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RNA-seq is currently the technology of choice for global measurement of transcript abundances in cells. Despite its success-

es, isoform-level quantification remains difficult because short RNA-seq reads are often compatible with multiple alterna-

tively spliced isoforms. Existing methods rely heavily on uniquely mapping reads, which are not available for numerous

isoforms that lack regions of unique sequence. To improve quantification accuracy in such difficult cases, we developed

a novel computational method, prior-enhanced RSEM (pRSEM), which uses a complementary data type in addition to

RNA-seq data. We found that ChIP-seq data of RNA polymerase II and histone modifications were particularly informative

in this approach. In qRT-PCR validations, pRSEM was shown to be superior than competing methods in estimating relative

isoform abundances within or across conditions. Data-driven simulations suggested that pRSEM has a greatly decreased

false-positive rate at the expense of a small increase in false-negative rate. In aggregate, our study demonstrates that

pRSEM transforms existing capacity to precisely estimate transcript abundances, especially at the isoform level.

[Supplemental material is available for this article.]

Transcriptomeprofilingbyhigh-throughputnext-generationDNA
sequencing (RNA-seq) comprehensivelymeasures transcript abun-
danceswithin a sample of cells at a givenmoment (Mortazavi et al.
2008; Wang et al. 2009). It has been applied to diverse problems,
such as identifying differentially expressed genes or isoforms, cat-
aloging long intergenic noncoding RNAs, and detecting gene fu-
sions in diseased tissues (Maher et al. 2009; Cabili et al. 2011;
Trapnell et al. 2013). A typical RNA-seq experiment first involves
the selection of a fraction of transcripts of interest, followed by
fragmentation, reverse transcription, and high-throughput se-
quencing. Millions of reads from sequencing are mapped back to
a reference genome or transcriptome and quantified to estimate
the expression of isoforms and genes (Mortazavi et al. 2008).
Due to alternative splicing and the repetitiveness of genomic se-
quence (Treangen and Salzberg 2012), RNA-seq reads that map
to multiple isoforms of the same gene or to multiple genes at dif-
ferent genomic locations are prevalent. For example, in an RNA-
seq data set from the human erythroleukemia cell line K562
(Djebali et al. 2012), 94% of expressed protein-coding genes have
reads mapping to multiple isoforms, and more than 20% of ex-
pressed protein-coding genes share reads between each other
(Fig. 1A). Thesemultimapping reads cause ambiguities in themap-
ping step and therefore complicate abundance estimation at both
the isoform and gene levels.

Several strategies exist for handling multimapping reads.
Cufflinks divides multimapping reads equally among candidates
by default (Trapnell et al. 2010). ERANGE employs a ‘rescue’ ap-
proach to allocate multimapping reads to genes in proportion to

the number of reads uniquely mapping to them (Mortazavi et al.
2008). RSEM and eXpress adopt the expectation-maximization
(EM) algorithm, in which alternating steps are taken between
assigning reads fractionally to isoforms based on current model
parameters (the expectation step) and updating model para-
meters (which include isoform abundances) according to the
read assignments (the maximization step) (Li et al. 2010; Roberts
and Pachter 2013).

Despite the success of all these approaches, allocation of mul-
timapping reads relies heavily on the information provided by
uniquely mapped reads. When this information is unavailable
such as for “indistinguishable” isoforms, which lack unique se-
quence (Fig. 1A, isoform B in panel I), it is often difficult to accu-
rately estimate abundances with current methods. We found
that there are 20,738 indistinguishable isoforms from human pro-
tein-coding genes and 7040 from mouse, accounting for 14% and
9% of all the isoforms, respectively (Supplemental Figs. S1B, S2B).
Further, >45% of expressed protein-coding genes in human and
>20% in mouse have an “indistinguishable” isoform (Fig. 1B;
Supplemental Figs. S1D, S2D). If one considers that RNA-seq read
distributions across isoforms are often nonuniform (Wang et al.
2009), the number of expressed isoforms lacking uniquelymapped
reads can be even higher because a unique exon or junction from
an expressed isoformmay not necessarily be sequenced. Such sub-
stantial numbers of indistinguishable isoforms present a major
challenge for the task of allocating multimapping reads.

In this work we developed and characterized a novel strategy
for further ameliorating the multimapping issue that uses infor-
mation from external complementary data. Such an integrative
approach has been recently considered for multimapping issues
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concerning ChIP-seq data (Zeng et al. 2015). Studies of the rela-
tionships between expression and genomic signals measured by
a variety of high-throughput assays have indicated that such sig-
nals are informative regarding transcript abundances. For exam-
ple, the relationship between RNA Polymerase II (Pol II) ChIP-
seq data and RNA-seq data has been investigated in the fly (Gan
et al. 2010) and mouse (Deng et al. 2011). In both species, a posi-
tive correlation was observed between Pol II occupancy around
transcription start sites (TSSs) and expression levels of the corre-
sponding genes. Similarly, histone modifications have been sug-
gested to mark transcription initiation sites (Guenther et al.
2007). In mouse Th2 cells, gene expression levels were found to
be correlated with H3K9/14ac ChIP-seq signals (Hebenstreit et al.
2011). Furthermore, ChIP-seq data of histone modifications have
been used to predict expression levels of genes (Karlić et al. 2010;
Dong et al. 2012).

Our strategy has been implemented in a computational
framework named ‘prior-enhanced RSEM’ (pRSEM). This frame-
work integrates RNA-seq and other data types relevant to the sam-
ple of interest for the task of RNA-seq transcript quantification.
This integration is accomplished through the Bayesian statistical

technique of placing a prior probability distribution (herein after
simply referred to as the “prior”) over transcript abundances,
which we establish from the other data types. In principle, the pri-
or can be derived from a variety of sources so long as they are infor-
mative with regard to transcript abundances. Here, we describe
pRSEM’s workflow and demonstrate that ChIP-seq data of Pol II
andhistonemodifications serve as effective sources of prior knowl-
edgewithin the pRSEM framework.We examinewhether pRSEM’s
allocation of multimapping reads agrees with Pol II occupancy
data and validate pRSEM’s accuracy with both RAMPAGE data
and qRT-PCR experiments. Through data-driven simulations, we
compare the performance of pRSEM with that of eXpress and
RSEM. Both the experimental and simulation results provide evi-
dence that pRSEM produces superior quantifications, particularly
for low abundance and unexpressed isoforms.

Results

A novel RNA-seq quantification method using

a Pol II ChIP-seq data-derived prior

The pRSEM framework was built upon the RSEM statistical model
for RNA-seq quantification (Li et al. 2010; Li andDewey 2011)with
two novel features. First, pRSEM places a prior distribution over
transcript abundances, the parameters for which are estimated
from the RNA-seq data itself. Second, transcripts are partitioned
using an additional data source, with a different prior distribution
induced over each partition. Intuitively, we wish to make parti-
tions such that transcripts with similar abundances fall within
the same partition and therefore that the prior distribution may
be as informative as possible. We explored a variety of partition
models but did not find any that were overwhelmingly superior
(Supplemental Fig. S3). Hence, for the sake of simplicity and inter-
pretability, we selected a two-partition scheme that aims to sepa-
rate expressed from unexpressed transcripts. As we will show
later in this section, Pol II ChIP-seq data accurately predicts tran-
script expression status, and therefore, we initially built pRSEM
around this data type. Note that the pRSEM framework is general
and allows for an arbitrary number of partitions, which can be de-
rived from any type of external data.

The workflow of pRSEM consists of three steps: (1) processing
external data sets, (2) learning prior parameters, and (3) applying
prior parameters for abundance estimation (Fig. 2A). To process ex-
ternal Pol II ChIP-seq data, for instance, pRSEM has utilized the
ENCODE standard protocol (SPP peak caller and IDR pipeline)
(Landt et al. 2012) to obtain Pol II peaks (and signals, depending
on the partition model). Precomputed ChIP-seq peaks can also
be provided to pRSEM to speed up the process. In the second
step, a training set of isoforms, to which ChIP-seq reads and peaks
can be uniquely assigned, is built and partitioned (for the con-
struction of a training set, see section II.B in the Supplemental
Material). The default two-partition model in pRSEM is to place
isoforms with a Pol II peak in one partition and those without
such a peak in the other. An isoform is defined to have a Pol II
peak if a ChIP-seq peak overlaps with the 500-nucleotide (nt)
flanking region of its TSS (for simplicity, we refer to such a peak
as a “Pol II TSS peak”). In addition, pRSEM provides four other
types of partition models that categorize isoforms by both Pol II
peaks and signals (see section II.B in the Supplemental Material).
Unless mentioned otherwise, we will use the default two-partition
scheme to illustrate pRSEM in this work. After building the train-
ing set, an ENCODE standard pipeline of STAR (Dobin et al.

A

B

Figure 1. Multimapping reads are prevalent in human and mouse RNA-
seq data. (A) Three classes of multimapping reads and the percentages of
expressed genes (TPM≥ 1) to which each class maps in the K562 replicate
one data set. (B) Number of expressed genes that have indistinguishable
isoforms. An indistinguishable isoform is one for which all potential RNA-
seq fragments derived from it can align to other isoforms (for the calcula-
tions of distinguishability, see section I.B in the Supplemental Material). An
expressed gene is required to have abundance of one TPM or more. Data
are from the two RNA-seq replicates (“Rep1” and “Rep2”) of each of the
human cell lines K562 and GM12878 and the mouse cell lines CH12,
MEL, and MEL DMSO.
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2012) and RSEM (Li and Dewey 2011) is employed to obtain esti-
mates of read counts for each isoform. Through a Dirichlet-multi-
nomial model, pRSEM learns a Dirichlet prior parameter for each
partition. Lastly, all isoforms are partitioned in the same way
as those in the training set, and prior parameters are assigned to
isoforms in the corresponding partition. RSEM’s Gibbs sampling
routine is then run with the learned prior parameters, which
serve as “pseudo” read counts for the isoforms. Compared with
RSEM, pRSEM (Supplemental Tables S1, S2) uses the same amount
of memory and takes ∼48% more time when quantifying human
RNA-seq data (Supplemental Table S3).

A good data set for deriving a pRSEM prior must fulfill two re-
quirements: (1) It can be used to partition the training set into
groups that have distinct RNA-seq read count distributions, and
(2) the data set is informative for a large fraction of target genes.
We find that Pol II ChIP-seq data meets both requirements. To ex-
amine the first requirement, we built a training set for human cell
line K562 based on ENCODE RNA-seq and ChIP-seq data sets
(Supplemental Tables S1, S2). The training set contained 172 iso-
forms with a Pol II TSS peak and 897 isoforms without a peak.
The RNA-seq fragment counts of these two groups of isoforms
had strikingly distinct distributions (Fig. 2B). Fragment counts of
the 172 isoforms with a Pol II TSS peak ranged from one to tens
of thousands with a mode around 1000. In contrast, the majority
of the 897 isoforms without a Pol II TSS peak did not have a single
fragment, and the small fraction with fragments had counts rang-
ing from one to 100. All three modes from the two partitions were
observed in the joint distribution of fragment counts (Fig. 2B),
demonstrating that Pol II TSS peak status properly dissects the joint
distribution and is a good indicator of isoform abundance.

The prior parameters of pRSEM’s Dirichlet-multinomial mod-
el learned from the K562 data were 0.60 and 0.04, corresponding
to the pseudofragment counts of isoforms in the with-peak and

without-peak partitions, respectively. This learned prior distribu-
tion fits the data well (Fig. 2B). We found similarly good fits with
data sets from other human and mouse cell lines (Supplemental
Fig. S4), indicating that Pol II TSS peak status is an effective feature
with which to partition isoforms and that pRSEM’s Dirichlet-mul-
tinomial model correctly captures the fragment count distribu-
tions of the two partitions.

To test whether Pol II TSS peak data satisfy the requirement of
being informative for most genes, we classified genes into three
categories based on their isoforms’ Pol II TSS peak status. Since iso-
forms that have TSSs close to each other often share the same Pol II
TSS peak and thereby the same Pol II prior, we clustered them into
‘isoform TSS groups’ if they were from the same gene and had their
TSS within 500 nt of each other. Based on the Pol II peak status
of their isoform TSS groups, we classified genes into three catego-
ries: (1) “all,” if all of a gene’s isoform TSS groups had peaks; (2)
“mixed,” if only some groups had peaks; and (3) “none,” if no
grouphad a peak (Fig. 2C). In the K562 data set, 54.2%of expressed
protein-coding genes fell into the “mixed” category and did not
share RNA-seq reads with any other genes (Fig. 2D). For these
genes, Pol II information is informative in allocating RNA-seqmul-
timapping reads between isoform TSS groups with peaks and those
without. At the gene level, Pol II peaks facilitate multimapping
read allocation for 5.3% of expressed protein-coding genes (3.4%
“mixed,” 1.2% “all,” and 0.7% “none”) (Fig. 2D). In total, at least
59% of all expressed protein-coding genes benefit from Pol II peak
information in the estimation of their abundances.

pRSEM improves quantification accuracy at the isoform level

We first evaluated pRSEM at the isoform level. We compared iso-
form TSS group fragment counts estimated by pRSEM and RSEM
from the K562 data (Supplemental Table S1, replicate one).

A

C D

B

Figure 2. Pol II TSS peak data are informative for deriving a pRSEM prior. (A) pRSEM’s workflow consists of inputs (light blue), intermediate steps (light
orange), and output (green). (B) Empirical (solid lines) and fitted (dashed lines) distributions of fragment counts for isoforms in a pRSEM training set, strat-
ified by Pol II TSS peak status. A small fractional count (10−4) was added to each isoform’s fragment count so that isoforms with zero fragments could be
depicted on a log scale. (C) Three types of gene Pol II TSS peak status. (D) Percentages of expressed genes classified by Pol II TSS peak status and multiread
sharing. All fragment counts and percentages were calculated by RSEM on the K562 RNA-seq replicate one data set.

Liu et al.

1126 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.199174.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.199174.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.199174.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.199174.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.199174.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.199174.115/-/DC1


Fragment counts for a large number of isoform TSS groups with
Pol II peaks increased after using pRSEM, whereas the majority
of isoform TSS groups without Pol II peaks had decreased fragment
counts (Fig. 3A). Distributions of the change of fragment counts
for these two types of isoform TSS groups were significantly differ-
ent (Kolmogorov-Smirnov test, P-value <2.2 × 10−16). Similar dif-
ferences were observed in other human and mouse cell lines
(Supplemental Fig. S7), indicating that pRSEM allocates reads
from isoformswithout a Pol II TSS peak to thosewith peaks relative
to RSEM’s read allocation.

The abundance estimates in K562 for the isoforms of the gene
transducer of ERBB2, 1 (TOB1) provide a good example of pRSEM’s
improved multiread allocation at the isoform level (Fig. 3B). TOB1
has two alternatively spliced protein-coding isoforms, the TSSs
for which are separated by >1.5 kilobases. In K562, only TOB1-1
has a Pol II peak at its TSS. RSEM estimates that both isoforms
have abundances greater than one transcript per million (TPM).
Since one TPM is a common cutoff for determining if an isoform
is expressed or not, RSEM’s result suggests that both isoforms are
expressed. In contrast, pRSEM estimates that only TOB1-1 is ex-
pressed, with TOB1-2 having abundance close to zero TPM. This
difference in the estimated expression status of TOB1-2 has poten-
tially important biological implications because TOB1 is a tumor

suppressor (Kundu et al. 2012), and in gastric cancer cells, miR-
25 represses TOB1 by binding to a 3′-UTR region that is present
in TOB1-1 but absent in TOB1-2 (Li et al. 2015). Since the TOB1
gene does not share any reads with other genes, this example dem-
onstrates again that pRSEMallocates reads from isoformswithout a
Pol II TSS peak to those with a peak relative to RSEM’s read alloca-
tion. Moreover, pRSEM’s estimates agree with RAMPAGE, which is
an independent data set characterizing transcriptional activity at
the 5′ ends of isoforms. TOB1-1 has strong RAMPAGE signals at
its TSS, whereas TOB1-2 has almost none, also indicating that
only TOB1-1 is expressed and TOB1-2 is not. This consistency re-
veals pRSEM’s strength in reducing the number of “false-positive”
isoforms, i.e., isoforms called as expressed that truly are not.

We further validated pRSEMby examining RAMPAGE signals
(Batut et al. 2013) for all isoforms. We divided isoform TSS groups
into those that had fragment counts increased by at least one
after we used pRSEM and those had fragment counts decreased
by at least one. In K562, the distributions of RAMPAGE signals
for these two sets were significantly different (Kolmogorov-
Smirnov test, P-value <2.2 × 10−16) (Fig. 3C). The “increased”
groups populated above one read-per-million (RPM). In contrast,
the majority of the isoforms in the “decreased” group did not
have any RAMPAGE signal, and a small fraction of them had a

A
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Figure 3. pRSEM more accurately allocates multimapping reads between isoforms. (A) Distributions of the change of fragment count between pRSEM
and RSEM for isoform TSS groups with (black) and without (gray) Pol II TSS peaks. The two distributions are significantly different (P < 2.2 × 10−16,
Kolmogorov-Smirnov test). (B) An example of multimapping read allocation. Shown are TOB1’s two protein-coding isoforms, mappability, RNA-seq signal,
Pol II ChIP-seq signal, RAMPAGE signal, and estimated abundances from RSEM and pRSEM (top right). (C) Distributions of RAMPAGE signals for isoform TSS
groups that have their fragment counts decreased by at least one (gray) or increased by at least one (black) after using a Pol II–informed prior. The dashed
line denotes the signal corresponding to one RAMPAGE read. The two distributions are significantly different (P < 2.2 × 10−16, Kolmogorov-Smirnov test). A
small fractional number (10−3) was added to the RAMPAGE signal for each isoform TSS group to allow display of zero signals on a log scale. Data shown in A
through C are based on the K562 RNA-seq replicate one and RAMPAGE replicate one data sets. Isoform TSS groups in A and C are from genes that had
“mixed” peak status and did not overlap or share reads with any other gene. Isoform TSS groups that were estimated to have abundance of less than
one TPM according to both RSEM and pRSEM or that had fragment count changes between the two methods of less than one or larger than 100
were excluded. (D) Comparison of RSEM (gray) and pRSEM (white) estimated fold changes between a gene’s two isoforms in the MEL cell line with
fold changes measured by qRT-PCR. (E) Comparison of RSEM (gray) and pRSEM (white) estimated isoform fold changes between two conditions with
fold changes measured by qRT-PCR.
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signal distributed around 0.022 RPM, which corresponded to a
single RAMPAGE read. Similar consistency between pRSEM and
RAMPAGE was also observed in human cell line GM12878 (Sup-
plemental Fig. S8). These agreements show that pRSEM allocates
reads in the right direction.

We next employed qRT-PCR experiments to assess the
accuracy of isoform fold change estimates from pRSEM and two
comparable methods, RSEM and eXpress. Two sets of validation
experiments were performed, one measuring abundance fold dif-
ference of two different isoforms of the same gene within a single
condition and the other measuring abundance fold change of the
same isoform across two different conditions. For the validation
within a single condition, pairs of isoforms of the same gene
were selected with the criteria that one isoform had a Pol II TSS
peak and had a fragment count increase of at least one after we ap-
plied the Pol II prior, and the other did not have a Pol II TSS peak
and had its fragment count decrease by at least one after applica-
tion of the prior (Supplemental Data S1; for detailed selection cri-
teria, see section III.C in the SupplementalMaterial).We compared
fold differences measured by qRT-PCR (Supplemental Data S2;
Supplemental Table S4) with those estimated by the three quanti-
fication methods from RNA-seq data. The log2 fold differences es-
timated by pRSEMwere closer to thosemeasured by qRT-PCR than
estimates from either RSEM or eXpress for all five pairs of isoforms
(Fig. 3D; Supplemental Fig. S10A,C). Both pRSEM and RSEM con-
sistently underestimated the fold differences, whereas eXpress ei-
ther greatly overestimated the fold differences or estimated little
difference between the abundances of each pair of isoforms
(Supplemental Data S2). When additionally comparing to esti-
mates from variants of RSEM and eXpress (for the definitions of
variants, see section I.A in the Supplemental Material), pRSEM es-
timates had the smallest differences to qRT-PCRmeasurements for
three out of five pairs of isoforms (Supplemental Fig. S10A,C).
Scatterplots of the estimated versus qRT-PCRmeasured abundanc-
es of the individual isoforms revealed that although the pRSEM
and RSEM estimates correlated similarly with qRT-PCR, pRSEM
had smaller estimates for the low-abundance isoforms, which re-
sulted in more accurate fold differences (Supplemental Fig. S9).
We conjecture that the relatively poor performance in fold differ-
ence estimation by all methods was due to the selection criteria for
this experiment, which required that the low-abundance, Pol II
peak-lacking isoform had a nonnegligible estimated abundance
by pRSEM, such that qRT-PCR would likely succeed. These criteria
may have selected for cases in which pRSEM overestimated the
abundance of a Pol II peak-lacking isoform, and thus these criteria
were modified for the second type of experiments.

In the second set of validation experiments, we evaluated the
accuracy of single isoform fold change estimates across two condi-
tions. We selected isoforms that had a Pol II TSS peak in one con-
dition, but not in another, and for which the abundance estimates
from RSEM and pRSEMdiffered by a factor of two in one condition
(Supplemental Data S3; for detailed selection criteria, see section
III.C in the Supplemental Material). These criteria resulted in iso-
forms with fold change estimates that were markedly different be-
tween the methods. As before, we compared the estimated log2
fold changes with qRT-PCR measurements (Supplemental Data
S4; Supplemental Table S4). In five out of six cases, pRSEM’s esti-
mates were closer to the qRT-PCR measurements than RSEM’s
(Fig. 3E). Moreover, all fold changes from pRSEM were better than
those from eXpress and variants of RSEM and eXpress (Supple-
mental Fig. S10B,D; Supplemental Data S4). The closer agreement
between pRSEM and qRT-PCR in these experiments illustrates

pRSEM’s advantages over other quantification methods. Because
our qRT-PCR experiments only considered isoforms with varying
Pol II peak status across conditions, we additionally performed
data-driven simulations to examine the accuracyof quantifications
of isoforms for which Pol II information is not explicitly informa-
tive. Interestingly, we found that pRSEM also outperforms RSEM
for these isoforms (Supplemental Fig. S15).

Given pRSEM’s higher accuracy over RSEM with respect to
isoform abundance estimation, we went on to explore broader bi-
ological implications of the isoform quantifications obtained with
pRSEM.We first performed a genome-wide survey of active TSSs in
human andmouse cell lines. For all of the five cell lines examined,
more than 700 TSSs were revealed to be active by RSEM, but not by
pRSEM (Supplemental Table S5), suggesting that RSEM overesti-
mates the numbers of active TSSs. We next examined expressed
isoforms in primary cells at various stages of mouse hematopoietic
differentiation (Lara-Astiaso et al. 2014). pRSEM identified amuch
smaller number of expressed isoforms (and genes) than RSEM for
all 16 cell types (Supplemental Table S6). Lastly, differential ex-
pression analysis using EBSeq (Leng et al. 2013) on three mouse
cell lines with RSEM and pRSEM estimates revealed more than
2000 isoforms that differed in their differential expression call be-
tween the twomethods (Supplemental Table S7). All three surveys
suggest that pRSEMpresents a different genome-wide isoform pro-
file thanRSEM, and such a difference is highly likely to lead to nov-
el functional characterizations.

pRSEM identifies RSEM-misclassified unexpressed genes

At the gene level, we first investigated how pRSEM allocates reads
between overlapping genes (Fig. 1A, panel II). We built a data set
that contained pairs of overlapping genes that shared reads exclu-
sively. For each pair of genes, we required that one gene had a Pol II
peak status of “all” and the other had a peak status of “none” (Fig.
2C). We compared the change of the fragment counts for these
pairs of genes between RSEM and pRSEM and selected those that
changed by more than one. We observed, for both human and
mouse cell lines, that most of the “none” genes had fragment
counts decreased after we used a Pol II prior, whereas most of the
“all” genes had fragment counts increased (Fig. 4A). Since frag-
ments could only be transferred between the two genes within
each pair, the two different distributions show that pRSEMcorrect-
ly allocates fragments from genes without a Pol II peak to those
with Pol II peaks.

Next, we examined how pRSEM performs on allocating reads
between nonoverlapping genes (Fig. 1A, panel III). Since genes of-
ten share reads withmultiple nonoverlapping genes with different
Pol II peak status, building a data set of pairs of genes that shared
reads exclusively (as we did for overlapping genes) was not feasible.
Instead, we compared expression state calls (i.e., “expressed” or
“unexpressed”) of nonoverlapping genes between RSEM and
pRSEM. The two methods agreed for a majority of the genes. On
average, 98% of human and mouse genes’ expression states were
called the same if one TPM was used as the “expressed” cutoff
(Supplemental Table S8). For genes on which RSEM and pRSEM
disagreed in terms of expression state, we inspected the methods’
agreement with the Pol II peak data, with the assumption that
genes with Pol II peak status of “mixed” or “all” are expressed
and those of type “none” are unexpressed. Along this line, we
define expressed “none” genes as false positives and unexpressed
“mixed” or “all” genes as false negatives. Across five human and
mouse cell lines, on average, pRSEM eliminates 14 of RSEM’s false
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positives, while introducing fewer than one false positive or false
negative of its own (Fig. 4B). This contrast between the number
ofmisclassifications removed and thenumber ofmisclassifications
added held true when we decrease the “expressed” cutoff to 0.5
TPM or increased it to 2 TPM (Supplemental Fig. S12), illustrating
pRSEM’s strength in identifying false-positive genes. Moreover,
pRSEM maintains this advantage when compared with eXpress
variants (Supplemental Fig. S13).

pRSEM has a lower false-positive rate than alternative

methods in data-driven simulations

To comprehensively evaluate pRSEM, we carried out two types of
data-driven simulations. The first type consisted of subsampling
experiments in which we performed quantification on random
samples of 10%, 30%, and 50% of the reads in the K562 replicate
one data set. Read depth for these samples ranged from 6.8million
to 33.8million (Supplemental Table S9). The abundance estimates
from the subsamples were then compared with those obtained
from the entire data set using RSEM’s maximum likelihood esti-
mates, which we took to be the “truth.” We evaluated pRSEM,
RSEM, and eXpress in terms of false-positive rate (FPR) and false-
negative rate (FNR). We define FPR as the percentage of unex-
pressed isoforms or genes that are predicted to be expressed and
FNR as the fraction of expressed isoforms or genes that are pre-
dicted to be unexpressed. At the isoform level, pRSEM always
had lower FPR but higher FNR than RSEM (Fig. 5A). RSEM’s lower
FNR could be attributed to the larger pseudofragment count
assigned uniformly to every isoform (corresponding to an unin-
formative Dirichlet prior), which slightly boosts their expression
levels. When we used a much smaller uniform prior parameter
(0.049–0.053 under different subsampled sequencing depths)
learned from a single partition, the estimates had FNR com-
parable to pRSEM (Supplemental Fig. S14A). Compared with
eXpress, pRSEM had comparable or lower FPR and markedly low-
er FNR (Fig. 5A). At the gene level, the relative performances of
the methods were similar to those at the isoform level (Fig. 5B;

Supplemental Fig. S14B). Additional
batch EM rounds of eXpress did not
change its qualitative differences from
pRSEM (Supplemental Fig. S14A,B). To-
gether, these subsampling experiments
indicate that compared with RSEM and
eXpress, pRSEM produces estimates with
a favorable balance of FPR and FNR.

We performed a second type of sim-
ulation in which we generated a synthet-
ic read data set with the same sequencing
depth as the full K562 data set. We drew
each isoform’s fragment-generating pro-
bability (θ in RSEM’s probabilisticmodel)
from a Pol II–derived Dirichlet distri-
bution (Fig. 2B). Then, based on all iso-
forms’ fragment-generating probabilities
and effective lengths, we calculated iso-
form abundances and applied RSEM’s
simulator to generate RNA-seq reads. At
the isoform level, pRSEMhad a 0.4% low-
er FPR and 0.1% higher FNR than RSEM
(Fig. 5C). Again, RSEM’s better FNR could
be attributed to its use of an uninforma-
tive uniform prior (Supplemental Fig.

S14C). Compared with eXpress, pRSEM had a 1.1% lower FPR
and a 1.0% higher FNR (Fig. 5C). In absolute terms, pRSEM had
974 fewer false-positive isoforms and 540 more false-negative iso-
forms, indicating that pRSEM’s lower FPR comes at the expense of
a smaller number of false-negative isoforms. At the gene level,
pRSEM’s advantage with respect to FPR was even more evident:
pRSEM’s FPR was ∼2% less than those of RSEM and eXpress (Fig.
5D). Further, a naïve approach using RSEM fragment counts can-
not eliminate false-positive isoforms or genes called solely by
RSEM (Supplemental Fig. S16). All three methods, as well as their
variants had low FNR at the gene level (all <0.5%), with eXpress
having the lowest FNR (Fig. 5D; Supplemental Fig. S14D).
Again, additional batch EM rounds of eXpress did not change its
qualitative differences from pRSEM (Supplemental Fig. S14C,D).
In summary, simulations of synthetic data for which we know
the true abundances of isoforms illustrate pRSEM’s strength at re-
ducing the number of false positives compared with RSEM and
eXpress.

Informative priors for pRSEM can be learned from

a broad range of data types

To characterize the general applicability of pRSEM, we first asked
whether Pol II ChIP-seq data from a different cell line could be
informative for RNA-seq quantification.

We obtained Pol II peaks from six different human cell lines
(Supplemental Table S2) and applied them to the RNA-seq data
from the K562 and GM12878 cell lines (Supplemental Table S1).
As expected, Pol II peak information from the same cell line as
the RNA-seq data always gave the best fit to the training set iso-
forms’ fragment counts (Fig. 6A), suggesting that complementary
data sets from matched conditions are the most effective sources
of prior. Surprisingly, Pol II peaks from any of the six cell lines
were able to partition the training set isoforms into two groups
with significantly different fragment count distributions (Sup-
plemental Fig. S5), indicating that Pol II data from a different
cell line is also informative. However, the extent to which a

A B

Figure 4. pRSEM more accurately allocates multimapping reads between genes. (A) Changes of esti-
mated fragment counts between pRSEM and RSEM for pairs of genes overlapping with each other and
sharing reads exclusively. Genes that had a fragment count change of less than one were excluded. (B)
The numbers of genes for which RSEM (black) and pRSEM (gray) disagreed on expression status. Genes
considered were those sharing RNA-seq reads with others but not overlapping with any other genes. The
numbers were calculated from 10 RNA-seq replicates from five human and mouse cell lines. Error bars
represent one standard deviation.
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complementary data set from an unmatched condition could ben-
efit RNA-seq quantification was not examined.

Next, we investigated if histone modification ChIP-seq
data could also inform RNA-seq multimapping read allocation.
Histone modification signals have been shown to correlate with
gene expression levels (Karlić et al. 2010; Dong et al. 2012), and
a trimodal abundance distribution similar to the one based on
Pol II ChIP-seq data (Fig. 2B) was previously observed when genes
were partitioned by histonemarks (Hebenstreit et al. 2011). To spe-
cifically investigate whether histone data could be informative
for pRSEM’s model, we used data from a study of mouse hemato-
poietic differentiation for which each sample had associated
RNA-seq and histone ChIP-seq data, but no Pol II data (Lara-
Astiaso et al. 2014). Each of the 16 cell types had ChIP-seq data col-
lected by the same protocol for four types of histone modifica-
tions: H3K4me1, H3K4me2, H3K4me3, and H3K27ac. For each
histone modification, we used the presence or absence of a ChIP-
seq peak within an isoform’s TSS region to partition isoforms in
the training set. All four marks in all 16 cell types were found
to partition the isoforms into two groups that had significantly dif-
ferent fragment count distributions (Supplemental Fig. S6A), sug-
gesting that histone modification ChIP-seq data can serve as an

informative prior for pRSEM. Therefore, when Pol II ChIP-seq
data are not available for the cells being assayed by RNA-seq, a va-
riety of other data, such as histoneChIP-seq or Pol II ChIP-seq from
other cell lines, may still be used effectively by pRSEM.

We implemented several tools in pRSEM to assist users in se-
lecting the appropriate external sources of data. First, we provided
a testing procedure to determinewhether an external data set is in-
formative and in the case that multiple data sets are informative,
which one is best (section II.F in the Supplemental Material). As
an alternative to selecting a single best prior-informing data set,
we developed a partition model that employs logistic regression
to combine multiple informative signals (section II.B in the Sup-
plemental Material). For the mouse hematopoietic differentiation
data sets, we found that usingChIP-seq data fromall histonemarks
together outperformed using any one of the marks individually
(Fig. 6B; Supplemental Fig. S6B).

Discussion

We have developed a new computational method named pRSEM
that utilizes ChIP-seq data in the task of quantifying transcripts
from RNA-seq data. We have shown that pRSEM can allocate
multimapping reads properly according to Pol II information at
both the isoform and gene level. As a result, abundance estimates
frompRSEMaremore accurate than those fromRSEMand eXpress,
as validated by qRT-PCR.

Compared with existing methods, the main advantage of
pRSEM is its improved quantification of low-abundance or unex-
pressed genes and isoforms. This advantage was illustrated by
pRSEM’s superior low FPR in data-driven simulations. Correctly
identifying expressed isoforms and genes is an important aspect
of RNA-seq quantification, because such information is the basis
for understanding upstream and downstream regulatory effects.
Moreover, a large fraction of isoforms and genes are generally ex-
pressed at low to moderate levels. According to RSEM, pRSEM,
and eXpress’s estimates, 38%–55% of isoforms and 23%–38% of
genes have abundances in the range 0.1–10 TPM (Supplemental
Fig. S11). Thus, better estimation of the abundances of these iso-
forms and genes can have a large effect on overall quantification
accuracy. There is less information in an RNA-seq data set with
which to estimate the abundances of isoforms and genes in this
range. We have shown that pRSEM effectively leverages external
information, such as Pol II and histone ChIP-seq data, to address
this critical barrier.

The Dirichlet-multinomial model used by pRSEM provides
a flexible framework for the incorporation of prior information
from a variety of sources. Users of pRSEM may derive priors from
transcription factor or histonemodification ChIP-seq data in addi-
tion to many Pol II ChIP-seq data sets. All of pRSEM’s partition
models are designed in a way that does not depend on any specific
ChIP-seq target. Moreover, other types of transcriptional data,
such as CAGE, GRO-seq, RAMPAGE, and 5′-RACE (Core et al.
2008; Hoskins et al. 2011; Batut et al. 2013; The FANTOM Con-
sortium and the RIKEN PMI and CLST (DGT) 2014), can serve in
the derivation of a pRSEM prior as well. This adaptive feature of
pRSEM makes it applicable to a broad range of RNA-seq data.

Interestingly, the Poll II–derived prior parameters, which can
be interpreted as pseudofragment counts, are relatively small
(Supplemental Fig. S4). For example, the prior parameters estimat-
ed from the K562 replicate one data set were 0.60 and 0.04 for
the “with peak” and “no peak” partitions, respectively. Such small
pseudofragment counts play a minor role in multiread allocation

A

B

C

D

Figure 5. Data-driven simulations reveal that pRSEM has a lower false-
positive rate (FPR) than RSEM and eXpress. (A,B) Shape plots (squares, cir-
cles, triangles) represent FPR and false negative rate (FNR) for isoforms (A)
and genes (B) in subsampling experiments. (C,D) Bar plots show the num-
ber of isoforms (C) and genes (D) classified as false positives and false neg-
atives from simulations at full sequencing depth. FPR and FNR are shown
above each bar. A false positive is an isoform or genewith a true abundance
<1 TPM and an estimated abundance ≥1 TPM. A false negative is an iso-
form or genewith a true abundance≥1 TPM and an estimated abundance
<1 TPM.
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when genes or isoforms have a large number of uniquely mapped
reads. This likely explains whywe did not observe dramatic chang-
es in estimated abundances between RSEM and pRSEM for highly
expressed genes or isoforms (Supplemental Fig. S11). Increasing se-
quencing depth, which increases the number of uniquely mapped
reads, remains an effective way to resolve the multimapping issue
as indicated by our subsampling experiments (Fig. 5A,B). However,
due to alternative processing, >45% of human expressed genes
have indistinguishable isoforms (Fig. 1B), and their abundances
cannot be accurately estimated solely based on uniquely mapped
reads. Therefore, Pol II and histone modification ChIP-seq data
represent invaluable sources for guiding multiread allocation of
these isoforms.

Although we have found that many condition-matched (and
even unmatched) external data sets are informative for deriving
a pRSEMprior, furtherworkwill be needed to determine the degree
to which an external data set must be statistically informative in
order for it to be practically useful for RNA-seq quantification.
Through our experiments on both human and mouse data, we
have provided evidence that matched Pol II ChIP-seq data can
allow for marked improvements in RNA-seq quantifications.
However, there may be situations in which Pol II ChIP-seq data
may not be practically useful. For example, if the ChIP-seq data
are of poorer quality than those analyzed in this work, isoforms
will be more likely to be misclassified in terms of their Pol II
peak status. In addition, the strength of a Pol II–derived prior de-
pends on the extent to which transcription is the primary determi-
nant of expression levels. When post-transcriptional effects, such
as differential isoform degradation, play a comparable role in de-
termining expression levels, such a prior may not be as useful.
To remedy this latter issue, complementary data sets providing in-
formation regarding post-transcriptional effects could be used in
combination with Pol II ChIP-seq data to derive a prior for pRSEM.

To our knowledge, pRSEM is the first RNA-seq quantification
method to use a complementary data set relevant to the sample of
interest and, as such, builds a foundation for integrative quantifi-
cation methodology. Through its use of an additional data type,
pRSEM enables more accurate quantification than can possibly
be achieved by RNA-seq data alone. We expect that integration
of data from other high-throughput technologies in addition to
Pol II and histone ChIP-seq data will continue to advance the lim-
its of transcript quantification.

Methods

The framework of pRSEM is built on RSEM, which employs a gen-
erative model and an EM algorithm to estimate gene and isoform
expression levels. RSEM also includes a Bayesian formulation of its
model, in which transcript expression levels are viewed as latent
variables from a Dirichlet distribution. In this Bayesian mode,
RSEM uniformly sets the prior parameters for the Dirichlet dis-
tribution to one (an uninformative prior) so that the maximum
a posteriori estimates are equal to RSEM’s maximum likelihood es-
timates. The framework of pRSEM takes advantage of this design
and instead learns informative parameters for the Dirichlet prior
using a partitioned training set. In this way, pRSEM can bring
in external information to supervise the allocation of multimap-
ping reads and estimate transcript abundances. For any given
external data set, pRSEM first builds a training set of isoforms
and partitions them based on the external data. A single shared
prior parameter is learned for each partition through maximiza-
tion of the likelihood of a Dirichlet-multinomial model, with
the read counts of the training set isoforms as data. These prior pa-
rameters are then used during the quantification of all isoforms,
which are partitioned in the same manner using the external
data. A detailed description of pRSEM is in the Supplemental
Material section II.

RNA-seq and ChIP-seq data sets were obtained from two
sources. One source was ENCODE (The ENCODE Project Consor-
tium 2012; Mouse ENCODE Consortium et al. 2012), from which
data were obtained for five human and mouse cell lines: K562,
GM12878, CH12, MEL, and MEL treated with 2% DMSO for 5 d
(referred to as “MEL DMSO”). All cell lines had associated RNA-
seq data and ChIP-seq data of Pol II and control (Supplemental
Table S1 and S2). In addition,we obtained Pol II ChIP-seq peak files
for another four human cell lines (Supplemental Table S2) for our
experiments regarding the informativeness of unmatched Pol II
data. The other source of RNA-seq and ChIP-seq data used in our
experiments was a mouse hematopoietic differentiation study
(Lara-Astiaso et al. 2014) (Gene Expression Omnibus accession
numbers GSE60101 and GSE59636). All cell types assayed in this
study had associated RNA-seq data and ChIP-seq data for four
histone modifications (H3K4me1, H3K4me2, H3K4me3, and
H3K27ac).

Transcript annotations were taken from GENCODE human
version 19 and mouse version 4 (Harrow et al. 2012). UCSC ge-
nome assemblies hg19 and mm10 were used for human

A B

Figure 6. Informative priors for pRSEM can be derived from a broad range of data types. (A) Comparison of training set log-likelihoods based on isoforms
partitioned by Pol II ChIP-seq peaks from six human cell lines. Log-likelihoods were computed by fitting pRSEM’s Dirichlet-multinomial model to RNA-seq
fragment counts of the partitioned training set isoforms. (B) Comparison of five sources of prior information by their effectiveness on 52 RNA-seq data sets
of mouse hematopoietic cells. For each RNA-seq data set, all five sources were separately applied to fit the training set and the goodness of fit was assessed
via the log-likelihood. The source resulting in the largest log-likelihood was considered to be the most effective. “All 4 marks” denotes a pRSEM partition
model utilizing all four types of histone modification signals.
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and mouse, respectively. RNA-seq reads were aligned by STAR
v2.4.0h (Dobin et al. 2012) and quantified by pRSEM, RSEM
v1.2.15 (Li and Dewey 2011), or eXpress v1.5.1 (Roberts and
Pachter 2013). ChIP-seq reads for Pol II and its control were aligned
with Bowtie v1.0.1 (Langmead et al. 2009), and peaks were called
by ENCODE’s SPP and IDR pipeline (Landt et al. 2012) with an
IDR threshold of 0.05. Due to the lack of ChIP-seq controls for
the mouse hematopoietic cell samples, peaks for these samples
were called by HOMER, as described previously (Lara-Astiaso
et al. 2014). The command line options used for each software
are described in section I.A and section I.C of the Supplemental
Material.

Multiple variants of pRSEM, RSEM, and eXpress were com-
pared in this work. “pRSEM” refers to a pRSEM run under its de-
fault two-partition scheme. “pRSEM no partition” represents a
pRSEM run where a single prior parameter is learned for all iso-
forms in the training set without a partition. “RSEM” refers to
the posterior mean estimates obtained from Gibbs sampling
with the Bayesian version of RSEM’s probabilistic model with an
initial pseudocount of one for every isoform. “RSEM” is the most
comparable variant to pRSEM. “RSEMML” refers to themaximum
likelihood estimates obtained from RSEM’s expectation-maximi-
zation algorithm. “eXpress” denotes an eXpress run under default
settings. “eXpress O1B10” and “eXpress O1B100” denote an
eXpress run with one round of online EM, followed by 10 or 100
rounds of batch EM, respectively.

An isoform group’s RAMPAGE signal was defined as the read-
depth-normalized number of RAMPAGE reads that have their 5′

ends map within the 100-nt flanking regions of the TSS of any iso-
form in this group. Two types of qRT-PCR validations were carried
out. The first one measured the fold change of expression level be-
tween two isoforms from the same gene under the same condition.
The other compared the fold change of expression level for the
same isoform under two different conditions. Details on isoform
selection and qRT-PCR measurement are described in section
III.C of the Supplemental Material.

Reads for subsampling experiments were randomly selected
from 10%, 30%, and 50% of K562 RNA-seq replicate one. RSEM
ML estimates on K562 RNA-seq replicate one were used as the
ground truth. The number of reads and noise parameter for simu-
lation at full-sequencing depth were based on K562 RNA-seq re-
plicate one as well. All isoforms were partitioned by their K562
Pol II ChIP-seq peak status, and the isoforms’ fragment-generating
probabilities were drawn from the distribution learned from the
training set isoforms. Details on the two types of experiments
are provided in section IV of the Supplemental Material.

Software availability

The source code of pRSEM is available in the Supplement. The lat-
est version of pRSEM and a demo can be found at https://deweylab
.github.io/pRSEM/.
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