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A B S T R A C T

The anatomical connectivity constrains but does not fully determine functional connectivity, especially when
one explores into the dynamics over the course of a trial. Therefore, an enriched granger causal model (GCM)
integrated with anatomical prior information is proposed in this study, to describe the dynamic effective con-
nectivity to distinguish the depression and explore the pathogenesis of depression. In the proposed frame, the
anatomical information was converted via an optimized transformation model, which was then integrated into
the normal GCM by variational bayesian model. Magnetoencephalography (MEG) signals and diffusion tensor
imaging (DTI) of 24 depressive patients and 24 matched controls were utilized for performance comparison.
Together with the sliding windowed MEG signals under sad facial stimuli, the enriched GCM was applied to
calculate the regional-pair dynamic effective connectivity, which were repeatedly sifted via feature selection and
fed into different classifiers. From the aspects of model errors and recognition accuracy rates, results supported
the superiority of the enriched GCM with anatomical priors over the normal GCM. For the effective connectivity
with anatomical priors, the best subject discrimination accuracy of SVM was 85.42% (the sensitivity was 87.50%
and the specificity was 83.33%). Furthermore, discriminative feature analysis suggested that the enriched GCM
that detect the variable anatomical constraint on function could better detect more stringent and less dynamic
brain function in depression. The proposed approach is valuable in dynamic functional dysfunction exploration
in depression and could be useful for depression recognition.

1. Introduction

The human brain is a complex network of structurally and func-
tionally interconnected regions. How anatomical connectivity con-
strains dynamic effective connectivity is under exploration, which
could also help to recognize abnormal dynamics and predict mental
disorders.

Along with the advances in the neuroimaging techniques and
multimodal imaging analyses, researchers had introduced some con-
ception and had much exploration about the combination of function
and structure (Zhang et al., 2011; Dyrba et al., 2015; Henson et al.,
2016; Vecchio et al., 2016; Ruddy et al., 2017; Zhigalov et al., 2017).
The functional connectivity represented temporal coherence of brain
regions, and anatomical connectivity measured anatomical integrity of
white matter tracts, the material backbone for communication between

brain regions (Catani et al., 2002). The anatomical connectivity data
was used to simulate the brain function and explored how network
structure produces functional neural activity (Honey et al., 2007).
Polysynaptic structural connections enabled functional connections
(Stephan et al., 2009) and functional connectivity reflected a dyna-
mical process taking place on anatomical connectivity (Pereda et al.,
2005), which resulted in a complex relationship between functional
and anatomical connectivity (Stephan et al., 2009). The susceptible-
infected-susceptible model was used to discovery that functional re-
lations between nodes of a realistic anatomical network display clear
patterns (Stam et al., 2016). Conversely, functional connectivity ex-
erted effects on anatomical connectivity through mechanisms of plas-
ticity (Hagmann et al., 2010). The structural networks constrained
dynamical processes and functional processes might shape the under-
lying structure in their turn (Shew and Plenz, 2013). Although
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anatomical and effective connectivity were integrated to a certain ex-
tent, a better method of anatomical-effective integration could help to
predict how changes in brain network structure can give rise to ab-
normal dynamics and disease (Kaiser, 2013; van Dellen et al., 2013;
Meng et al., 2017).

Studies had found that the function-structure relations could be
reconfigured under physiological (Hagmann et al., 2010; Sui et al.,
2014), or pathological states (Zhang et al., 2011; Cocchi et al., 2014).
The multimodal combination achieved higher prediction accuracy and
enabled individualized prediction on multiple clinical measures in
psychiatry (Meng et al., 2017), including depression (Sui et al., 2014).
When processing negative stimuli, aberrant structural and functional
networks were reported in subcortical area in depression (Wong et al.,
2016). Both decreased functional and structural connectivity were
showed between default mode network and cingulo-opercular net-
work in depression (Yin et al., 2016). Depression patients had sig-
nificant lower fractional anisotropy (FA) values in the fornix, as well
as decreased functional connectivity in PFC (Geng et al., 2016). In our
previous MEG study, the depression could be recognized by func-
tional-structural coupling when the functional connectivity increased
rapidly between salience network and ventral attention network via a
dynamic change point detection strategy (Bi et al., 2016). Those
emerged studies supported the fact that quantification of the disrupted
dynamics might help better understand the cause of disorder, more
targeted drug treatment, and diagnostic or prognostic indicators
(Cribben et al., 2012; Hutchison et al., 2013) However, there is still no
model about how detailed quantitative knowledge of anatomical
connectivity affecting the dynamic functional/effective connectivity
in depression.

Some abnormal effective connectivities were found in depression.
(Musgrove et al., 2015; Li et al., 2017; Zheng et al., 2017; Geng et al.,
2018; Kandilarova et al., 2018; Rolls et al., 2018). The granger causal
model (GCM) and dynamic causal model (DCM) were the most popular
methods to investigate the depression in MEG. In our previous MEG
study, the Granger causality model was used to identify the depression
patients and achieved high accuracy (Lu et al., 2013a, 2013b). Another
previous MEG study using DCM showed that the effective connectivity
from the dorsolateral prefrontal cortex (DLPFC) to the amygdala was
greatly impaired and the effective connectivity from the amygdala to
the anterior cingulate cortex (ACC) as well as effective connectivity
from ACC to DLPFC was significantly increased (Lu et al., 2012). In an
MEG study for ketamine-mediated response, MDD subjects showed
enhanced connectivity estimates in backward connections, and con-
trols showing enhanced connectivity estimates in forward connections
by DCM (Gilbert et al., 2018). However, how the anatomical prior
affects the effective connectivity for depression in MEG remains to be
explored.

In this study, an enriched GCM integrated with anatomical prior
information was presented to calculate the dynamic effective con-
nectivity between core emotional regions under sad emotional facial
stimuli and MEG scanning, in order to distinguish the depression. The
amygdala, dorsolateral prefrontal cortex (DLPFC) and anterior cingu-
late cortex (ACC) were selected as the core emotional regions. The GCM
was used for effective connectivity analysis between regions and was on
data driven, which less affected by the hypothesis of physiological
model. The anatomical connectivity that provided by tractography was
constructed on DTI data as prior information. A transformation model
was designed to convert the anatomical priors in a form of parameters
in the enriched GCM. Together with the sliding windows over regional
signals, the enriched GCM with the anatomical priors was applied to
calculate the regional-pair dynamic effective connectivities, which were
fed into classifiers for depression recognition. Furthermore, the anato-
mical connectivity and effective connectivity calculated by the normal
GCM without anatomical priors were utilized for depression recognition
separately as a performance comparison.

2. Methods and materials

2.1. Subjects

Twenty-four right-handed depression subjects (12 females) with an
age range of 20–45 (mean, 33.2 ± 9.0 years) and educational level
range of 10–18 (mean, 13.4 ± 2.5 years) were recruited from in-pa-
tient facilities at the Brain Hospital affiliated with Nanjing Medical
University. The Brief Psychiatric Rating Scale (BPRS), the Structured
Clinical Interview for the Diagnostic and Statistical Manual of Mental
Disorders-IV (SCID) and the Hamilton Depressive Rating Scale (HDRS)
were included in the eligibility screening procedures. The initial diag-
noses of depression was made by the participants' treating psychiatrists
and confirmed by an expert psychiatrist according to SCID. Depression
subjects were included with HRDS scores> 21 on the day of scanning.
Patients without other psychiatric illnesses were enrolled and currently
taking no medications.

Twenty-four healthy control participants matched in gender (12
females), age (range of 21–44, mean, 31.8 ± 7.7 years) and educa-
tional level (range of 12–18, mean, 14.5 ± 2.0 years) participated in
this study. They all didn't have any psychiatric illness presently or a
history of psychiatric illness.

All subjects were satisfied the criteria to undergo a MEG scan. The
study was approved by the Research Ethics Review Committee of the
Brain Hospital affiliated with Nanjing Medical University. Written in-
formed consents were obtained from all subjects. The demographic
information for all subjects was provided in Table 1.

2.2. Sad facial affect recognition task and data acquisition

A facial expression paradigm was undertaken in this study. A series
pictures were utilized to evoke stronger activity contrast. The emotional
pictures included three conditions, neutral, sad and rest, where a fixa-
tion cross was displayed. Each condition had 40 trials and each lasted
for 3 s, followed by a blank screen during the variable stimulus interval
of 0.5 s, 1 s or 1.5 s. When scanned, the subjects were asked to identify
whether the stimuli was sad or not by right hand click.

MEG data was recorded at a sampling rate of 1200 Hz using an
Omega 2000 device of 275 channels placed in a magnetically shielded
room (MSR), which provided a considerable amount of shielding from
noise and interference.

DTI data and T1-weighted axial images were acquired using a
Siemens Verio 3 T MRI scanner. The parameters for T1-weighted axial
images were repetition time/echo time (TR/TE) =1900/2.48ms,
thickness/gap=1.0/0mm, matrix= 256×256×192, field of view
(FOV)=240×240mm2, voxel size= 1×1×1mm3. The following
parameters were used for DTI scans, diffusion was measured along 30
non-collinear directions (b value=1000s/mm2), TR/TE=6600ms/

Table 1
Demographic and clinical characteristics of the subjects.a

Variables Depression HC P-value

Sample size 24 24 –
Gender(male/female) 12/12 12/12 P > 0.999b

Age(years) 20–45(33.2 ± 9.0) 21–44(31.8 ± 7.7) 0.327c

Education(years) 10–18(13.4 ± 2.5) 12–18(14.5 ± 2.0) 0.114c

Handedness(right/left) 24/0 24/0 –
Score of 17-item HDRS 28.40 ± 3.75 – –
Number of previous

episodes
1.38 ± 0.64 – –

Duration of illness
(months)

4.04 ± 2.09 – –

a Data were presented as the range of minimum-maximum (mean ± SD).
HC=healthy controls.

b The P value was obtained by two-tailed Pearson chi-square test.
c The P value was obtained by two-sample two-tailed t-test.
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93ms, FOV=240mm×240mm, Matrix= 128×128×45, voxel
size= 1.875×1.875×3mm3.

2.3. MEG and DTI data preprocessing

The MEG data were preprocessed with the SPM8 toolbox (www.fil.
ion.ucl.ac.uk/spm). We divided the MEG recording into epochs from
-100ms to 900ms. The interval from −100ms to 0ms was used for a
baseline correction. The data were band-pass filtered from 1 to 48 Hz.
Artifact detection was taken with a threshold of 2× 10−12 Tesla for all
channels. None was marked as bad channel and excluded from further
analysis since<10% trials were detected as artifacts. Finally, the trials
under sad stimuli were averaged for each participant. Distributed
source reconstruction of MEG data was via SPM8. The subjects' T1-
weighted MRIs were segmented and the linear transformation matrices
from individual anatomical space to the template space were calcu-
lated. The minimum-norm estimation algorithm was selected in the
source reconstruction (Dale et al., 2000; Jensen and Hesse, 2010) and
the evoked activity for each voxel was extracted.

DTI preprocessing was computed using FMRIB's Diffusion Toolbox
(FSL, http://www.fmrib.ox.ac.uk/fsl/fdt/index.html). The eddy current
distortions and motion artifacts were corrected by applying a rigid-body
transformation of each diffusion-weighted image to the b0 image. To
enable group comparison, the diffusion images were registered to MNI-
152 space using a 12-parameter affine transform (Jenkinson et al.,
2002). Diffusion toolkit (http://www.trackvis.org) toolbox was em-
ployed for fiber tract reconstruction. 30 fibers were initiated in a voxel
(Cheng et al., 2012). The starting points were chosen spatially at
random within the voxel where the FA value was> 0.3 (Thottakara
et al., 2006). The tracking procedure was terminated at voxels with an
FA value of< 0.15 or when the angle between adjacent steps was> 45°
(Thottakara et al., 2006).

2.4. Regions of interest selection

Brain imaging studies in depression have proved that abnormalities
in prefrontal-limbic circuit, particularly in the amygdala, ACC and
DLPFC, were closely associated with dysfunctions of emotion proces-
sing (Davidson et al., 2002; Wackerhagen et al., 2017). It could be a
good explanation that the DLPFC was critically engaged in cognitive
regulation of emotion, and the ACC was a bridge between emotion and
attention, particularly the amygdala was a core structure for automatic
appraisal and emotion generation (Davidson et al., 2002; Klumpp et al.,
2017).

As a result, we defined these three emotional regions of interest
(ROIs), including the amygdala, DLPFC and ACC for further study.
Anatomical ROIs masks were obtained from the Anatomical Automated
Labeling (AAL) library for above three regions in the Marsbar toolbox
(http://marsbar.sourceforge.net/).

2.5. Enriched effective connectivity with anatomical information

An enriched GCM integrated with anatomical prior information was
presented to calculate the effective connectivity. The multivariate au-
toregressive (MAR) model in normal GCM was optimized by anatomical
priors to establish the enriched GCM to investigate the effective con-
nectivity. The anatomical connectivity that provided by tractography
was constructed on DTI data as prior information. The enriched GCM
with the static anatomical priors was applied to calculate the regional-
pair effective connectivity.

2.5.1. Enriched GCM via a variational bayesian model
According to the definition of normal conditional GCM (Granger,

1969; Granger, 1980), in the multi-variable system, variables X1,
X2,⋯Xnsatisfied certain conditions. Variable X1 granger caused variable,
if the value of variable predicted with X1, X2,⋯Xnwas better than the

prediction of variableX1, X3,⋯Xn. Moreover, conditional GCM could be
measured that the influence of X1 on X2 was tested in the context of
multiple additional variablesX3, X4, ⋯, Xn. The stationary time
seriesX1(t), X2(t), ⋯Xn(t) could be modeled as:

= +
= =

X t A k X t k t( ) ( ) ( ) ( )i
j

n

k

p
ij j i

1 1 (1)

Where p was the order of the model, A was the MAR coefficient
matrix and εi(t) (i=1,2, …,n) was additive Gaussian noise with zero
mean.

If Xq(t)was removed, the time series Xm(t) which was predicted with
other time series could also be modeled via:
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B was the multivariate autoregressive (MAR) coefficient matrix and
ηm(k) was additive Gaussian noise with zero mean. Hence, the influence
of conditional granger causality from Xq(t) to Xm(t) could be defined as:
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The MAR model of GCM in (1) and (2) could be simplified to the
linear form of Y= XW+ E to investigate whether one time series X
could correctly forecast another Y. W was the coefficient matrix of the
MAR model and under further optimization; E was the zero-mean
gaussian white noise with precision matrixΛ. Since the anatomical
connectivity constrains but does not determine effective connectivity, a
variational bayesian model (Roberts and Penny, 2002) was integrated
into above normal GCM to construct an enriched GCM with anatomical
priors. This allows different data points to be associated with different
noise levels and effectively provides robust estimation of MAR coeffi-
cients. The variational bayesian model is used to prevent over-fitting
and provides model-order selection criteria. Coefficient matrix W was
transformed into a vectorw, which obeyed a gauss distributionN
(0,Σij= αij−1). The anatomical connectivity information and the prior
probability variance of GCM parameter w were connected by the fol-
lowing transformation model (Stephan et al., 2009).

=
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= =
+e e1
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0ij ij (4)

Among them, sij was the normalized anatomical connectivity be-
tween region i and j, Σ0,b, cwere the adjustable parameters of the model
that would be optimized in the follow-up bayesian learning, in order to
reasonably reflect how the anatomical connectivity partly constrained
the effective connectivity.

A generic formulation was used to model a variety of different re-
lationships between the likelihood of anatomical connectivity and the
prior variance of the coefficient matrixW. The different transformation
models were compared and selected by the criterion of negative free-
energy.

2.5.2. Anatomical connectivity and transformation model
The anatomical connectivity was calculated between any two re-

gions. (The details were shown in supplementary 1.1) As the effective
connectivity was constrained by the anatomical connectivity to a cer-
tain extent, the anatomical connectivity was used to design the
parameters of GCM by a transformation model. A series of anatomical
transformation models were designed, each containing a different
mathematical mapping between the anatomical connectivity sij and the
prior variance Σij of the GCM parameter w (Stephan et al., 2009) in the
form of (4). The larger prior variance Σij might reflect a larger variation
range of the corresponding effective connectivity, which caused by
increased anatomical connectivity. On the contrary, smaller prior var-
iance Σij might mean smaller variation range of the effective con-
nectivity that caused by decreased anatomical connectivity. The

K. Bi et al. NeuroImage: Clinical 21 (2019) 101592

3

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fmrib.ox.ac.uk/fsl/fdt/index.html
http://www.trackvis.org/
http://marsbar.sourceforge.net/
http://fanyi.baidu.com/writing/s?query=平稳时间序列
http://fanyi.baidu.com/writing/s?query=平稳时间序列
http://dict.cn/coupling%20parameter


transformation model was established to describe the relationship be-
tween anatomical connectivity and parameters of the enriched GCM.

The best transformation model was selected by the largest negative
free-energy F(θ)with the change of parametersΣ0,b, c in section 2.5.3.
We fixed the upper bound hyperparameter Σ0 to unity and optimize the
remaining hyperparameters with respect to the model evidence by
searching over the model space, where each model had different values
of b and c.

2.5.3. Parameter optimization within the enriched GCM
The θ={w,α,Λ} was optimized by anatomical priors and solved by

an algorithm like Expectation-Maximization algorithm (Moon, 1996).
Any two parameters of θ were fixed to regulate the rest parameter and
made F(θ) maximum, and the steps were repeated for all permutations
of parameters. The iterations of these steps were continued until the
optimization of the model was converged. The iterated steps of the
algorithm were showed in supplementary 1.3.

2.6. Discriminative analysis with connectivity information

The time series of ROIs that selected in section 2.4 were extracted
and principal component analysis (PCA) was performed independently
for dimensionality reduction, ensuring that> 95% signal information
was retained. Then, the time series of each region were separated via
sequential time windows of 100ms each with 20ms overlap from 0 to
900ms. For the normal GCM and enriched GCM, each subject had an
M×N effective connectivity matrix, the number of sliding window M
was 41 and the number of effective connectivity in one window N was
6. So each subject had 246 effective connectivity with anatomical prior,
246 effective connectivity without anatomical prior and 3 anatomical
connectivity.

Within each time window of each subject, the orders of MAR model
p for the enriched GCM were selected by the bayesian information
criterion (BIC) and the akaike information criterion (AIC). The Fisher's
z-values transformation was applied on the calculated effective con-
nectivity and then a temporal effective connectivity matrix over regions
was achieved to discriminate the depression from the healthy.

Features of connectivity were repeatedly sifted via minimum re-
dundancy-maximum relevance (mRMR) feature selection algorithm
(Ding and Peng, 2005) to reduce the dimension. The mRMR reduced
mutual redundancy and determined maximum relevance within the
features. The concept of mutual information defined the relevance and
redundancy of the features. The computational cost was reduced by
dimension reduction and the classification accuracy was improved by
noise reduction. Then, the mRMR selected features were fed into the
classifier for depression recognition. All the procedures of feature se-
lection and classification were integrated in a leave-one-out cross va-
lidation scheme. The support vector machine (SVM), k-Nearest
Neighbor (KNN), Nearest Mean Classifier (NMC), Linear Discriminate
Analysis (LDA), Naïve Bayes Classifier (NBC) and Logistic Regression
(LR) in the toolbox of PRtools (http://prtools.org/) were applied for
performance comparison separately.

In order to investigate whether the enriched GCM is improved by
the anatomical connectivity, the calculation with the sliding windows
and discriminative analysis were repeated again for the effective con-
nectivity without anatomical priors. Meanwhile, the discriminative
analysis was repeated again for anatomical connectivity to estimate the
influence of anatomical connectivity for depression recognition.

The normal vector of the classification hyperplane in SVM was used
to analysis the contribution rates of discriminating elements. A per-
mutation test was performed to compute the significance of these
contribution rates. The original weights of discriminating features were
computed for the original group labeling. For each resampling, the
group labels were randomly rearranged and the weights were re-com-
puted for the permuted data. The random rearrangement of group la-
bels was repeated until a predefined number of resampling had been

performed. The hypothesis was accepted or rejected based on the pro-
portion of permuted weights equal to or greater than the original. Using
the real sample label, the discriminating vectors highlighted that the
effective connectivity showed the most distinctive characteristics be-
tween depression patients and healthy controls.

3. Results

3.1. The selection of transformation models and the comparison between
normal GCM and enriched GCM

With the largest negative free-energy value, model 53 illustrated in
Fig. 1(b) was selected, where b=4, c= 12 (The details were shown in
supplementary 2). The order of multivariate autoregressive model p for
GCMs was selected by model evidence. The model evidence was defined
by the values of BIC and AIC together. As shown in Fig. 1, the model
evidence of GCMs reached minimal when the model order p was set as
two. The model evidence of enriched GCM with anatomical priors was
significantly smaller than that of the normal GCM, suggesting that the
model error of the enriched GCM with anatomical priors was sig-
nificantly small.

3.2. Discriminative analysis

Using the regional-pair dynamic functional connectivity proposed as
above, different classifiers together with feature selection of an mRMR
framework were applied to predict the patients with depression. The
discriminative analysis was repeated for the model of anatomical con-
nectivity and two models of effective connectivity with/without ana-
tomical priors respectively. For the model of effective connectivity with
anatomical priors, the best subject discrimination accuracy of SVM was
85.42% with a significance of P= .009 (the sensitivity was 87.50% and
the specificity was 83.33%), while the best subject discrimination ac-
curacy of SVM was 79.19% with a significance of P= .013 (the sensi-
tivity was 75.00% and the specificity was 83.33%) for the model of
effective connectivity without anatomical priors. The best results for
enriched GCM and normal GCM were both based in SVM.

The highest accuracy of the enriched GCM with anatomical priors in
each classifier was higher than that without anatomical priors. Except
NBC whose performance was fair, the recognition accuracy of enriched
GCM with anatomical priors were high above 70% in all classifiers,

Fig. 1. Model evidence values for the enriched GCM with anatomical priors and
normal GCM along with the variation of the model order. From left to right,
four different colors represented BIC values of the normal GCM (BIC-nGCM),
AIC values of the normal GCM (AIC-nGCM), BIC values of the enriched GCM
(BIC-eGCM) and AIC values of the enriched GCM (AIC-eGCM).
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while the accuracy of normal GCM without anatomical priors were just
above 60% in all classifiers. In addition, the accuracy of the model of
anatomical connectivity was low in all classifiers. The results were
summarized in Table 2. Fig. 2 compared the classification performance
classifiers with different number setting of selected features, suggesting
the superiority of the model of effective connectivity with anatomical
priors over that without in anatomical priors in individual recognition.

The normal vector of the classification hyperplane in SVM was used
to analysis the contribution rates of discriminating elements. Among
them, the most important discriminative features in the enriched GCM
with anatomical priors were amygdala to DLPFC during the time period
of 120-220ms with a discriminative vector value being −0.8368
(P= .006) and DLPFC to ACC during the time period of 480-580ms
with a discriminative vector value being 0.8175 (P= .009). In addition,

Table 2
Prediction performance of the classifiers based on the model of anatomical connectivity or two models of effective connectivity.

The type of connectivity Classifier Classification performance

Accuracy Sensitivity Specificity P-value Number of features

Anatomical connectivity SVM 52.08% 50.00% 54.17% 0.371 2
KNN 37.50% 33.33% 41.67% 0.422 3
NMC 43.75% 45.83% 41.67% 0.415 3
LDA 47.92% 45.83% 50.00% 0.396 3
NBC 41.67% 41.67% 41.67% 0.483 3
LR 47.92% 45.83% 50.00% 0.337 2

Effective connectivity without anatomical priors SVM 79.19% 75.00% 83.33% 0.013 41
KNN 60.42% 75.00% 45.83% 0.157 28
NMC 64.58% 70.83% 58.33% 0.135 47
LDA 72.92% 75.00% 70.83% 0.041 32
NBC 58.33% 70.83% 41.67% 0.202 40,41
LR 70.83% 70.83% 70.83% 0.052 34

Effective connectivity with anatomical priors SVM 85.42% 87.50% 83.33% 0.009 36,37,38
KNN 70.83% 70.83% 70.83% 0.034 38
NMC 72.92% 87.50% 58.33% 0.047 29
LDA 79.19% 75.00% 83.33% 0.027 45
NBC 64.58% 75.00% 54.17% 0.096 28
LR 79.19% 75.00% 83.33% 0.024 31,32,33

Accuracy: the proportion of subjects correctly predicted; Sensitivity: the proportion of patients correctly predicted; Specificity: the proportion of controls correctly
predicted; Number of features: number of mRMR selected features when achieving the highest prediction accuracy.

Fig. 2. Classification performance comparison with different number of selected features for two types of GCMs based on different classifiers. The red lines refer to
the results of enriched GCM with anatomical priors and the blue lines represent the results of normal GCM. The left subplots were the enlarged details when the
classifiers for the enriched GCM with anatomical prior achieved the highest accuracies. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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the significant discriminative feature in the normal GCM without ana-
tomical priors was amygdala to DLPFC during the time period of 120-
220ms with a discriminative vector value being −0.7014 (P= .016).

4. Discussion

The enriched GCM in this study was established to better investigate
the dynamic effective connectivity with anatomical priors under sad
facial stimuli. Dynamic effective connectivity reflected a dynamical
process taking place on anatomical connectivity (Pereda et al., 2005).
The results suggested that the enriched algorithm could better distin-
guish the depression and explore the pathogenesis of depression.

4.1. Transformation model for anatomical information

The results suggested that the strength of the effective connectivity
were consistent with the strength of anatomical connectivity. However,
the strong functional connectivity might occur between the regions that
had weak anatomical connectivity (Stephan et al., 2009). Evidence
from empirical studies suggested that the presence of a direct anato-
mical connection between two brain areas was associated with stronger
functional interactions between these two areas (Honey et al., 2007;
Hermundstad et al., 2013). It was shown that strong correlation be-
tween effective connectivity and anatomical connectivity occurred in
the resting-state networks (Greicius et al., 2009). However, the strong
effective connectivity could appear between the regions that had no
anatomical connectivity (Koch et al., 2002; Stephan et al., 2009; Deco
et al., 2013). It was clear that the anatomical connectivity would not
predict the brain's functional integration (Ghosh et al., 2008), but it
might provide an important constraint (Stephan et al., 2008). The
physiological and anatomical studies had shown that anatomical con-
nectivity provided critical constraints on effective connectivity (Deco
et al., 2013; Hermundstad et al., 2013; Kaiser, 2013; van Dellen et al.,
2013). To summarize, the relation between anatomical and functional
connectivity did not follow a simple rule but varied considerably across
regions (Koch et al., 2002) as well as could be analyzed within a single
mathematical framework (Jbabdi et al., 2007) or simple dynamical
systems (Stam et al., 2016) to a certain extent.

4.2. Superiority of the enriched GCM over the normal GCM

The model evidences of normal and enriched GCM both reached
minimal when the model order p was set as two, leading to a low model
complexity that suitable for effective connectivity estimation contained
via three regions. The model evidences of enriched GCM with anato-
mical priors were significantly smaller than those of normal GCM under
any model order setting, suggesting that the model error of enriched
GCM was decreased significantly owing to the integration of anatomical
priors. The significant decreased model error suggested that the stabi-
lity and accuracy of enriched GCM was greatly improved, proving the
validity and reliability of the enriched algorithm. This assumed that
quality of dynamic effective connectivity model should be improved by
incorporating anatomical prior knowledge. Such improvement was also
demonstrated from the studies elsewhere. Such as, Stephan introduced
anatomical connectivity as prior knowledge in dynamic causal model
and found that the model was improved by the anatomical connectivity
that used to constrain the range of coupling parameters of corre-
sponding regions (Stephan et al., 2009). Also, models for inferring ef-
fective connectivity from neuroimaging data have exploited existing
knowledge of anatomical connectivity to specify model structure
(Stephan et al., 2009; Hermundstad et al., 2013; Kaiser, 2013).

Furthermore, we investigated the effectiveness of the enriched al-
gorithm in depression recognition. The accuracies of all classifiers with
anatomical connectivity were low, which suggested that the anatomical
connectivity of ROIs could not distinguish the depression well.
However, it was clear that the model accuracies with anatomical priors

in each classifier were higher than the results without anatomical
priors, which suggested that static anatomical connectivity as priors
could improve the model of dynamic effective connectivity better. The
best accuracies for the enriched GCM and normal GCM were both in
SVM, which could solve small sample learning problems better
(Xuegong, 2000). The model with effective connectivity within anato-
mical priors outperformed when distinguishing depression patients
from healthy controls. Considering the accuracies of each classifier for
the enriched GCM and normal GCM, we suggested that features in the
enriched GCM with anatomical priors attributed valuable effort for
depression discrimination. This finding had potential implications for
improving the diagnosis of depression.

4.3. Effective connectivity with anatomical prior and depression

As the result, it was clear that static anatomical connectivity as
priors could improve the diagnosis of depression based on effective
connectivity. The effective connectivity represents temporal coherence
of brain regions and the anatomical connectivity measures anatomical
integrity of white matter tracts, the material backbone for commu-
nication between brain regions (Catani et al., 2002). The combination
of function and anatomy achieved higher prediction accuracy and en-
abled individualized prediction in depression (Sui et al., 2014). The
study of anatomical connectivity elucidated trait factors underlying
brain changes in major depressive disorder (Du et al., 2012). When
processing negative stimuli, aberrant functional and anatomical con-
nectivity were reported in subcortical area in depression (Wong et al.,
2016). A previous study suggested that the illness led to functional
interactions that are more directly related to the underlying anatomical
connectivity of the brain (van den Heuvel et al., 2013). In our previous
MEG study, the depression could be recognized by functional-structural
coupling when the functional connectivity increased rapidly via a dy-
namic change point detection strategy (Bi et al., 2016). Our finding
suggested that the anatomical prior in depression might be attributed to
the strength of the effective connectivity, and functional interactions
were related to the underlying anatomical connections, which was
consistent with our previous study(Bi et al., 2016). The result supported
that quantification of the anatomical prior might help better understand
the cause of depression and diagnostic indicators.

4.4. Significant discriminative vectors and depression

The discriminative vectors highlighted that the effective con-
nectivity showed the most distinctive characteristics between depres-
sion patients and healthy controls. The significant discriminative fea-
tures in the enriched GCM with anatomical priors were the decreased
effective connectivity from amygdala to DLPFC during the time period
of 120-220ms and the increased effective connectivity from DLPFC to
ACC during the time period of 480-580ms in depression. In addition,
the significant discriminative feature in the normal GCM without ana-
tomical priors was the decreased effective connectivity from amygdala
to DLPFC during the time period of 120-220ms. The attenuated
amygdala-prefrontal functional connectivity or effective connectivity
has been reported in depression (Johnstone et al., 2007; Dannlowski
et al., 2009; de Almeida et al., 2009; Erk et al., 2010; Philip et al.,
2017). Abnormal amygdala activity within 100ms after stimulus sug-
gested that depression patients might have dysfunctions or negativity
biases in perceptual binding of emotional features at very early stage
(Liu et al., 2014). We had the same results in depression patients with
those reports of the diminished amygdala-prefrontal connectivity
(Johnstone et al., 2007; de Almeida et al., 2009; Philip et al., 2017) and
corroborated the above mentioned abnormalities. Another significantly
enhanced effective connectivity was from DLPFC to ACC in the late
stage. In the stages about 500ms after stimulus onset, accompanying an
increase of the connectivity from ACC to prefrontal cortex under sad
stimulus, DLPFC would response to ACC's request and make a right
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decision to suppress the hyperactivity of amygdala (Yoshimura et al.,
2010). However, the powerless DLPFC might not response adequately
and caused this enhanced bottom-up information in depression (de
Bruijn et al., 2016; Wang et al., 2016). Then, we could suppose that the
impaired amygdala-prefrontal effect in early emotional processing
might cause the dysfunction in effective connectivity as a circular re-
action in depression. The enhanced DLPFC-ACC effect was caused by
the powerless DLPFC that failed to suppress the hyperactivity of
amygdala in late emotional processing in depression.

The effective connectivity from amygdala to DLPFC in 120-220ms
was found both in the classification of the models with and without
anatomical priors, but the effective connectivity from DLPFC to ACC in
480-580ms was not discovered in the normal GCM without anatomical
priors. The decreased effective connectivity of depression in the early
rising state of functional connectivity appeared repeatedly as significant
discriminative features in two types of GCM. The increased effective
connectivity of depression in the late falling state of functional con-
nectivity only appeared in the enriched GCM with anatomical priors.
The effective connectivity of depression was lower than that of healthy
control in acute rising state of functional connectivity, while the ef-
fective connectivity in patients was higher than that of healthy control
in acute falling state of functional connectivity. The results might be
indicative of more stringent and less dynamic brain function in patients
due to the constraint of structure on function in the acute abrupt var-
iation state of functional connectivity, which was consistent with our
previous study (Bi et al., 2016). It suggested that the enriched GCM
with anatomical priors could be more sensitive than the normal GCM to
detect the circuit dysfunction under dynamic functional connectivity
exploration.

4.5. Deep brain sources in MEG

The impact of sensor design on depth sensitivity in MEG is often
debated. To detect the very small magnetic fields of brain (Vrba and Se,
2001), the superconducting quantum interference device (SQUID)
coupled with flux transformers (or pick up coils) was used in an MSR to
increase the overall magnetic field sensitivity (Fagaly, 2006). The si-
mulation of MEG activation showed that the simulated MEG fields for
subcortical areas were 10 times lower than that for neocortex, but were
strong enough to overlap parts of the distribution of the MEG field,
especially for the amygdala (Attal et al., 2009; Attal et al., 2012; Attal
and Schwartz, 2013). Some studies suggested that under ideal condi-
tions, all sensor types of MEG may be able to detect deeper brain ac-
tivity, with a slight advantage for axial gradiometers with appropriate
baselines in presence of higher noise (Vrba and Se, 2001; da Silva,
2010). Our study used the CTF 275 with first order axial gradiometers
in MSR, so it helps detect deeper brain activity better. In addition, head
location was monitored to reduce head movement to increase the
sensitivity of signals. The limitation of deep source can be overcome by
averaging MEG over different trials. So we averaged all trials under sad
stimuli for each subject in the preprocessing. The activity of averaged
trials in the three regions of interest was shown in supplementary 4. The
obvious activities under sad stimuli were found in three regions of in-
terest. In recent several years, there were a lot of MEG studies contained
deep brain sources (Hipp et al., 2012; Lu et al., 2013a; Lu et al., 2013b;
Nugent et al., 2015; Backus et al., 2016; Bi et al., 2016; Hillebrand
et al., 2016; Nugent et al., 2016; Krishnaswamy et al., 2017; Bi et al.,
2018; Hall et al., 2018; Pu et al., 2018), especially in depression re-
search (Lu et al., 2013a, Lu et al., 2013b; Nugent et al., 2015; Bi et al.,
2016; Nugent et al., 2016; Bi et al., 2018).

5. Conclusion

In this study, the enriched GCM with anatomical priors was pro-
vided to better investigate the dynamic effective connectivity under sad
facial stimuli and showed a great applicability in exploring between-

regions influences. The results suggested that the enriched GCM in-
tegrated with the anatomical constraint on function was well. The
anatomical constraint on function was useful to explore dynamic
functional connectivity. The abnormal anatomical constraint on func-
tion occurs in depression, which makes the brain function more strin-
gent and less flexible. The result supported that quantification of the
anatomical prior into effective connectivity might help better under-
stand the cause of depression and diagnostic indicators. The proposed
approach is sensitive to detect the dynamic dysfunction by the in-
tegration of function and anatomy, such as depression, and may also be
valuable for other mental diseases.
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