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A new phylogenomic Approach 
for Quantifying Horizontal Gene 
transfer trends in prokaryotes
eliran Avni & Sagi Snir

it is well established nowadays that among prokaryotes, various families of orthologous genes exhibit 
conflicting evolutionary history. A prime factor for this conflict is horizontal gene transfer (HGT) - the 
transfer of genetic material not via vertical descent. Thus, the prevalence of HGT is challenging the 
meaningfulness of the classical Tree of Life concept. Here we present a comprehensive study of HGT 
representing the entire prokaryotic world. We mainly rely on a novel analytic approach for analyzing 
an aggregate of gene histories, by means of the quartet plurality distribution (QPD) that we develop. 
Through the analysis of real and simulated data, QPD is used to reveal evidence of a barrier against HGT, 
separating the archaea from the bacteria and making HGt between the two domains, in general, quite 
rare. In contrast, bacteria’s confined HGT is substantially more frequent than archaea’s. Our approach 
also reveals that despite intensive HGT, a strong tree-like signal can be extracted, corroborating several 
previous works. Thus, QPD, which enables one to analytically combine information from an aggregate 
of gene trees, can be used for understanding patterns and rates of HGt in prokaryotes, as well as for 
validating or refuting models of horizontal genetic transfers and evolution in general.

Deciphering the history of life on Earth is among the most fundamental and ancient task in biology. With 
the advent of high throughput sequencing technology, the belief of advancing in this seminal challenge was 
apparent and imperative. A new area called phylogenomics1,2 which integrates between genome analysis and 
systematic studies, was opened. A basic and ubiquitous step in phylogenomic studies is the inference of an 
ancestor-descendant relationship in the form a tree, dubbed as a gene tree, for every family of genes in a dataset. 
These studies have found widespread disagreements between these gene trees3, leading some to doubt the rel-
evance of the Tree of Life concept4–9. These are not merely statistical erros. Rather, events such as duplications 
and losses in gene families, incomplete lineage sorting, and horizontal genetic transfers lead to conflicting gene 
histories10–12. It therefore seems that the abundance of data only makes deciphering the history of life on Earth a 
harder task than initially thought.

Here we study specifically horizontal gene transfer (HGT), that is, the transfer of genes between contempora-
neous organisms not via vertical parent-offspring descent. Primarily, HGT is mediated by plasmids, transposons 
and other mobile elements, and viruses (bacteriophages). HGT tangles the conventional universal Tree of Life, 
turning it into a network of Evolution4,6,7,9. HGT is pervasive and some estimates of the genes undergone HGT 
amount to 99%, see e.g.3,13. In particular, HGT is common in prokaryotes and plays an important role in adapta-
tion to new niches14.

Nevertheless, the belief in a species tree, underlying the major trend of organismal evolution still attracts 
researchers to resolve these entangled histories15–17. In particular, there is ample evidence that a strong tree-like 
signal can be extracted, even in the presence of extensive HGT. These results often rely on a blend of phylogenetic 
signals, including pairwise gene distances, a comparison to a reference species tree, theoretical studies, and the 
analysis of simulative and empirical data3,18–23.

Normally, prokaryotic history is constructed through inferring histories for ubiquitous genes that are believed 
to be immune to HGT, such as ribosomal RNA genes. However, such genes are also liable to HGT, hiding this 
vertical signal24–27. Moreover, for their housekeeping role these genes are under high conservation, and do not 
provide a rich enough evolutionary signal that is mandatory when classifying the deep branches of the tree of life. 
Therefore, it was proposed to consider a multitude of gene trees and subsequently amalgamate them into a unified 
tree encompassing all taxa under study, an approach denoted as the supertree operation28,29.
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In this paper we follow up on previous works from E. Koonin’s group18–20,30,31. Consequently, some questions 
studied in these works are revisited, and some conclusions are reaffirmed. In the first part of the work we tackle 
the subjects outlined above where our results are derived primarily from a novel concept, the quartet plurality dis-
tribution (QPD, defined below), that was first introduced in32 and studied further in33–35. allowing us to indirectly 
obtain two separate results in the realm of HGT research. A rigorous analysis of 6901 gene trees from a represent-
ative set of one hundred taxa including twenty two phyla and approximating the entire prokaryotic world spec-
trum, reveals a strong bias towards bacteria’s confined HGTs (i.e. involving two bacteria). HGT is substantially 
less frequent when confined to archaea, and relatively rare when it involves one bacterium and one archaeon. This 
implies the existence of a barrier between the archaea and the bacteria, hindering successful HGT events between 
the two domains. Statistical computations show that these differences in HGT frequency are highly significant.

Despite the prevalence of HGT events within the bacteria (and to a lesser extent, within the archaea), our 
calculations show that a strong tree signal of evolution does exist. Accordingly, in the second part of the paper 
we construct two phylogenies that suggest a better compliance with several evolutionary evidences and criteria, 
compared to other hypothesized trees constructed before.

Results
An inter-domain HGT barrier. This part of the work focuses on analyzing the plurality quartets (defined 
below) derived from a collection of 6901 prokaryotic genes based on 41 archaea and 59 bacteria Quartet Plurality 
Distribution. (QPD), a concept that was introduced in32 and is further developed here we introduce and develop, 
is used to show that in the collection of genes that we analyze, HGT events are divided into three major categories: 
(1) Bacteria’s confined HGTs (involving two bacteria), that are most common; (2) Archaea’s confined HGTs, that 
are moderately common; and (3) HGTs between archaea and bacteria (Inter-domain), that are least common. In 
addition, simulations of biased HGT, as well as an and an independent analysis of the real data gene trees, are used 
to strengthen these results. QPD is defined succinctly in the Methods section. Here, a more detailed exposition 
that also discusses the rationale for the study of the plurality quartets and the QPD is given. We remark that the 
notion of quartet plurality (and the related triplet plurality) were used in several studies in the past, either for 
phylogenetic reconstruction36,37, or for identifying non-tree-like evolution38–40.

As evolution is time driven, it is perceived as directed - from ancestral root to descendants. However, due to 
lack of time indication in molecular sequences, gene histories (trees) are normally inferred unrooted. In such 
trees, the quartet, an unrooted tree over four leaves (species) is the minimal tree that carries any phylogenetic 
information. It is easily seen (Section 5.1 below) that there are exactly three possible quartet topologies based on 
a given 4-taxon set {a, b, c, d}: a, b|c, d; a, c|b, d; a, d|b, c; and every tree induces exactly one of the three topologies 
(the case of a star topology of the quartet is ignored). When examining an array of gene trees and a given 4-taxon 
set, the number of gene trees satisfying each one of the three topologies is counted. The topology satisfied by the 
greatest number of gene trees is denoted the plurality quartet and intuitively reflects the strongest tree signal sup-
ported by those genes. This procedure is referred to as the plurality inference rule, and is used to infer the plurality 
quartets of the 4-taxon sets under examination. It is noteworthy that according to the results of  41, the reliability of 
the plurality quartet topology increases with the number of genes taken under consideration. Hence, all gene trees 
were incorporated in the computation of the plurality quartets, including individual genes that weakly support 
the quartet topology of some of the 4-taxon sets.

We use the term plurality score to denote the percentage of votes a plurality quartet attains and we note that the 
“plurality votes” may very well differ between the quartets. For example, while the topology q = a, b|c, d may be 
satisfied by 60% of the gene trees, another ′ =q a b c e, ,  may be satisfied by 90% of the gene trees. In the example 
above, q = a, b|c, d and ′ =q a b c e, ,  have 60% and 90% plurality scores respectively. When the plurality score of 
a given quartet is calculated, only gene trees in which the quartet is resolved are taken under consideration, while 
trees where the quartet is absent or unresolved are ignored. We denote by the quartet plurality distribution, or 
QPD the distribution of the plurality vote over a large set of quartets, all inferred from the same gene-tree set. 
Evidently, a strong tree signal is resulted in a high plurality score. Hence, gene trees with wide overall agreement 
will induce many plurality quartets with high plurality scores. Thus, we can exploit the plurality quartets as build-
ing blocks of the entire species tree and their plurality score as a confidence indication to this quartet topology.

Initial analysis of the real data QPD. The real data analysis includes a collection of 6901 gene trees of archaea and 
bacteria, with a total of 100 species (see Section 5.2 and the Table S1). Two collections of gene trees were exam-
ined, one is the entire gene trees pool, and the other is a set of 123 nearly universal trees (or NUTs), each consists 
of 90 taxa or more. We analyze the QPDs of the two collections of real data gene trees (Fig. 1) and compare it 
with the QPDs of ten groups of simulated gene trees composed of 100 taxa (Fig. 2). The ten groups of simulated 
genes trees, each composed of 100 trees and constructed according to a uniform HGT model (also employed in 
several other papers16,22,23,42,43), differ by the HGT “rates” that underlie their construction (λ = 0.1, 0.2, …, 1.0). 
See Section 5.3 for more details on the simulation process.

First, Fig. 1 reveals that the NUTs induce more quartets with high plurality scores compared to the general 
gene pool, which reinforces the claim that the NUTs are generally more conserved and immune to HGT than the 
average gene tree18,19. More importantly, a stark difference between the real data and the simulated data is that 
the two local maxima present in Fig. 1 are absent from all of the QPDs in Fig. 2. Furthermore, QPDs that were 
produced for simulated species trees with n = 10, 20, …, 90 taxa displayed similar features to the ones of Fig. 2 
when the trees were large enough (30 taxa or more. See S1 file, Appendix A). Clearly, the pattern of real data QPD 
is inconsistent with the pattern emerging from the simulated data, based on the uniform HGT model.

https://doi.org/10.1038/s41598-020-62446-5


3Scientific RepoRtS |        (2020) 10:12425  | https://doi.org/10.1038/s41598-020-62446-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Further study of the real data QPD. In order to explain the bimodal structure of Fig. 1, the quartets were divided 
into five groups based on the number of archaea (equivalently, bacteria) they have: 0 archaea, 4 bacteria; 1 archaea, 
3 bacteria; 2 archaea, 2 bacteria; 3 archaea, 1 bacteria; and 4 archaea, 0 bacteria. Then, the individual contributions 

Figure 1. Real data QPDs, based on the entire gene pool (red circles) and on the NUTs (blue rhombuses). Two 
local maxima are clearly visible, a phenomenon which is absent from the QPDs pertaining to simulated data of 
uniform HGT. The higher values of the QPD based on the NUTs, compared to the QPD based on the entire gene 
pool, reinforce the claim that the NUTs are stabler than the genes in the entire gene pool.

Figure 2. QPDs of the simulated data regarding a simulated species tree with n = 100 leaves and ten groups of 
simulated gene trees (where λ indicates the rate of HGT events in each group). Contrary to the real data QPDs, 
here only a single local maximum appears in each graph. The QPDs of this figure were computed based on 
collections of 10000 randomly sampled quartets. Similar graphs were produced for other simulated species trees 
and have shown a similar pattern (see S1 file, Appendix A).
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of these groups to the overall QPD were plotted (Fig. 3). Evidently, the group comprised of quartets with 2 archaea 
and 2 bacteria is the main contributor to the right peak of the real data QPD, while the group comprised of quar-
tets with 1 archaea and 3 bacteria creates the left peak. A direct examination of the quartets with 2 archaea and 2 
bacteria showed that indeed an archaea-bacteria separation is induced by all 1,403,020 of them. Moreover, only 
33 of these quartets, which is 8.41 × 10−4% of the entire set of induced quartets, had a plurality score of less than 
50%. Contrary to that, when examining the remaining 2,518,205 quartets that are not comprised of 2 archaea 
and 2 bacteria, we saw that while roughly 1,580,000 of them, which is approximately 40.30% of the entire set of 
induced quartets, did not pass the 50% plurality score threshold. Comparing the quartets with 2 archaea and 2 
bacteria to the remaining quartets using the Wilcoxon rank-sum test revealed that the difference between the two 
sets is extremely significant (Z-score greater than 1000). Thus, Fig. 3 suggests the existence of an archaea-bacteria 
barrier that results in a strong vertical tree signal separating the archaea from the bacteria and hinders successful 
HGT events between the two domains. However, the fact that most quartets with 2 archaea and 2 bacteria do not 
have a perfect (100%) plurality score suggests that such events do occur, as was previously reported44,45.

In order to focus on the differences between the archaea and the bacteria, the contributions of four of the five 
groups to the overall QPD were plotted separately. Those four groups were: 0 archaea, 4 bacteria; 1 archaea, 3 bac-
teria; 3 archaea, 1 bacteria; and 4 archaea, 0 bacteria (Fig. 4). Indeed, this figure reveals that if a quartet has one or 
zero archaea (and three or four bacteria) then it is more likely to have a low plurality score, compared to a quartet 
with three or four archaea (and one or zero bacteria). Hence, Fig. 4 points to a difference between intra-bacteria 
HGTs and intra-archaea ones, the former being the more frequent of the two. Notice that despite the fact that 
intra-bacteria HGTs are more frequent than intra-archaea HGTs, quartets with 1 archaea and 3 bacteria, and 
not with 4 bacteria, form a majority among quartets with low plurality scores. This is a consequence of the num-
ber of archaea and bacteria involved in this study and the non-uniform HGT rates within and among the two 
domains, which is also demonstrated by the simulations of biased HGT conducted in this paper (Section 2.1.3). 
Interestingly, when comparing the proportion of quartets with 1 archaea and 3 bacteria that have low plurality 
rates to the proportion of quartets with 4 bacteria that have low plurality rates, no significant difference among 
the two sets is found (Fig. 4, left).

Corroboration via simulations of biased HGTs. To corroborate the conclusions aforementioned, i.e. the existence 
of an HGT barrier (Fig. 3) and the greater prevalence of intra-bacteria HGTs compared to inter-archaea’s (Fig. 4), 
several scenarios of a simulation study based on a model of biased HGT events were tested in a simulation study: 
Five simulated species trees with 100 leaves were generated, and a node with 41 descendant leaves was identified. 
This node and all its descendants were defined as “archaea”. The remaining leaves and internal nodes were defined 
as “bacteria”. By varying intra-domain and inter-domain HGT rates we were able to simulate groups of gene trees 
with 100 trees in each group. Our results indicate that an inter-domain HGT rate which is at least twofold smaller 
than the intra-domain HGT rate is necessary for clear bimodal QPDs to be generated (for example, see Fig. 5). 
More details on the biased HGT model are found in Section 5.3.

We further illustrate the similarity between the real data results and the biased HGT model. As in the real data 
analysis, the simulated plurality quartets pertaining to Fig. 5a were divided into five groups based on the number 
of archaea (or bacteria) each quartet has, and the contributions of each of the five groups to the QPD of the entire 
quartet set were plotted together (Fig. 6). In addition, the QPDs of four out of the five groups were plotted sepa-
rately (all groups excluding quartets with 2 archaea and 2 bacteria, Fig. 7). Clearly, the simulated QPDs resemble 
the real data QPDs, as a bimodal structure is formed and quartets with 3 or 4 bacteria tend to have lower plurality 
scores compared to quartets with 3 or 4 archaea, according to the simulations and the real data. Interestingly, 
quartets with 2 archaea and 2 bacteria have a sharper peak in the simulated data than in the real data, suggesting 
that the HGT barrier between archaea and bacteria in nature is less restrictive than what the parameters pertain-
ing to Figs. 6 and 7 dictate.

Figure 3. Real data: The contributions of five groups of quartets with 0,1,2,3 and 4 archaea (equivalently, 4,3,2,1 
and 0 bacteria) to the real data QPD based on the entire gene pool. The contribution to the right peak of Fig. 1 
comes primarily from quartets with 2 archaea and 2 bacteria, while the left peak of Fig. 1 comes from quartets 
with 3 bacteria or more. An equivalent calculation was carried out based on the NUTs and showed similar 
results. See S1 file, Appendix A.
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Independent study of the intra-domain HGTs. RIATA-HGT (version 2.446), a program that searches for the SPR 
distance where an SPR operation means Subtree Pruning and Regrafting. This distance measures the number 
of such operations needed to transform one tree into another. We note that every HGT event results in an SPR 
operation that prunes the branch connected to the recipient of genetic material and regrafts it to the branch 
connected to the donor. Hence, we treat the number of SPRs computed by RIATA as an estimate of the number 
of HGT events that occurred during the evolution of the gene in question. Thus, this independent tool was used 
to uncover information regarding the intra-domain HGT rates in the following way: A hypothesized phylogeny 
based on the plurality quartets (the QP1 tree, see below) was used as a reference species tree. Out of the 6901 
gene trees analyzed, 3392 trees had at most one archaeon and were designated “bacteria-only” trees, while 1110 
trees had at most one bacterium and were designated “archaea-only” trees. Dealing only with those bacteria-only 
and archaea-only trees, Fig. 8 shows the number of HGTs computed by RIATA, as a function of the gene trees’ 
sizes. Each up-pointing red triangle (or down-pointing blue triangle) depicts the number of leaves in a single 
archaea-only (or bacteria-only) gene tree, and the SPR distance to the reference species tree. A strong linear 
correlation is found for both groups of gene trees, according to which there are on average 0.334 HGT events 
per species in an archaea-only tree, and 0.468 HGT events per species in a bacteria-only tree, which implies that 
indeed intra-bacteria HGTs are more prevalent than intra-archaea ones. The intervals for these values for a 99% 
confidence level are (0.325, 0.343) and (0.462, 0.474) respectively (computations done using IBM SPSS Statistics 
version 21, confidence level of the linear model exceeding 99.99%). The fact that these two intervals are disjoint 
suggests that the difference between the HGT rates within the two domains is fundamental.

A strong tree signal nonetheless. It can be easily verified that asserting whether a collection of quartets 
is consistent (that is, whether a tree that satisfies them all simultaneously exists), though a generally 
exponential-time problem47, can be done efficiently when all ( )n

4
 quartet topologies are known. We were there-

fore able to assert that both sets of plurality quartets, one based on the entire gene pool and the other based on the 
NUTs, are inconsistent. This is expected, as many plurality quartets were found to have low plurality scores. 
Despite the above, it is noteworthy that a large portion of those quartets support a strong tree signal signal, as the 
most of them have 60% plurality scores or more. In this part we examine the strength of the tree signal supported 
by the plurality quartets, by constructing a quartet-based phylogeny, assessing its quality, and comparing it with 
other hypothesized trees.

Quartet-based phylogenies. In this part we quantify how much the plurality quartets agree among themselves 
by amalgamating them into a unified phylogeny. Combining small trees into a single unifying big tree is called 

Figure 4. Real data: The QPDs of four of the five groups of quartets with 0, 1, 3, 4 archaea (equivalently, 4, 3, 
1, 0 bacteria), when plotted independently, enable one to compare the probability of HGT events within the 
two domains. Low plurality scores of quartets with 3 or 4 bacteria compared to quartets with 3 or 4 archaea are 
suggestive that bacteria experience a relatively high number of HGT events among themselves.
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Figure 6. The contributions of the five groups of simulated plurality quartets (0 archaea 4 bacteria; 1 archaea 3 
bacteria; 2 archaea 2 bacteria; 3 archaea 1 bacteria; 4 archaea 0 bacteria) to the simulated QPD of the entire quartets 
set reveal the source of the bimodal structure of the QPD. The data was generated using a biased HGT model, with 
an intra-archaea HGT rate of 0.6, intra-bacteria HGT rate of 0.8, and an inter-domain HGT rate of 0.1.

Figure 5. Examples of different simulated QPDs, generated using a biased HGT model, for an intra-archaea 
HGT rate of 0.6 and an intra-bacteria HGT rate of 0.8, with different inter-domain HGT rates. The HGT rates of 
archaea to bacteria (or bacteria to archaea) transfers are represented by a2b (or b2a). Only when a2b = 0.1 and 
b2a = 0.1 is a bimodal graph generated.

https://doi.org/10.1038/s41598-020-62446-5
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supertree and there are several approaches for this (see28,29 for some examples). In general, each such procedure, 
attempts to find a tree over the union of the taxa set that maximizes a given function related to the input trees 
in question. In general this operation requires exponential time (NP-hard), and heuristic approaches must be 
employed. We used our in-house method, the weighted Quartet MaxCut (wQMC) heuristic48 to combine the 
plurality quartets inferred into species tree encompassing the entire taxa set.

Figure 7. The QPDs of four of five groups of simulated plurality quartets (0 archaea 4 bacteria; 1 archaea 3 
bacteria; 3 archaea 1 bacteria; 4 archaea 0 bacteria), plotted separately. Clear similarities exist between the 
simulated and the real data.

Figure 8. The number of HGTs computed by RIATA. The y-axis represents the SPR distance between the 
archaea-only gene trees (represented by red up-pointing triangles), or the bacteria-only gene trees (represented 
by blue down-pointing triangles) and the hypothesized phylogeny, which is the QP1 tree. The x-axis represents 
the number of leaves in the corresponding trees. The corresponding linear regression lines are plotted as well. 
The Pearson correlation coefficient for both lines exceeds 0.95.
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The input to wQMC, which extended the unweighted version QMC49,50, is a set of weighted quartet trees. 
Its goal is to find a tree that maximizes the total weight of the input quartets it satisfies. As two sets of plurality 
quartets were analyzed, two suggested phylogenies were constructed: QP1, constructed based on the entire gene 
pool, and QP2, constructed based on the NUTs (QP stands for “quartet plurality”). Both QP1 and QP2 satisfied 
roughly 90% of the plurality quartets, including all quartets whose plurality scores were at least 80%, and more 
than 99.99% of quartets whose plurality scores were at least 70% - a clear indication of a strong tree signal. By 
comparison, each one of a thousand trees that we randomly constructed did not satisfy more than 38.4% of 
the plurality quartets. We therefore conclude that a strong general tree trend of evolution does exist and can be 
extracted from the real data gene trees, even though the portion of plurality quartets that support a weak tree 
signal is not negligible. These results are in agreement with other studies of similar questions3,21,22. We remark 
that the QP1 tree is plotted in Fig. 9. In addition, the QP2 tree is found in S1 file, Appendix B, and both QP1 and 
QP2 are found, in Newick format, in S1 file, Appendices C and D. Details on how weights are assigned to the input 
quartets are found in Section 5.4, and additional information and statistics can be found in S1 file, Appendix A.

Comparison with other hypothesized phylogenies. Here we strengthen the assertion that the plurality principle 
can be employed to build accurate trees by contrasting QP1 and QP2 with two other reference trees on the same 
species set. One such reference tree was constructed in18 based on few of the NUTs trees taken strictly from 
the COG database (using a different program than ours). We denote it as the COG tree. The other reference 
tree was formed by concatenating several ribosomal proteins51 and will be denoted the ribosomal tree. First, we 
examined if these two trees are a perfect phylogeny with respect to three characters, induced by four taxonomic 
categories - domain, phylum, class, and order. Second, we tested the quality of the suggested phylogenies by cal-
culating their average similarity to the input trees using two well-known similarity measures: quartet fit (Qfit) and 
Robinson-Foulds similarity (RF similarity). We remark in brief that a tree is a “perfect phylogeny” with respect to 
a given leaf partition, if the subtrees induced by each part with respect to the reference tree, are pairwise disjoint. 
Qfit and RF similarity are two measures, representing the number of quartets jointly agreed by the two trees and 
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Figure 9. A depiction of the phylogeny, based on the 6901 gene trees pool and constructed using wQMC 
(the QP1 tree). The species are colored based on their phylum. Most of the branches, colored black, have high 
bootstrap values of 78% or more. The remaining branches, with low bootstrap values of 46–65%, are colored 
red, and account for the non-standard grouping of some of the species. For clarity of presentation, a rooted tree 
is portrayed in the figure. However, the The tree should be regarded as unrooted.
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RF similarity is a tree similarity measure that expresses the number of tree splits shared by two trees, respectively. 
A detailed description of these measures is found in the Method section.

The results show that three of the four trees examined - QP1, QP2, and the ribosomal protein tree - are either 
perfect or have one misplaced leaf with respect to all four categories three classifications (Table 1). We note 
that when a tree is not perfect, the set of species that need to be replaced in order to make it perfect is often not 
unique. We therefore do not make any claims about the misplaced leaves specifically. However, the fact that no 
less than seven misplaced leaves exist for the COG tree in the phylum category, is testament of its relative weak-
ness. Furthermore, with respect to Qfit and RF similarity, QP2 achieved the highest scores in all categories but 
one, namely: the average RF similarity score when the suggested evolutionary tree is compared to the entire gene 
pool (Table 2). We therefore believe that relying on the plurality quartets improves, however slightly, the accuracy 
of phylogenetic construction and offers a better depiction of the evolutionary histories of the species in our study.

Discussion
In this paper we re-examine a set of species and gene trees already published by Puigbò et al.18. Through the 
development of the concept of quartet plurality distribution (QPD32), which enables one to combine informa-
tion about quartet topologies from an aggregate of gene trees, we reveal evidence for an average low propen-
sity for inter-domain HGTs (involving one archaeon and one bacterium), which implies the existence of an 
archaea-bacteria HGT barrier. Furthermore, our findings suggest that HGTs occur more frequently within the 
bacteria than within the archaea. Gaining information on the scarcity of inter-domain HGTs, as well as on the 
frequency of intra-domain HGTs, using such analytic tools, was to the best of our knowledge never reported.

One may suggest that the evidence for an HGT barrier is simply due to the specific set of species that was cho-
sen for the assay, and if a different set of species which thrive in less restricted habitats was chosen, HGT events 
would have become more probable and the evidence of an HGT barrier would have all but disappeared. Indeed, 
the habitats of several species in this study, such as Helicobacter pylori, Neisseria meningitidis and Burkholderia 
mallei that live in human hosts52–54 or the thermophilic Thermoplasma volcanium, Methanococcus jannaschii and 
Thermus thermophilus55–57, are quite restricted. However, we note that many other factors apart from physical 
adjacency may influence HGT, such as toxicity58 (including instances where gene toxicity is manifested in the 
form of increased gene dosage and expression), gene function and complexity21,59,60, genome sequence similarity 
and phylogenetic proximity61,62, restricted recombination63 and lack of compatibility between the alien gene and 
the recipient’s tRNA pool64. We also note that HGT events that affect the topology of gene trees today may have 
occurred (and probably did occur) in the distant past. Thus, if future studies will deal with the question of how 
restricted habitats impact HGT, those studies will have to evaluate physical adjacency among different species in 
time periods spanning millions of years. This seems to be a task of baffling complexity.

As mentioned above, Puigbò et al.19 investigated a very related question of separating the evolutionary sig-
nal into its tree and net components. They defined the “tree distances” between pairs of species that were based 
on quartets, and used these distances as a means of separating between the archaea and the bacteria, and also 
between major subgroups of these domains (see Fig. 1 therein). However, it is important to note that this sep-
aration is not necessarily the result of HGT. Indeed, applying the methods of19 to ten simulated species trees, 

Category: domain Category: phylum Category: class Category: order

QP1 tree Tree is perfect. Tree is not perfect Tree is perfect. Tree is perfect.

QP2 tree Tree is perfect. Tree is perfect. Tree is perfect. Tree is perfect.

COG tree Tree is perfect. Tree is not perfect. Seven 
leaves misplaced.

Tree is not perfect. 
One leaf misplaced.

Tree is not perfect. 
One leaf misplaced.

Ribosomal protein tree Tree is perfect. Tree is perfect. Tree is perfect. Tree is perfect.

Table 1. A summary of the properties of the various classifications of the proposed reference phylogenies. A 
phylogeny is either convex (i.e., distinguish perfectly based on the relevant classification) or not, in which case 
the number of taxa that need to be replaced in order to make the tree perfect is indicated. Two of the trees are 
perfect with respect to all three classifications.

Similarity measure

Qfit, entire 
gene pool

Qfit, 
NUTs

RF similarity, 
entire gene pool

RF similarity, 
NUTs

QP1 tree 0.315 0.566 0.418 0.413

QP2 tree 0.315 0.568 0.420 0.422

COG tree 0.285 0.524 0.393 0.348

Ribosomal protein tree 0.313 0.549 0.421 0.420

Table 2. A summary of the average Qfit and RF similarity scores between the four suggested phylogenies and the 
entire gene pool/NUTs. Specifically, the first row presents, from left to right, (1) the average Qfit between QP1 and 
the genes in the entire gene pool, (2) the average Qfit between QP1 and the NUTs, (3) The average RF between QP1 
and the genes in the entire gene pool, (4) the average RF between QP1 and the NUTs. Similarly for the other three 
rows. the scores relating to the QP2 tree are highest in all categories but one (namely, RF with respect to the entire 
gene pool), where the scores of the QP2 tree and of the ribosomal protein tree are almost identical.
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effectively representing ten groups of simulated gene trees that were generated with no HGTs at all, revealed some 
separation between the simulated archaea and bacteria, similar to the one found in19, in all of the ten trees that 
were examined (see S1 file, Appendix A). Hence, the archaea-bacteria separation induced by the methods of19 
cannot be automatically attributed to an archaea-bacteria HGT barrier.

An additional related paper was written by Zhaxybayeva et al.17, where a quantification of horizontal gene 
transfers in cyanobacteria was reported. Although the ideas in that paper are related to ours, Zhaxybayeva et al. 
only dealt with cyanobacteria, hence did not report on any archaea-bacteria HGT barrier, nor did they discuss 
quartet plurality scores and the conclusions that can be drawn from studying them. Furthermore, though they 
were able to visually present and analyze support values for individual quartets (a feasible task since their paper 
only involved 11 genomes), it is unclear how their method can be applied to larger groups of organisms such as 
the one we study, where millions of quartets should be taken under consideration.

Though the inferred plurality quartets were found to be inconsistent, meaning that there is no single tree 
satisfying them all simultaneously, and a non-negligible portion of the plurality quartets were found to support 
a weak tree signal (with close to 18% of the plurality quartets having a plurality score of 40% or less), the fact 
that phylogenies satisfying 90% of the plurality quartets were constructed strengthens the hypothesis that a tree 
depicting the general trend of prokaryotic evolution exists and can (and should) be constructed, even though the 
effect HGT has on the evolutionary relationships between some species is too strong to be ignored. QPD induces 
a natural partition of the plurality quartets based on their plurality scores, which reveals that quartets with higher 
plurality scores are also more likely to be satisfied by the hypothesized phylogenies (see S1 file, Appendix A). This 
is further evidence that the strong tree signal was not reached by chance.

This position may be challenged by others. For example, Andam et al. report that the tree signal may be 
reinforced by biased HGTs65. It is noteworthy that in the simulations they conduct, prior evolutionary connec-
tions may be re-established to some extent once they have been damaged by random HGT events. They do not, 
however, demonstrate that biased HGTs can enhance existing phylogenetic proximity. In66, Creevey et al. report 
a significant tree signal only at the tips of the constructed phylogenies, while deep branch comparisons between 
different gene trees were no better than random. Nonetheless, as stated by the authors themselves, this may be 
the result of the relatively small size of taxon samples analyzed in the paper. In67, Thiergart et al. refer to the “tree 
of tips”, where deep speciation events are scarcely supported by individual gene trees, while they do attain high 
bootstrap values. However, as evidence suggests that almost all genes undergo HGT events, such discordance 
between gene trees and any phylogeny is expected, while the general tree-like trend of evolution may still persist.

QPD has a few potential shortcomings: the quality of any QPD graph cannot exceed that of the gene trees 
on which it is based, and the conclusions one draws from a QPD may be debated. Here we focused primarily on 
HGT, but there are several other factors that may impact the accuracy of gene trees construction in a negative 
way, such as gene duplication/loss, incomplete lineage sorting, or insufficient data. In18, where the gene trees we 
analyzed were constructed, the authors take steps to bypass the potentially deleterious effects of such factors.

We note that a low plurality score of a quartet alludes to a broad disagreement between gene trees. 
Paradoxically, such disagreement may occur with no HGTs, if the species under study are in close phylogenetic 
proximity and the tree signal is weak. However, using this argument in the context of this study to account for the 
quartets with low plurality scores would imply that intra-domain HGTs (and especially intra-bacteria HGTs) are 
less common than inter-domain HGTs, which is highly improbable.

QPD and the ideas pertaining to it may be relevant to additional questions. For example, refining the HGT 
model assumptions may facilitate a quantitative assessment of the rates of HGT in nature. Another interesting 
question is the validation of evolutionary theories. Indeed, our results clearly (and unsurprisingly) show that 
HGT events in nature are non-uniform. A related question that is still debated deals with the acquisition of 
genetic material from bacteria to archaea, and vice versa. It was suggested that several archaeal species evolved 
thanks to a large number of HGT events that occurred during a very short period of time44,68. However, the find-
ings in these papers were challenged by other researchers69,70. Analyzing quartets comprised of 2 archaea and 2 
bacteria, especially the ones that do not agree with the plurality quartets, may reveal evidence to support either 
side of the debate: if the hypotheses of44,68 regarding ancient HGT are correct, then these quartets should induce 
the same compartmentation on all descendant species. However, Though this is beyond the scope of this paper.

conclusions
In this work we discuss trends of horizontal gene transfers (HGTs) in the prokaryotic world. We present evidence 
suggesting the existence of a barrier against HGT between the archaea and the bacteria, making successful HGT 
events between the two domains relatively rare. By comparison, our findings imply that HGTs involving two 
archaea are moderately common and HGTs involving two bacteria are the most common. We rely mainly on 
the concept of quartet plurality distribution (QPD32), which enables us to combine information about quartet 
topologies from an aggregate of gene trees. We reach our conclusions through the analysis of real data QPDs and 
comparisons to simulations of different models of uniform and biased HGTs. In addition, RIATA-HGT is used to 
corroborate our results in an independent analysis. Finally, though a substantial portion of the plurality quartets 
derived from the gene trees in our study support a weak tree signal, we show that a strong tree-signal of evolution 
persists by constructing phylogenies that satisfy approximately 90% of the plurality quartets and achieve scores 
that are comparable to (and often better than) other hypothesized phylogenies in a number of tests.

Finally, we note that the quest for the causes for this non-uniform HGT pattern that we and others have 
pointed, and in particular the archaea-bacteria barrier, is intriguing and deserves independent research. 
Nevertheless, this question is significantly harder as it involves species and conditions that do not necessarily 
exist at present time.
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Methods
Definitions. We now define several terms used in the paper. These are quite standard and can be found at 
e.g.33,48 but are presented here for completeness.

Phylogenetic trees. For a set of species (denoted taxa) X , a phylogenetic X -tree t is a tree for which there is a one 
to one correspondence between X  and the set of leaves of t. The removal of an edge (or a branch) from the tree 
disconnects the tree into two subtrees and hence induces a split on the set of taxa. Every unrooted tree is uniquely 
defined by its collection of induced tree splits. The split XU U( , \ ) that is identified by the edge e is denoted as eU 
or e U\X  alternatively. Let t be an X -tree and ⊆A X  be a subset of the leaves of t. We denote by 

At  the subtree that 
is induced by A on t and is obtained as follows: First, all the leaves in X A\ , as well as paths leading exclusively to 
them, are removed. Next all internal nodes (necessarily in paths connecting leaves from A) with degree two are 
contracted.

Quartets and unrooted trees. A Tree t is rooted if all edges are directed away from a given node, the root. When 
edges are undirected and there are no ancestor-descendant relationships between the nodes, the tree is unrooted. 
In this work we deal with unrooted trees. In this context, the basic unit of information is a tree with four taxa, a 
quartet tree. A quartet tree with taxa {a, b, c, d} is denoted a, b|c, d if a split ({a, b}, {c, d}) is induced by one of the 
tree’s edges. More generally, a quartet q = a, b|c, d is satisfied by a tree t if t has a split separating a, b from c, d (see 
Fig. 10).

Quartet plurality score and QPD. For a given set of four taxa, say a, b, c, d, different quartets may be induced by 
different gene trees. For example, we assume that a, b|c, d is induced by 45% of the gene trees, a, c|b, d is induced 
be 30%, and a, d|b, c is induced by 25%. The plurality quartet is defined as the quartets that is induced the greatest 
number of times, and the plurality score of a quartet is defined as the percentage of trees inducing the plurality 
quartet. In our example, a, b|c, d is the plurality quartet and its plurality score is 45%. We note that unresolved 
quartets are discounted in this computation. When examining a collection of gene trees, and the accompanying 
collection of species, each 4-taxon set has its own plurality score. Thus, a collection of plurality scores may be 
constructed. The probability distribution of this collection of plurality scores is defined as the Quartet plurality 
distribution, or QPD.

Characters and perfect trees. Given a set of leaves L, a character on L is a partition of L, i.e., a division of L into 
disjoint subsets. Each of the subsets in a given character is called a state. We say that a tree t with leaves L is perfect 
with respect to a character c (equivalently, t displays c) if for every two states r1 and r2 in c, the leaves having states 
r1 and r2 induce two disjoint subtrees of t. Informally, a perfect tree is a tree that induces a perfect separation 
between the states of the character in question. We remark that a tree may be perfect even if all the leaves belong-
ing to a specific state do not form a clade. A set of characters is called compatible if there exists a tree which dis-
plays them all simultaneously. Determining if a given collection of characters is compatible or not is called the 
perfect phylogeny problem (or character compatibility problem). It is, in general, NP-complete71.

Qfit. The Quartet fit tree similarity measure (72, Qfit for short) is a measure that receives two trees and computes 
the number of quartets shared by them, relative to the total number of induced quartets. In this paper we use a 
variant of this measure that was first introduced in48: for two trees t1, t2 we define 

=
−
+

t t g b
g b

Qfit( , ) 2
2 (1)1 2

 where g is the number of quartets for which the two trees induce the same topology shared by the two trees, and 
b is the number of quartets for which the two trees induce different topologies that are not (more precisely, the 
number of 4-taxa sets that appear in both trees but with different quartet topologies) Notice that we ignore A 

Figure 10. A toy example of quartets: Quartets 1, 2|3, 4 and 1, 4|3, 5 on the right are satisfied by the larger tree 
on the left.
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quartet is ignored if one of its leaves is absent from one of the trees, or if its quartet topology is unresolved, i.e. a 
star topology. We note that according to this definition of Qfit, the mean Qfit score of two randomly chosen trees 
is zero (see48). One can apply Eq. (1) to find the Qfit similarity score between a set of quartets and a tree in an 
obvious way.

RF similarity. The Robinson-Foulds symmetric difference (73, RF for short) measures the distance between two 
trees by counting the number of different non-trivial splits in those trees, and dividing it by the total number of 
non-trivial tree splits. We were interested in tree similarity, and therefore counted the number of non-trivial splits 
shared by the two trees in question.

Data and software. Real data trees were taken from18 for our analysis. A total of 6901 gene trees were ana-
lyzed, based on 100 species of prokaryotes (41 archaea and 59 bacteria). The full list of species is found in18 and is 
also provided in S1 table for completeness. For the simulation study, we used our own scripts to create simulated 
species trees and simulated gene trees. Qfit was calculated using our own script, RF similarity was calculated using 
Phylip74. Determining if a tree was perfect with respect to a given character was done using our own script. Tree 
reconstruction was done using wQMC48.

Simulations. The underlying assumptions that dictated the generation of each gene tree in the uniform HGT 
simulations were: (1) the total number of HGT events impacting a given gene is a Poisson distributed random 
variable with parameter λL, where L is the combined length of the species tree’s branches and λ (defined by the 
user) is the “rate” of HGT events, (2) the recipients of genetic material are randomly distributed on the species 
tree, and (3) the donors of genetic material of each HGT event are chosen at random from the group of species 
contemporaneous with the recipient species. Assumptions (1) and (2) are derived from assuming that the time 
between two subsequent HGT events in each lineage is an exponential random variable of parameter 1/λ (much 
like speciation events along a lineage in the Yule model75).

In the biased HGT model, gene trees were generated such that donors and recipients of genetic material were 
chosen using the random HGT model with an HGT rate of 1.0 (equivalent to an average of one HGT event per 
one unit length on the species tree). However, an SPR operation (Subtree Pruning and Regrafting) was carried out 
at a lower probability, depending on the intra-domain and inter-domain HGT rates. For example, given a pair of 
two bacteria chosen as the recipient and donor of an HGT event, and assuming that the intra-bacteria HGT rate 
is 0.4, the probability of this HGT event to take place is 40%. HGT rates were divided into four categories: archaea 
to archaea; archaea to bacteria; bacteria to archaea; bacteria to bacteria. For intra-archaea or intra-bacteria HGTs, 
the HGT rate varied from 0.2 to 0.8 in increments of 0.2. For inter-domain HGTs (either from the archaea to the 
bacteria or vice versa), the HGT rate was either 0.1 or 0.4. Thus, a total of 64 groups of gene trees were generated 
for each species tree, differing in their sets of HGT rates. The simulation procedure is described in full in S1 file, 
Appendix A.

Preparing the input to wQMC. As detailed in Section 2.2.1, wQMC is a supertree heuristic that receives 
a collection of weighted quartet trees as input, and amalgamates those quartets into a single unified tree. Branch 
lengths in the wQMC output tree are undetermined. We now elaborate more on this procedure: Let us assume 
we want to assign topology and weight to a given 4-taxon set {a, b, c, d}. It is easy to see that there may be three 
different quartet topologies based on this 4-taxaset, namely a, b|c, d, a, c|b, d, and a, d|b, c. We denote these three 
topologies as q1, q2, and q3 respectively. We assume that among all gene trees examined, N1 trees induce the 
topology q1, and similarly N2 (N3) trees induce the topology q2 (q3). If, without loss of generality, N1 ≥ N2, N3, 
then a, b|c, d is chosen as the quartet topology, and its weight is set to N1. This weighting scheme is justified by the 
theoretical work of41.

Data availability
All data generated or analyzed during this study are included in this published article, and in the supporting files 
of the following previously published paper: P. Puigbò, Y.I. Wolf, and E.V. Koonin. Search for a ‘tree of life’ in the 
thicket of the phylogenetic forest. J Biol, 8(6):59, 2009. ISSN 1475-4924. https://doi.org/10.1186/jbiol159. http://
jbiol.com/content/8/6/59.
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