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Abstract: Tuberculosis (TB) is the leading cause of death globally, surpassing HIV. Furthermore,
multidrug-resistant and extensively drug-resistant TB have become global public health threats. Care
of TB patients starts with quality, accessible, and affordable diagnosis. The study presents a novel
technique called nanoparticle-based colorimetric biosensing assay (NCBA) based on the principles of
magnetically activated cell enrichment. A total of 1108 sputum samples were subjected to sputum
smear microscopy (SSM), NCBA, and standard culture. SSM and NCBA were completed in 20 min;
culture was completed in 8 weeks. Results show that NCBA has matching sensitivity of 100.0% and
specificity of 99.7% compared to the gold standard culture method at a cost of $0.50/test based on
Peruvian conditions. Sputum smear microscopy has 63.87% sensitivity compared to culture. NCBA
has the potential of being used in local health clinics as it only requires a microscope that is widely
available in many rural areas. Because NCBA could detect low levels of bacterial load comparable to
culture, it could be used for rapid and early TB-onset detection. The gain in time is critical as TB
is airborne and highly infectious, minimizing contact exposure. Early detection could lead to early
treatment, while the patient’s immune system is still high. The low cost makes NCBA affordable and
accessible to those who need them the most.

Keywords: nanoparticles; Mycobacterium tuberculosis; biosensing assay; smear microcopy;
acid-fast bacilli

1. Introduction

Annually, about 1.6 million die from tuberculosis (TB) [1], with 9.4 million new cases around
the world [2]. TB is the leading cause of death globally, surpassing HIV since 2014 [3,4]. Because TB
is highly infectious, each person with undiagnosed and untreated smear-positive TB is estimated to
cause 10–14 infections per year, where about 10% would eventually become a new case of TB [5,6].
Furthermore, multidrug-resistant and extensively drug-resistant TB (MDR/XDR-TB) have become
global public health threats. There are many TB patients who have no access to health care facilities or
proper diagnosis and treatment [4]. In 2018, Heads of State at the United Nations called for action to
end TB3. The current annual rate of decline in TB incidence is around 1% to 2%, however, the rate
would need to be 4% to 5% by 2020 and over 10% by 2025 in order to achieve the goal of ending the
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epidemic by 2030 [4]. Substantial annual reductions in TB incidence and the number of TB deaths will
be necessary to meet the U.N. Sustainable Development Goals and WHO End TB Strategy targets for
2030 and 2035 [7].

1.1. Constraints of Current Methods

Care of TB patients starts with quality, accessible, and affordable diagnosis. The majority of the
TB patients live in poor conditions and in geographically remote areas [8]. The culture method is
still the “gold standard” for identifying Mycobacterium tuberculosis (Mtb) in clinical samples, however,
this method takes about 8 weeks to be completed. For decades, TB diagnosis has relied on direct
(unconcentrated) sputum smear microscopy (SSM), which is the first microbial analysis both for TB
diagnosis and assessment of patient infectiousness in many countries [9]. SSM is fast, inexpensive, easy
to perform, and specific for Mtb in high incidence areas [10–12]. It does not require complex laboratory
equipment and is, therefore, very suitable for low-resource settings and in various populations with
different socio-economic conditions [11,12]. However, it has significant limitations in its performance.
SSM’s sensitivity is only about 25%–65% compared to culture, with a detection limit of about 5000–10,000
colony-forming units per milliliter (CFU/mL) [10,13]. In a retrospective study comparing culture, SSM,
and Xpert MTB/RIF system involving hundreds of specimens, SSM had 54% sensitivity for respiratory
samples and 50% for non-respiratory samples [14]. Furthermore, smear sensitivity varies with the
type of lesion, type and number of specimens, mycobacterial species, staining technique, and the
alertness and persistence of the microscopist [13]. In a recent survey, Kik et al. [15] showed that the
22 high-burden countries (HBCs) conducted 77.6 million sputum smears in 2012 valued at US$137
million in 42,827 microscopy centers [15]. Of these, 61% were performed in the BRICS countries
(Brazil, Russian Federation, India, China and South Africa) [15]. On average, 79% of the smears were
performed for initial diagnosis in these countries. When converted to 2012 US$, the unit cost for a
smear, including materials, labor, and overhead expenses, was US$1.77 [15]. Studies have shown that
the sensitivity of SSM improved significantly when specimens are subjected to liquefaction, followed
by the concentration of the mycobacteria by overnight sedimentation or centrifugation [10,16–20].
However, the increased sensitivity provided by these processing methods may not be sufficient to
offset their increased cost, complexity, and potential biohazards.

Culture is the gold standard, but it is more expensive, and results take weeks [12]. Several
molecular techniques have been commercialized for detecting Mtb and mutations in rpoB and katG
genes that cause resistance to Rifampicin and Isoniazid, such as Cepheid’s Xpert MTB/RIF system and
line probe assays [14,21–25]. In many studies, the Xpert system was shown to have a sensitivity of
96.8% and a specificity of 99.3% compared to culture as the reference standard [14]. However, they
are not necessarily accessible or affordable to those who need them the most [26]. For example, if the
Xpert MTB/RIF assay (cartridge price of US$9.98) were to be used for all people with presumed TB, the
cost would exceed 80% of the total TB spending in countries such as India, Bangladesh, Indonesia, and
Pakistan [27].

An important aspect of TB is the huge financial burden it places on patients and their families, not
only for treatment costs but also associated costs, such as that TB patients are required to take a leave
of absence from work leading to the risk of impoverishment [4]. Tanimura et al. reported that, on
average, 20% of the total cost was due to direct medical costs, 20% to direct non-medical costs, and 60%
to income loss [28]. On average, the total cost was equivalent to 58% of reported annual individual
and 39% of reported household income [28]. The cost as a percentage of income was particularly high
among poor people and those with multidrug-resistant TB [28].

1.2. Novelty of the Paper

Accurate, rapid, and cost-effective diagnostic tests are crucial to reducing TB’s unacceptably high
infection and mortality rates, especially for a disease that is treatable [29]. Thus, this paper presents a
low-cost biosensing assay that integrates modern advances in nanoparticle science and glyco-chemistry,
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resulting in sensitivity matching the performance of standard culture. The nanoparticle-based
colorimetric biosensing assay (NCBA) is based on the concept of magnetically activated cell enrichment
(MACE) technique that we have developed, where Mtb cells are isolated and enriched by applying
a magnetic field to activate nanoparticle-bound Mtb cells, without using any expensive antibodies
and energy-consuming centrifuge instrument and without employing the time-consuming growth
of Mtb. Early detection can lead to early treatment while the patient’s immune system is still strong,
helping to better treatment response and faster recovery. Affordable and rapid TB detection techniques
increase access in poor communities. This holistic strategy will help achieve WHO’s End TB Strategy
(2016–2035) and the Sustainable Development Goals (2016–2030) [30].

This study was conducted in Peru, where 3.2 million SSM were performed in 2017 [31]. Peru
has the second-highest TB incidence and has the highest MDR-TB in the Americas [32]. Therefore,
aggressive measures to detect TB early and widely is an appropriate strategy.

Our previous studies on NCBA for TB detection included quantitative capture efficiency and
concentration factor in sputum samples by Gordillo et al. [33] and Bhusal et al. [34]. In Gordillo’s study,
we determined that NCBA could concentrate acid-fast bacilli (AFB) Mtb by 47% compared to SSM.
Results also showed that NCBA improved the AFB grade from “1+” (in SSM) to “2+” (in NCBA), which
would be extremely helpful in detecting paucibacillary TB cases. Bhusal et al. compared the NCBA
technique with the WHO-endorsed GeneXpert MTB/RIF system as the standard [34]. In Bhusal’s study,
NCBA had 100.0% concordance with the Xpert system in 500 samples demonstrating comparable
performance, yet the NCBA required a much shorter time (20 min) and cost pennies without the need
for expensive instrumentation or laboratory facility.

1.3. Novelty of the MACE Technique

Cell enrichment through glycan-coated magnetic nanoparticles is a novel concept in TB detection.
Mtb are isolated and purified from the complex matrix resulting in a much “cleaner” sample and
then concentrated through volume reduction without using a centrifuge. Since TB is an airborne
disease, centrifugation of TB samples is dangerous due to potential aerosol exposure to medical
workers. Whereas with magnetic activation, there is no aerosolization; isolation and concentration
are achieved simply by using an inexpensive magnet. The as-prepared glycan-coated magnetic
nanoparticles (GMNP) have superparamagnetic properties—the nanoparticles become magnetic only
in the presence of a magnetic field—thus they remain colloidal and suspended in solution due to both
steric and coulombic repulsions. Their nanoscale size results in their higher effective surface area,
lower sedimentation rate, and minimal precipitation from gravitational forces [35]. The glycan-coating
facilitates attachment on the bacterial cell wall through the carbohydrate-binding protein sites on the
bacterial surface, providing generalized microbial specificity to the GMNP-cell interaction without
using expensive antibodies. Due to the superparamagnetic properties of GMNP, the GMNP-Mtb
complex also becomes superparamagnetic and, therefore, can be manipulated using an external
magnetic field.

2. Materials and Methods

2.1. Chemicals and Reagents

Glycan-coated magnetic nanoparticles (GMNPs) were prepared by synthesizing Fe3O4 using
ferric chloride hexahydrate (FeCl3.6H2O) as a precursor in a mixture of ethylene glycol (as reducing
agent) and sodium acetate (as porogen). Chitosan was polymerized to surface-modify the iron oxide
nanoparticles. GMNP solution at 5 mg/mL was prepared for use in the studies. Carbol fuchsin (0.3%
primary stain) was prepared by dissolving 50 g phenol in 100 mL of 90% ethanol and then adding
3 g of basic fuchsin into the mixture. Distilled water was added to bring the total volume to 1 L.
The decolorization solution was a mixture of 95% purity ethanol and hydrochloric acid (HCl). The
counterstain was 0.3% methylene blue.
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2.2. Instrumentation

Instruments used in the study included a bright field microscope (Motic 3.0 MP, USA) and a
three-dimensional (3-D) printed magnetic rack containing Neodymium magnets.

2.3. Clinical Samples

A total of 1108 sputum samples from patients symptomatic of respiratory TB [36] were used in this
study. These samples were collected in sterile screw-capped containers from patients who went to 9
health clinics in the La Libertad region of Peru. There were no samples from contacts or asymptomatic
patients of TB or unrelated to TB. All samples were subjected to the 3 TB detection methods: SSM,
NCBA, and culture as shown in Figure 1. SSM was conducted at the health clinics. Aliquots of the
samples were sent to the Provincial Laboratory in Trujillo City for standard culture on Lowenstein
Jensen medium. Aliquots of the samples were also sent to the Microbiology Lab at the Universidad
Cesar Vallejo (UCV) for NCBA testing. All patient-related information was removed and the samples
were decoded and randomized to non-linked codes prior to sending the samples to UCV. Samples
were stored at 4 ◦C upon receipt and processed immediately or within 24 h.
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Figure 1. Schematic diagram for handling and processing the sputum samples.

2.4. Sputum Smear Microscopy (SSM) by Ziehl–Neelsen Staining

A smear was prepared from the sputum sample following the WHO standard protocol for
Ziehl–Neelsen staining (ZN) technique [37]. Briefly, 20 µL of the sputum sample was placed on a
microscope slide and heat-fixed by passing flame from a Bunsen burner under the slide. The slide was
then placed on a staining rack and 0.3% carbol-fuchsin was poured over the smear. The underside of
the slide was gently heated by passing a flame under the rack until fumes appeared, repeated 3 times.
After cooling (~2 min), the smear was rinsed with distilled water until no color appeared in the effluent,
followed by washing with a mixture of 95% purity ethanol and 3% HCl until the smear appeared light
pink. The smear was washed with distilled water and then 0.3% methylene blue was added to cover
the smear. Distilled water was used to wash off the counter stain and then the smear was air-dried.
Once ready, the smear was examined under a bright field microscope using a 100× oil immersion
objective to observe the presence of red-colored acid-fast bacilli (AFB). SSM was completed in about
20 min.

2.5. Standard Culture by the Lowenstein-Jensen Method

Aliquots of all 1108 samples were forwarded to the Provincial Laboratory in Trujillo City for
culture using the Lowenstein-Jensen (LJ) medium following WHO standard protocols [37]. Briefly,
a slant was inoculated with 200 µL of decontaminated sputum specimen using a sterile graduated
disposable pipette in a biosafety cabinet. The inoculum was spread evenly over the entire surface of the
medium. The tube was left in a slanted position with the cap loosened until the inoculum was absorbed
(about a week), then the cap was tightened, and the tube was incubated in an upright position at 37 ◦C
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(± 1 ◦C). The culture was examined weekly for 8 weeks. To observe growth, a strong direct light from
an anglepoise lamp was shone onto the slant surface until buff-colored, dry colonies were observed.

2.6. Nanoparticle-Based Colorimetric Biosensing Assay (NCBA)

Decoded aliquots of all 1108 samples were sent to UCV and subjected to NCBA. Briefly, 1 mL of
sample was added into a 2 mL sterile microcentrifuge tube containing 0.25 mL of 5 mg/mL GMNP
solution. GMNP and sputum were mixed by shaking the closed tube and then allowed to incubate for
5 min at room temperature. The tube was then placed in a magnetic rack to separate the magnetic
GMNP-cells and the supernatant was discarded as biohazard waste. The isolated GMNP-cells were
re-suspended in 0.5 mL of 0.01 M PBS and mixed. About 20 uL of the sample was transferred onto a
microscope slide and subjected to the Ziehl–Neelsen staining, as described above. Once ready, the
smear was viewed under a bright-field microscope (Motic 3.0 MP, USA) using 100× oil immersion
objective to observe the presence of rod-shaped red clumps surrounded by brown nanoparticles. NCBA
was completed in about 20 min.

2.7. Mathematical Modeling of the Mtb Population

In order to understand the growth dynamics of Mtb, a logistic growth model was used as described
by the following differential equation:

dN
dt

= rN
(
1−

N
K

)
(1)

which can be integrated to give the following solution:

N(t) =
K

1 +
(

K
No − 1

)
e−rt

(2)

where N(t) is the population at any time t, No is the initial population at time zero, K is the carrying
capacity, r is the growth rate, and t is time.

2.8. GMNP-Cell Interaction for Transmission Electron Microscope (TEM) Imaging

In order to understand the interaction between GMNP and Mtb, a supplemental study was
conducted using Mycobacterium smegmatis (Msm) as a surrogate for Mtb due to biosafety considerations.
Msm shares a similar cell wall structure with Mtb, both are acid-fast species, and both can be stained
using the ZN technique [38,39]. Msm culture was grown in MiddleBrook 7H9-ADC broth and
incubated until the optical density reached 0.6 at 600 nm (about log phase). Serial dilutions of the
Msm bacteria were prepared and spiked into prepared artificial sputum, followed by incubation for
5 min at room temperature along with manual shaking. The GMNP-Msm were magnetically separated
using a simple magnetic rack and the supernatant was removed. GMNP-Msm were washed twice
and re-suspended in 0.5 mL of 0.01 M PBS. GMNP-Msm, along with pure bacterial dilutions, were
plated on a MiddleBrook 7H10-ADC agar and incubated for 3–5 days to allow the growth of Msm cells.
Colonies were counted and converted to CFU/mL. Msm and GMNP-Msm were visualized using a
JEOL 100 CX transmission electron microscopy (TEM) at the MSU Center for Advanced Microscopy
with a magnification range of 5000 to 80,000×.

2.9. Ethics

Ethical approval was obtained from the Research Committee at the Universidad Cesar Vallejo
(UCV), Trujillo, Peru, under the project entitled “Eficacia diagnostica del Biosensor de Nanoparticulas
Magneticas (BNPM) para Tuberculosis Pulmonar en Pacientes que acuden a Hospitales Distritales
de Trujillo, 2017”. Ethical approval was also obtained from the Research Committee at the Gerencia
Regional de Salud La Libertad, Trujillo, Peru. Aliquot sputum samples that were sent to UCV were
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used only for the purpose of this study, and the remaining samples were disposed of according to
biosafety guidelines.

3. Results

3.1. GMNP

Synthesized GMNP was characterized by morphology, size, conductivity, and surface charge.
Figure 2 shows a transmission electron microscope (TEM) image of GMNP showing spherical shape.
Using a laser microscope, it was determined that the average size was 159 ± 88 nm. Using a ZetaSizer,
the average conductivity of GMNP was 0.06 ± 0.04 mS/cm and its surface was positively charged. It
was highly soluble in water and stored well at room temperature (25–45 ◦C).
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Figure 2. TEM image of clustered glycan-coated magnetic nanoparticles (GMNP).

3.2. GMNP-Cells

Figure 3 shows the TEM images of M. smegmatis (without GMNP) (A) and with GMNP forming
GMNP-cells (B). As shown, the GMNP are attached to specific sites on the bacterial surface.
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3.3. Clinical Samples

Table 1 shows the distribution of the samples from the 9 local health clinics. Clinic 3 has the largest
number of samples at 19%, followed by Clinic 9 at 17% out of the total 1108 samples. Clinic 5 has the
lowest number of samples at 5%.

3.4. NCBA vs. SSM vs. Culture

Table 1 also shows the results for each local clinic using the three methods: SSM, NCBA, and
culture. Clinic 3 has the highest number of positive samples by SSM (36), NCBA (50), and culture (50),
followed by clinic 6 (22, 36, 36), clinic 1 (15, 18, 17), and clinic 8 (13, 25, 25). On the other hand, clinic 9
and clinic 7 have the lowest number of positive samples for all three methods (5, 10, 9). Of the total
1108 samples, 122 were positive by SSM, 194 by NCBA, and 191 by culture.

Figure 4 presents bright-field microscope images of acid-fast bacilli (AFB) of Mtb using SSM in TB
positive sample showing scant and highly dispersed red AFB (Figure 4A) and in TB negative sample
showing no red AFB (Figure 4B). Figure 5 presents bright-field microscope images of AFB using NCBA.
Figure 5A shows red clumps of AFB in TB positive samples with distinct characteristics: clumped
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red rods surrounded by brown nanoparticles. In TB negative samples (Figure 5B), the microscope
image shows dispersed brown nanoparticles. Exposure to GMNP and magnetic field did not seem to
affect the staining of AFB. A study to determine the direct effect of GMNP was conducted by using
the same TB positive sputum sample and subjected to NCBA and SSM. Figure 6 shows bright-field
microscope images of the TB positive sample subjected to both NCBA (Figure 6A) and SSM (Figure 6B).
The images show that the GMNP aggregates and concentrates the AFB when using NCBA (Figure 6A);
the same sample registered negative (no visible red AFB) when using SSM (Figure 6B). Our previous
study showed that NCBA increased AFB count by 47% compared to SSM [33].
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(negative reading).

Using a medical statistical software (available online: https://www.medcalc.org/calc/diagnostic_te
st.php, accessed on 11 December 2019), the clinical sensitivity, clinical specificity, positive predictive
value, and negative predictive value were calculated and presented in Table 2. The results at 95%
confidence interval (CI) for SSM showed sensitivity and specificity of 63.9% and 100.0%, respectively.
The sensitivity of SSM at 64% was well within the range reported in the literature [10,13]. The clinical

https://www.medcalc.org/calc/diagnostic_test.php
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sensitivity and clinical specificity at 95% CI for NCBA were 100.0% and 99. 7%, respectively, compared
to the standard culture. The positive predictive value (PPV) and negative predictive value (NPV) for
SSM were 100.0% and 93.0%, respectively. Meanwhile, the positive predictive value and negative
predictive value for NCBA were 98.5% and 100.0%, respectively. The accuracy of NCBA was 99.7%.
The estimated prevalence was 17.2%.

Table 1. Distribution of samples and results by SSM, NCBA, and culture by city.

City # No. Samples SSM NCBA Culture

No. Fraction Positive Negative Positive Negative Positive Negative
1 98 9% 15 83 18 80 17 81
2 119 11% 9 110 13 106 13 106
3 213 19% 36 177 50 163 50 163
4 72 6% 6 66 11 61 11 61
5 58 5% 11 47 21 37 21 37
6 123 11% 22 101 36 87 36 87
7 82 7% 5 77 10 72 9 73
8 153 14% 13 140 25 128 25 128
9 190 17% 5 185 10 180 9 181

Total 1108 100% 122 986 194 914 191 917

Table 2. Statistical analysis of SSM and NCBA at a 95% confidence interval (CI).

Sensitivity Specificity PPV NPV Accuracy

SSM 63.9%
(56.6–70.7)

100.0%
(99.6–100.0) 100.0% 93.0%

(91.7–94.1)
93.8%

(92.2–95.1)

NCBA 100.0%
(98.1–100.0)

99.7%
(99.1–99.9)

98.5%
(95.4–99.5) 100.0% 99.7%

(99.2–99.9)

4. Discussion

4.1. Mechanism of GMNP-Cell Interaction

GMNP binding to the Mtb bacteria is facilitated by a combination of chemical and ionic forces. In
the initial stage of adhesion, the cells are brought into contact with the GMNP surface due to Brownian
motion and hydrodynamic force. Next, the bacteria bind to the GMNP surface via physico-chemical
and molecular interactions such as carbohydrate-protein binding and ionic charges on the cell surface,
forming GMNP-cells. Furthermore, glycan is a charged molecule, thus bacterial cells that donate
more electrons adhere more strongly to the surface, decreasing electrostatic repulsion. We also
hypothesize that specific binding of glycan-coating on GMNP to Mtb is facilitated by cell surface
antigens, such as the 45 kDa Apa (alanine- and proline-rich antigenic) and 19 kDa proteins [6,40].
Originally thought to be a secreted antigen, Ragas et al. showed that Apa can be associated with
mycobacterial cell surface that is accessible to receptor moieties [40]. Apa is associated with the cell
wall for a sufficiently long period of time to aid in the attachment of receptors. To date, Apa seems to be
restricted to the Mtb complex strains [40]. It has also been shown that Mtb acquires iron by cell-surface
sequestration [41], thus, it is also feasible for Mtb to be naturally attracted to GMNP. Furthermore,
mycobacteria have an outer layer on the cell wall that appears transparent by transmission electron
microscopy resulting in its being referred to as the electron transparent zone [42]. This zone consists
of polysaccharides, rich in electronegative groups, and contains proteins and lipids [42]. The outer
layer is predominantly composed of glycans, with glucan and arabinomannan being the predominant
constituents [43]. Additionally, we also hypothesize that in the presence of a magnet, GMNP-cells
acquire superparamagnetic properties (due to GMNP), causing them to move in the direction of the
magnetic field and create a crowding highly enriched effect. This hypothesis is supported by the
aggregation of Mtb cells as shown in the microscope slides. Figure 5 shows red-stained slides for TB
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positive samples (A) compared to the brown slides for the TB negative samples (B). Mtb cells on the
slide are highly visible due to the concentration effect, which would likely reduce the visualization
time of Mtb cells in 100 fields and minimize microscopy fatigue. Mtb cells are observed to occur in
clusters, a unique property due to the action of GMNP.

4.2. NCBA v.s SSM vs. Culture

Results show that NCBA has the same time-to-result (T2R) as SSM but has the sensitivity of
culture. On the other hand, culture takes 8 weeks to get a result. NCBA has, therefore, superior
advantages over culture and SSM.

4.3. NCBA for TB Incidence

In this study, the aggregated TB incidence based on SSM is 110 per 100,000 population
(122/1108 × 1000). This incidence rate agrees with the World Bank data of 116 per 100,000 for
Peru in the year 2017 [44]. However, TB incidence varies by community as a function of so many factors,
thus getting an aggregate may not provide a true picture. For example, based on Table 1, the incidence
for community 5 is 190 per 100,000 (11/58 × 1000, highest among the 9 cities), while community 9 is 26
per 100,000 (5/190 × 1000, lowest among the 9 cities). On the other hand, with culture and NCBA, the
incidence increased to 172 per 100,000 (191/1108 × 1000) overall. Community 5 has now a TB incidence
of 362 per 100,000, while community 9 has 47 per 100,000. The constraint with culture is time (at least
8 weeks). However, with NCBA, the incidence rate calculation can be done almost in real-time, and
control measures would become more specific to the community to prevent future epidemics.

4.4. NCBA for Detection of Early Onset of Disease

Jorgensen described the progression of TB disease where SSM could detect only in the 5th month
from the start of disease infection when the patient started to feel unwell [45]. Column 2 of Table 3
shows the progression of the TB disease in a patient. In the first month, the person starts not feeling
well. In the second month, the patient starts to cough during the night, with increasing intensity of
coughing in the third month. In the fourth month, the patient may show a hemoptoic cough or even
hemoptysis (where the patient starts to cough up blood or blood-stained mucus). In the fifth month,
the patient has an onset of dyspnea or shortness of breath. Given this information, a logistic growth
model (Equation 2) was used to estimate Mtb load in a patient from onset and over the 5-month period.
Based on preliminary analysis, the growth rate (r) was estimated to be 0.0614/day. This growth rate
matched the reported doubling rate of Mtb at 15 h [46]. The estimated carrying capacity was set to
105 CFU/mL, equivalent to a smear grade of 4+ (many) [33,34] and equivalent to a bacterial load in a
patient having been sick for 8 months without receiving treatment. Table 3 column 3 shows the result of
the estimated Mtb load based on the logistic growth model. The table shows that Mtb count increases
from an initial infection at the beginning of the month to 6 CFU/mL at the end of the first month and
grows to 9 × 104 CFU/mL at the end of the fifth month at which time the infection is detectable by SSM
in the sputum sample, equivalent to a smear grade of 1+ (rare) or 2+ (few) [33]. Clinical observations
have shown that, although bloody sputum is a sign of TB, smear microscopy does not always detect
these cases, especially at early onset of hemoptysis. Given this model output and given the detection
limits of NCBA and culture, NCBA and culture could be used to detect the disease as early as the
second month after onset (4.0 × 101 CFU/mL) as long as the sputum sample is available. While both
are excellent, NCBA’s simplicity would be most useful in these cases.

4.5. NCBA to Profile TB Population

The results provide a glimpse of potential TB patient response. Since the detection limit of SSM is
104 CFU/mL, while that of culture is reported to be 10 CFU/mL [29], the samples were classified into
two groups: (1) Low bacterial load at 100–103 CFU/mL and (2) high bacterial load at 104 CFU/mL or
higher, as shown in Table 3. A sample positive in culture but negative in SSM must have a low bacterial
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load at 100–103 CFU/mL. With this data, we can infer that there were two groups of patients: (1) The
proactive group, who reported to the clinic early in the stage of their symptoms while the bacterial
load was still low and (2) the reactive group, who waited until very sick resulting in a high bacterial
load. For example, 15% from community 1 and 8% from community 2 patients were reactive, waiting
until really sick to report to the clinics. Only 2% and 3%, respectively, were proactive, reporting while
the disease was early. Patients from community 5 and community 6 seemed to be more proactive.
From community 5, 17% reported while the disease was early, while 19% did not report until very sick.
From community 6, 11% were proactive while 18% were reactive. Patients from community 3 waited
until sicker than those who reported early; patients from communities 4, 7, and 8 had even numbers of
reactive and proactive groups. From community 9, 2% were proactive while 3% were reactive. NCBA
could be used to provide real-time location profiles on TB and TB patient responses, which could lead
to the development of proactive measures to minimize TB spread and exposure. See Table 4.

Jorgensen showed that rapid tests, such as Xpert MTB/RIF and line probe assays, which are located
in the National Reference Lab, were only used by 5% of patients [47]. These tests are expensive, require
a fully functional lab facility and skilled personnel. However, 60% of patients reported to peripheral
health clinics, which provide primary care level. Some 25% of patients were seen at health center
laboratories and 10% were seen at district laboratories [47]. Figure 7 shows the distribution of the
patient usage of the TB testing facilities. Figure 7 also shows a futuristic placement of NCBA in these
facilities. With NCBA’s sensitivity matching that of culture, it can provide the diagnostic needs at all
TB testing facilities where culture is not available.
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Table 3. Progression of TB disease and sensitivity of detection techniques.

End of Month Symptoms Est. Mtb Load in
Patient, CFU/mL

Detectable by
SSM and Est.

Grade?

Detectable by
NCBA? Detectable by Culture?

1st Not feeling well 6.3 x100

2nd Cough at night 4.0 × 101 No Yes Yes, result in 4th month
3rd Intense coughing 2.5 × 102 No Yes Yes, result in 5th month

4th Onset of hemoptoic
cough or hemoptysis 1.6 × 103 No Yes Yes, result in 6th month

5th Onset of dyspnea 9.1 × 103 Yes, 1+ and 2+ Yes Yes, result in 7th month
6th Dyspnea 3.9 × 104 Yes, 3+ Yes Yes, result in 8th month
7th Dyspnea 8.0 × 104 Yes, 4+ Yes Yes, result in 9th month

Smear Grade: 1+ = rare; 2+ = few; 3+ = moderate; 4+ = many.

The most challenging aspect of TB diagnosis in rural areas is access. The three pillars of universal
access are time-to-result, affordability, and sensitivity (TAS). Using culture as the gold standard,
Figure 8 shows that NCBA is superior to SSM based on the TAS criteria. NCBA matches the sensitivity
performance of culture at a fraction of time (20 min) and cost ($0.50/test under Peruvian condition).
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Table 4. Positive samples grouped into low and high bacterial load, CFU/mL.

City No. Samples SSM+ NCBA+ Culture+

>104 (High) 101–103 (Low) >104 (High) 101–103 (Low) >104 (High)

1 98 15% 3% 15% 2% 15%

2 119 8% 3% 8% 3% 8%

3 213 17% 7% 17% 7% 17%

4 72 8% 7% 8% 7% 8%

5 58 19% 17% 19% 17% 19%

6 123 18% 11% 18% 11% 18%

7 82 6% 6% 6% 5% 6%

8 153 8% 8% 8% 8% 8%

9 190 3% 3% 2% 2% 3%

Total 1108 11% 6% 11% 6% 11%
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5. Conclusions

There is a major need for providing rapid but affordable tests in local health clinics where
60%–90% of patients use and where the initial diagnosis is made [15,47]. Of the 1108 sputum samples
tested, NCBA has excellent sensitivity and specificity performance matching culture at 100.0% and
99.7%, respectively. Meanwhile, SSM has 63.9% sensitivity compared to culture. Cost-wise, NCBA
is comparable to SSM but much cheaper than culture. The Xpert MTB/RIF system is estimated at
$20-$30/test in this region. The NCBA will also have minimal human fatigue in microscopy. NCBA
could be placed in local health clinics as it only requires a microscope that is widely available in many
rural areas. NCBA could detect low levels of bacterial load comparable to culture. Early detection can
lead to early treatment, while the patient’s immune system is still high. Recovery is shown to be faster
for patients with high immunity. The gain in time is critical as TB is airborne and highly infectious,
minimizing contact exposure.
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