reverse primer, and probe in (a) RPA-HAdV, (b) RPA-HAdV3, (c) RPA-
HAdV7, (d) RPA-HAdV21, and (e) RPA-HAdV55. The primers, probes, and templates used here are indicated. The top and bottom red
lines on each strip are the control (C) and test (T) lines, respectively. (−): bad result; (+): good result; (++): excellent result.
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the T line of the strips, without recognizing the control
plasmid.

3.4. Optimization of Reaction Conditions. The concentra-
tions of reverse primers or probes in the established RPA-
LF methods were optimized (Figure 4). When groups with
various concentrations of reverse primers or probes in each
assay performed modest results, the group with lower con-
centration of probe was favored considering the cost. In
RPA-HAdV, 2.5μM of HAdV-UniP3/7 and 10μM of
HAdV-UniR21/55 were favored to establish the ultimate
reaction system (Figure 4(a)). In the typing RPA-LF
methods, 2.5μM of HAdV3-Probe and 10μM of HAdV3-
R1 in RPA-HAdV3 (Figure 4(b)), 2.5μM of HAdV7-Probe
and 2.5μM of HAdV7-R1 in RPA-HAdV7 (Figure 4(c)),
2.5μM of HAdV21-Probe and 2.5μM of HAdV21-R3 in
RPA-HAdV21 (Figure 4(d)), and 5μM of HAdV55-Probe
and 10μM of HAdV55-R1 in RPA-HAdV55 (Figure 4(e))
were favored.

Various amplification times for each assay were tested,
and the shortest one with modest result was determined as
the best amplification time. As shown on Figure 5, the best
amplification time was 15 and 20min for RPA-HAdV to
detect plasmid HAdV3-Hexon-pMD18T and HAdV55-
Hexon-pMD18T, respectively. So the best amplification time
of RPA-HAdV was confirmed to be 20min. The best ampli-
fication time of the typing RPA-LF methods was 15min,
except RPA-HAdV7, the best time of which was 20min.

3.5. Detection Limit Evaluation. The detection limit for each
RPA-LF assay was evaluated. As a result, RPA-HAdV could
detect 10 copies of plasmid HAdV3-Hexon-pMD18T or
HAdV55-Hexon-pMD18T (Figure 6(a)), 280 copies of
genomic DNA of HAdV 3 (Figure 6(b)), 43 copies of geno-
mic DNA of HAdV 7 (Figure 6(c)), 48 copies of genomic
DNA of HAdV 21 (Figure 6(d)), and 14 copies of genomic
DNA of HAdV 55 (Figure 6(e)) per reaction. The detection
limits of RPA-HAdV3, RPA-HAdV7, RPA-HAdV21, and
RPA-HAdV55 were 10, 10, 100, and 10 copies per reaction
in detection of corresponding positive plasmids, respectively
(Figure 6(a)), and were 17, 43, 48, and 14 copies per reaction

(Figures 6(b)–6(e)) in detecting corresponding genomic
DNA, respectively.

3.6. Sensitivity and Specificity Analysis. Genomic DNA or
RNA purified from 200 clinical samples of HAdV 3, HAdV
7, HAdV 55, and influenza virus A (H1 or H3 positive)-
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Figure 4: Optimization of reverse primer and probe concentrations in reaction systems of (a) RPA-HAdV, (b) RPA-HAdV3, (c) RPA-
HAdV7, (d) RPA-HAdV21, and (e) RPA-HAdV55. The concentrations of reverse primers and probes used here are indicated. The top
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Figure 5: Optimization of amplification time of RPA-HAdV in
detecting plasmid HAdV3-Hexon-pMD18T (1) and HAdV55-
Hexon-pMD18T (2) and of RPA-HAdV3 (3), RPA-HAdV7 (4),
RPA-HAdV21 (5), and RPA-HAdV55 (6) in detecting their
corresponding positive plasmids. The top and bottom red lines on
each strip are the control and test lines, respectively. Various
amplification times are indicated. (−): negative result; (+): positive
result.
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infected patient, as well as 10 HAdV 21 DNA-spiked sam-
ples, which were determined using real-time PCR/RT-PCR,
were used to measure the sensitivity and specificity of the
RPA-LF methods. As shown in Table 2, the sensitivities of
RPA-HAdV3, RPA-HAdV7, RPA-HAdV21, RPA-HAdV55,
and RPA-HAdV were 100%, 92%, 100%, 100%, and 93%,
respectively. The specificities of RPA-HAdV3, RPA-HAdV7,
RPA-HAdV21, RPA-HAdV55, and RPA-HAdV were 98%,
100%, 99%, 99%, and 100%, respectively. RPA-HAdV
method could detect these four serotypes without recogniz-
ing C. psittaci, C. burnetii, S. suis, E. coli, and S. aureus, while
the other methods could detect their corresponding genomic
DNA without detecting those of the other serotypes of
HAdV (Figure 7).

4. Discussion

HAdV epidemics often break out in clusters in schools or
army. Accurate and prompt detection and typing of HAdV

are highly in demand to guide antiviral treatment and
reduce the disease severity [3, 16]. In this study, simple, fast,
visual, sensitive, and specific detection methods based on
RPA-LF assay towards four serotypes of HAdV species B
were established and evaluated.

Hexon gene is one of the highly conserved genes in
HAdV. Actually, most of the nucleic acid detection methods
towards HAdV were designed based on the hexon or fiber
gene in previous studies [26–30]. In the RPA assay, the
lengths of primer and probe required were around 30 bp
and 46bp, respectively, which were much longer than those
used in the real-time PCR assay. An identical nucleic acid
sequence of 46 bp among the four serotypes of HAdV was
hard to find, while it is easier between two serotypes. So, in
the establishment of RPA-HAdV, the similar reverse primer
or probe sequence, which performed 3 to 4 bases diversity
between HAdV 3/7 and HAdV 21/55, was synthesized sepa-
rately and evaluated their performance in detection of vari-
ous positive plasmids. Considering that HAdV 3 and 7 or
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Figure 6: Evaluation of the detection limit of each RPA-LF assay in detecting (a) positive plasmids or genomic DNA of (b) HAdV 3, (c)
HAdV 7, (d) HAdV 21, and (e) HAdV 55. 1, 2, 7, 9, 11, and 13 represent detection results of various concentrations of plasmids
HAdV3-Hexon-pMD18T and HAdV55-Hexon-pMD18T as well as genomic DNA of HAdV 3, HAdV 7, HAdV 21, and HAdV 55 with
the HAdV-RPA method, respectively; 3, 4, 5, and 6 represent detection results of various concentrations of positive plasmids with
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HAdV 21 and 55 share the same primer and probe
sequences, positive plasmids only HAdV3-Hexon-pMD18T
and HAdV55-Hexon-pMD18T but not HAdV7-Hexon-
pMD18T or HAdV21-Hexon-pUC57 were used in the eval-
uation. A probe from HAdV 3/7 (HAdV-UniP3/7) and a
reverse primer from HAdV 21/55 (HAdV-UniR21/55) were
determined as the best combination to detect all the four sero-
types. This indicates the RPA assay is tolerant to the variation

of several bases in primer and probe sequence. In addition,
using degenerate primer and probe is also an option.

In RPA-LF method, the FAM- and biotin-labeled ampli-
fied product, which was generated by biotin-labeled reverse
primer and FAM-labeled probe, would develop the T line
of the lateral flow strip in the cassette. Then, the result could
be judged by the naked eyes. The concentrations of reverse
primer and probe but not forward primer were optimized,

Table 2: Sensitivity and specificity analysis of the established methods.

Samples Methods RPA-HAdV3 RPA-HAdV7 RPA-HAdV21 RPA-HAdV55 RPA-HAdV

HAdV 3 positive
(n = 15)

Positive 15 0 0 0 14

Negative 0 15 15 15 1

Sensitivity 100% — — — 93%

Specificity — 100% 100% 100% —

HAdV 7 positive
(n = 89)

Positive 2 82 1 1 81

Negative 87 7 88 88 8

Sensitivity — 92% — — 91%

Specificity 98% — 99% 99% —

HAdV 21 positive
(n = 10)

Positive 0 0 10 0 10

Negative 10 10 0 10 0

Sensitivity — — 100% — 100%

Specificity 100% 100% — 100% —

HAdV 55 positive
(n = 17)

Positive 0 0 0 17 17

Negative 17 17 17 0 0

Sensitivity — — — 100% 100%

Specificity 100% 100% 100% — —

Influenza A (H1)
positive (n = 41)

Positive — — — — 0

Negative — — — — 41

Sensitivity — — — — —

Specificity — — — — 100%

Influenza A (H3)
positive (n = 38)

Positive — — — — 38

Negative — — — — 0

Sensitivity — — — — —

Specificity — — — — 100%

Overall

Sensitivity (95%
confidence interval)

100%
(0.75-1, n = 131)

92%
(0.84-0.97, n = 131)

100%
(0.66-1, n = 131)

100%
(0.77-1, n = 131)

93%
(87%-97%, n = 210)

Specificity (95%
confidence interval)

98% (0.93-1)
(n = 131)

100% (0.90-1)
(n = 131)

99% (0.95-1)
(n = 131)

99% (0.94-1)
(n = 131)

100% (0.94-1)
(n = 210)
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Figure 7: Specificity analysis of (a) RPA-HAdV, (b) RPA-HAdV3, (c) RPA-HAdV7, (d) RPA-HAdV21, and (e) RPA-HAdV55 in detecting
DNA of various pathogens. Genomic DNA of HAdV 3 (1), HAdV 7 (2), HAdV 21 (3), HAdV 55 (4), Chlamydia psittaci (5), Coxiella
burnetii (6), Streptococcus suis (7), Escherichia coli (8), and Staphylococcus aureus (9) as well as control plasmid pUC57 (10) were used as
templates. The top and bottom red lines on each strip are the control and test lines, respectively. (−): negative result; (+): positive result.
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considering their more important roles in development of
strips as well as higher cost. Also, the amplification time was
optimized for each assay, and 15 or 20min was acceptable.

The detection limit of all the established methods except
RPA-HAdV21 was 10 copies of positive plasmids per reac-
tion, which was comparable to qPCR. RPA-HAdV could
detect 280, 43, 48, and 14 copies of genomic DNA of HAdV
3, HAdV 7, HAdV 21, and HAdV 55 per reaction, respec-
tively. The detection limits of RPA-HAdV3, RPA-HAdV7,
RPA-HAdV21, and RPA-HAdV55 were 17, 43, 48, and 14
copies per reaction, respectively, in detecting corresponding
genomic DNA. Compared with the qPCR method used in
the present study, the RPA-HAdV performed similar detec-
tion limit in detecting genomic DNA of HAdV 7 or HAdV
21 (43 and 48 copies/reaction in qPCR, respectively), higher
detection limit in detecting genomic DNA of HAdV 3 (17
copies/reaction in qPCR), and lower detection limit in
detecting genomic DNA of HAdV 55 (140 copies/reaction
in qPCR). However, the RPA-HAdV3, RPA-HAdV7, or
RPA-HAdV21 performed similar detection limit, and the
RPA-HAdV55 performed lower detection limit in detect-
ing corresponding genomic DNA. Considering the viral
loads of various serotypes of HAdV in throat swabs ranged
from 5 × 105 to 1:5 × 109 copies/mL (about 2:5 × 103 to 7:5
× 107 copies/μL of genomic DNA after extraction using a
MiniBEST Viral RNA/DNA Extraction Kit) reported in pre-
vious publication [20], the established methods could detect
the responding HAdV effectively.

The established methods performed modest sensitivities
(ranging from 92% to 100%) and specificities (ranging from
98% to 100%) evaluated using limited clinical samples. Sev-
eral HAdV 7-positive samples being not detected may be
due to the low viral load after long-term storage, which
influenced the sensitivities. The established methods did
not recognize genomic DNA from other pathogens used in
the study. Only 1 or 2 HAdV 7-positive samples were recog-
nized by other serotyping methods, which may be caused by
contamination in some steps. However, more clinical sam-
ples of various HAdV serotypes should be used to evaluate
the methods, and other adenoviral species or serotypes
should be used to evaluate the serotype-specific RPA-LF
assays. Also, in practical application, an internal control
should be introduced to eliminate potential inhibitor of the
method in samples, and a DNA extraction method suitable
to field sites or resource-limited sites should be developed.
In addition, a multiple serotyping method based on RPA-
LF may be more useful.

Our assays can be used to determine whether or not a
sample is positive or negative for ARD-causing species B of
HAdV and identify HAdV 3, 7, 21, and 55 in clinical sam-
ples. Compared with the traditional PCR or real-time PCR
methods, which usually consume 2h and need expensive
machines [20], the established RPA-LF methods here could
complete in less than 25min with RPA assay consuming
15 to 20min and LF test consuming 5min without any
expensive instrument, while performing similar or higher
sensitivity. Our methods are more suitable for use in the field
and resource-limited areas. When future HAdV outbreaks
occur in crowds such as army or schools, we will have the

tools available in the field to rapidly determine which adeno-
virus is causing the infection and treat the outbreaks faster
and more targeted.

In conclusion, we successfully established universal and
typing methods for detection of HAdV 3, HAdV 7,
HAdV21, and HAdV 55 based on RPA assay and LF test,
which were simple, sensitive, and specific. The method had
a detection limit of 10 to 280 copies/reaction in detecting
corresponding positive plasmid or genomic DNA. The sensi-
tivity and specificity were >92% and >98%, respectively. The
RPA-LF methods are promising for a wide use in the field
and resource-limited area, considering they can complete
detection in 25min with a cheap constant temperature
equipment, though more clinical patient samples are needed
to evaluate the methods in the future.
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