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Achievement of complete remission signifies a crucial milestone in the therapy of acute myeloid leukemia (AML) while 
refractory disease is associated with dismal outcomes. Hence, accurately identifying patients at risk is essential to tailor 
treatment concepts individually to disease biology. We used nine machine learning (ML) models to predict complete 
remission and 2-year overall survival in a large multicenter cohort of 1,383 AML patients who received intensive induction 
therapy. Clinical, laboratory, cytogenetic and molecular genetic data were incorporated and our results were validated on 
an external multicenter cohort. Our ML models autonomously selected predictive features including established markers 
of favorable or adverse risk as well as identifying markers of so-far controversial relevance. De novo AML, extramedullary 
AML, double-mutated CEBPA, mutations of CEBPA-bZIP, NPM1, FLT3-ITD, ASXL1, RUNX1, SF3B1, IKZF1, TP53, and U2AF1, 
t(8;21), inv(16)/t(16;16), del(5)/del(5q), del(17)/del(17p), normal or complex karyotypes, age and hemoglobin concentration 
at initial diagnosis were statistically significant markers predictive of complete remission, while t(8;21), del(5)/del(5q), 
inv(16)/t(16;16), del(17)/del(17p), double-mutated CEBPA, CEBPA-bZIP, NPM1, FLT3-ITD, DNMT3A, SF3B1, U2AF1, and TP53 
mutations, age, white blood cell count, peripheral blast count, serum lactate dehydrogenase level and hemoglobin 
concentration at initial diagnosis as well as extramedullary manifestations were predictive for 2-year overall survival. For 
prediction of complete remission and 2-year overall survival areas under the receiver operating characteristic curves 
ranged between 0.77–0.86 and between 0.63–0.74, respectively in our test set, and between 0.71–0.80 and 0.65–0.75 in 
the external validation cohort. We demonstrated the feasibility of ML for risk stratification in AML as a model disease for 
hematologic neoplasms, using a scalable and reusable ML framework. Our study illustrates the clinical applicability of ML 
as a decision support system in hematology. 
 

Abstract 

Prediction of complete remission and survival in acute 
myeloid leukemia using supervised machine learning 
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Introduction 
Acute myeloid leukemia (AML) is the most common form 
of acute leukemia in adults and its incidence has been 
increasing in the past decades. The long-term survival 
rate of AML patients in the overall patient population is 
poor.1 Achievement of complete remission (CR) or com-
plete remission with incomplete hematologic recovery 
(CRi) signifies a crucial milestone in AML therapy as it is 
associated with significantly improved patient outcome.2 
For intermediate- and high-risk patients with good per-
formance status, allogeneic hematopoietic stem cell 
transplantation in first CR is a curative option.3 However, 
refractory disease is associated with dismal overall sur-
vival (OS) rates, and relapse and death are frequent in 
patients with primary refractory disease even after al-
logeneic hematopoietic stem cell transplantation.4 
Therefore, efforts have been made to establish predictive 
markers in order to identify patients at risk of primary 
treatment failure and predict reduced OS after intensive 
induction therapy. Potential predictors include patient 
age,5 high-risk cytogenetics such as complex karyotypes 
(≥3 abnormalities),6 and molecular genetics.7 However, 
most recent studies have been based on hypothesis-
driven models that require a priori a hypothesized con-
nection between selected variables to be tested on the 
given data.8 Machine learning (ML) is a branch of com-
puter science that can process large data sets for a 
plethora of purposes.9 The underlying mechanism does 
not necessarily begin with a manually drafted hypothesis 
model. Rather, ML can detect patterns in pre-processed 
data and derive abstract information, predictions and 
similarities.10 Their translation to AML risk assessment 
has shown the potential for refined prognostic indices 
and unveiled novel insights into disease biology.11  
In this study, we retrospectively analyzed a large cohort 
of 1,383 newly diagnosed and intensively treated AML pa-
tients according to their clinical characteristics and mol-
ecular genetics. We evaluated nine different ML models 
to predict achievement of CR as well as 2-year OS rate, 
assessed features that were automatically identified by 
the ML models according to their predictive value and 
validated our results in an external cohort of 664 AML 
patients. 

Methods 
Data set 
We retrospectively identified 1,383 patients who had 
been diagnosed and treated in previously reported multi-
center trials (AML96,12 AML2003,13 AML60+,14 and SOR -
AML15) or were enrolled in the multicenter German Study 
Alliance Leukemia (SAL) AML registry (NCT03188874) en-

compassing 59 centers specialized in the treatment of 
hematologic malignancies. A short summary of individual 
trial durations and protocols is provided in the Online 
Supplementary Material (Online Supplementary Table S1). 
Eligibility criteria were newly diagnosed AML according 
to World Health Organization (WHO) criteria,16 age ≥18 
years, potentially curative treatment with intensive ther-
apy regimens and available diagnostic biomaterial. Pa-
tients with acute promyelocytic leukemia were excluded. 
All mentioned studies were previously approved by the 
Institutional Review Board of the Technical University 
Dresden. All participants gave their written informed 
consent according to the Declaration of Helsinki. AML 
status was defined as de novo (in patients with no prior 
hematologic malignancy), secondary (in patients with 
prior myeloid entities such as myelodysplastic syn-
dromes) and treatment-related (in patients previously 
exposed to radiotherapy and/or chemotherapy). CR and 
CRi were defined according to the European Leukemia-
Net (ELN) 2017 recommendations.17 Death was defined as 
death from any cause. Of the 1,383 patients studied, 91 
(6.56%) died within 30 days of initial diagnosis. All pa-
tients were included in the analysis for both CR and 2-
year OS. We used 2-year OS because the data set was 
balanced for this cut-off time with 610/1,383 (44.11%) of 
patients surviving 2 years or longer, which supports 
training of a binary classifier. Pre-treatment bone mar-
row or peripheral blood samples from all patients were 
screened using next-generation sequencing with the Il-
lumina TruSight Myeloid Sequencing Panel covering 54 
genes (Online Supplementary Table S2) that are associ-
ated with myeloid neoplasms, as described in detail re-
cently.18 A 5% variant allele frequency mutation calling 
cut-off was used. An external validation cohort was ob-
tained from the AML Cooperative Group (AMLCG) en-
compassing 664 newly diagnosed AML patients enrolled 
in clinical trials (AMLCG-1999 and AMLCG-2008)19 to vali-
date the trained algorithms. For this validation cohort, 
the same eligibility and exclusion criteria were applied 
as described above. This study was performed in con-
formity with Standards for Reporting Diagnostic accuracy 
studies (STARD) (Online Supplementary Table S3). 

Data curation and machine learning pipeline 
For the selection of predictive features and subsequent 
binary decisions for CR and 2-year OS prediction, a 
multi-stage ML pipeline was developed for this study 
(Figure 1). Data from the above-mentioned clinical trials 
and the SAL registry were collected and 212 multimodal 
variables (clinical data, laboratory parameters as well as 
molecular and cytogenetic data) became available (see 
Online Supplementary Table S4 for a full list of variables 
used in the model). Features were selected according to 
their support by five-feature selection algorithms: linear 
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correlation, chi-square test, recursive feature elimin-
ation, lasso regularization and random forest ranking. To 
be included in a ML model, a variable had to pass a pre-
determined threshold of overall predictive power deter-
mined by summing the normalized scores of these 
five-feature selection algorithms. Features below the 
threshold were automatically excluded from the ML 
models for the respective iteration. In that way, relevant 
attributes were selected and dimensionality was reduced 

by excluding sparse features (cut-off 1%). After auto-
mated feature selection, binary decision models of the 
following types were trained: random forest, gradient 
boosting, adaptive boosting, linear, polynomial and radial 
basis function kernel (RBF), support vector machines 
(SVM), k-nearest neighbor, logistic regression, and artifi-
cial neural nets using a 9:1 training-to-test split. All test 
data were strictly withheld from the training stage in 
order to avoid information leakage and overfitting. The 

Figure 1. Iterative workflow of the machine 
learning pipeline. For the purpose of this 
study, 1,383 patients with acute myeloid 
leukemia from previous multicenter clinical 
trials and the German Study Alliance 
Leukemia bioregistry were analyzed. 
Multimodal clinical, laboratory, cytogenetic 
and molecular genetic data (1) were 
available. To remove redundancies and 
reduce dimensionality, rare features were 
excluded (2). Data were transformed, 
scaled and standardized and missing values 
were imputed (3). Dynamic feature 
selection was used to identify predictive 
parameters which were then included for 
analysis by nine supervised machine 
learning classifiers (4). Individual model 
performance and selected features were 
subsequently put out by the pipeline for 
interpretation (5). APL: acute promyelocytic 
leukemia; AML: acute myeloid leukemia.
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best performing models were optimized in a subsequent 
hyperparameter-optimization step. A more detailed ex-
planation of the ML pipeline is given in the Online Sup-
plementary Material.  

Performance evaluation and statistical analysis 
To analyze the performance of the ML models we used 
F1-score, precision and recall as well as precision-recall-
curves as standard ML performance metrics, as well as 
receiver operating characteristics (ROC) with the area 
under the curve (AUC). Precision (positive predictive 
value) is the fraction of true positives among all positive 
predictions while recall (sensitivity) is the fraction of all 
positive predictions among all true positives and F1-
score is the harmonized mean of precision and recall. To 
account for the imbalance of the data set, micro-aver-
aging AUROC was calculated as it computes the total 
number of cumulative true positives, true negatives, false 
positives and false negatives globally instead of calcu-
lating metrics for each class independently and then 
averaging them (macro-averaging) which may lead to in-
accurate metrics for imbalanced data sets. Additional 
statistical analysis and visualizations were performed 
using STATA BE 16.0 and R 3.6.3. Odds ratios and 95% 
confidence intervals for the binary decision of achieving 
or failing to achieve CR as well as surviving 2 years or 
longer were obtained using logistic regression. Statistical 
significance was determined using a significance level a 
of 0.05. 

Results 
We utilized nine ML models to predict CR and 2-year OS 
in a large data set of 1,383 newly diagnosed and inten-
sively treated AML patients with a median age of 54 years 
(interquartile range, 43–64). A total of 1,008 patients 
(72.9%) achieved CR/CRi with induction therapy, while 
375 (27.1%) failed to achieve CR/CRi. Of the 1,008 patients 
who achieved CR/Cri, 755 (74.9 %) did so after two 
courses of induction therapy, while 253 (25.1 %) received 
only one course of induction therapy. The median OS was 
17.1 months and 44,1% of patients survived 2 years or 
longer after initial diagnosis. The patients’ baseline char-
acteristics are summarized in Table 1. Detailed informa-
tion on the characteristics of patients from the different 
trials of both the internal training and testing cohort as 
well as the external validation cohort are summarized in 
Online Supplementary Table S5. 

Prediction of complete remission  
For CR/CRi, F1-scores ranged between 0.72 and 0.75 while 
AUROC ranged between 0.77 and 0.86 (Figure 2). Random 
forest (F1: 0.75; AUROC: 0.86), logistic regression (F1: 0.75; 

AUROC: 0.84) and artificial neural nets (F1: 0.73; AUROC: 
0.77) were selected for hyperparameter tuning. Random 
forest and logistic regression converged over 1,000 iter-
ations (Online Supplementary Figure S1). Hyperparameter 
tuning did not improve the F1 of logistic regression, but 
random forest achieved an improved final F1 of 0.78. Ar-
tificial neural nets did not converge over 1,000 iterations 
and the F1 of artificial neural nets did not improve, likely 
due to the requirement of a much larger sample size for 
deep learning in general. Features for CR/CRi prediction 
were selected automatically using five-feature selection 
algorithms that included or rejected features based on an 
importance score with a predefined threshold. We found 
the optimum performance was achieved when a summed 
support threshold of 0.5 was used as a cut-off for inclu-
sion or exclusion of features. Features that were present 
in less than 1% of patients in the cohort were automati-
cally excluded. Using this method, our algorithms se-
lected 27 features for CR/CRi prediction that were 
uniformly used in all nine classification models. Patient 
age at first diagnosis was the most important feature ac-
cording to our feature selection algorithm. Genetic aber-
rations included in our model were found in TP53 (n=102, 
7.38%), U2AF1 (n=36, 2.60%), NPM1 (n=466, 33.69%), FLT3-
ITD (n=280, 20.25%), IKZF1 (n=36, 2.6%), CEBPA (double-
mutated n=91, 6.58% and bZIP n=30, 2.17%), ASXL1 (n=124, 
8.97%), RUNX1 (n=134, 9.69%), IDH1 (n=122, 8.82%), PTPN11 
(n=100, 7.23%), SF3B1 (n=41, 2.96%), as well as t(8;21) 
(n=52, 3.76%), inv(16) or t(16;16) (n=76, 5.50%), del(5) or 
del(5q) (n=85, 6.15%), del(17) or del(17p) (n=34, 2.50%), 
complex karyotype (≥3 aberrations, n=152, 10.99%) or nor-
mal karyotype (no aberrations, n=707, 51.12%). These gen-
etic features differed substantially between patients 
achieving CR/CRi (Figure 3A) or failing to achieve CR/CRi 
(Figure 3B). Clinical and laboratory parameters that were 
selected by our algorithm were lactate dehydrogenase 
concentration, white blood cell count, bone marrow blast 
count, peripheral blood blast count, platelet count and 
hemoglobin concentration at first diagnosis as well as de 
novo manifestation of AML and presence or absence of 
extramedullary disease. Individual feature support calcu-
lated by the five-feature selection algorithms is shown in 
Figure 4A. For these features we subsequently calculated 
univariate odds ratios to further quantify their predictive 
capacity for CR. At a significance level of 0.05, we found 
de novo status of AML, higher hemoglobin concentration 
at initial diagnosis, normal karyotype, t(8;21), inv(16) or 
t(16;16), double-mutated CEBPA or mutations in the bZIP 
domain of CEBPA, and mutations in NPM1 and FLT3-ITD to 
be associated with significantly higher odds of achieving 
CR (Figure 4B). Notably, the effect of mutations in FLT3-
ITD was confined to patients with an FLT3-ITD ratio <0.5 
and concurrent NPM1 mutations (odds ratio [OR]=2.01, 
95% confidence interval [95% CI]: 1.09-3.71, P=0.024) while 
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patients who harbored mutated FLT3-ITD with a ratio ≥0.5 
and concurrent NPM1 mutations showed less favorable 
CR rates (OR=0.51, 95% CI: 0.28-0.94; P=0.03). Higher age 
at initial diagnosis, extramedullary manifestations, com-
plex karyotype, del(5) or del(5q), del(17) or del(17p) as well 
as mutations in ASXL1, SF3B1, RUNX1, IKZF1, TP53 and 
U2AF1 were associated with significantly lower odds of 
achieving CR with intensive induction therapy (Figure 4B). 
IKZF1, SF3B1, and U2AF1 mutations have been reported to 
be associated with secondary AML.20,21 In a multivariable 
model adjusted for de novo and secondary AML, we found 
IKZF1 (OR=0.39, 95% CI: 0.20-0.76; P=0.006), SF3B1 (OR= 
0.49, 95% CI: 0.26-0.94; P=0.031) and U2AF1 (OR=0.17, 95% 
CI: 0.08-0.35; P<0.001) to be independently associated 
with lower odds of achieving CR. In a multivariable model 
adjusting for double-mutated CEBPA, mutations of the 
bZIP domain of CEBPA were still significantly associated 
with increased odds of achieving CR (OR=5.95, 95% CI: 

1.90-18.66; P=0.002). Every 1-year increase in age was as-
sociated with a 5.73% decrease in the odds of achieving 
CR (Online Supplementary Figure S3A) and every one 
mmol/L increase in hemoglobin at initial diagnosis (until 
normal values were reached) was associated with a 13.15% 
increase in the odds of achieving CR (Online Supplemen-
tary Figure S3B). For molecular genetics associated with 
CR such as ASXL1, IKZF1, SF3B1, U2AF1 and TP53 (Online 
Supplementary Figure Table S3C-G), higher variant allele 
frequency was associated with decreased odds for CR. 
For biallelic CEBPA mutations and CEBPA-bZIP, variant al-
lele frequency was not available for analysis. For the re-
maining selected features – peripheral blood blast count, 
bone marrow blast count, lactate dehydrogenase level, 
platelet count and white blood cell count at initial diag-
nosis as well as mutations in PTPN11, and IDH1 – no stat-
istically significant associations with achievement of CR 
were found (Figure 4B).  

Variables Training/testing (SAL) External validation (AMLCG)

N. of patients 1383 664
Age, median (IQR), in years 54 (43-64) 57 (44-66)
Sex, N (%)

Female 661 (48) 328 (49)
Male 722 (52) 336 (51)

AML status, N (%)
De novo 1180 (86.4) 570 (85.8)
Secondary 146 (10.7) 59 (8.9)
Therapy-associated 40 (3.0) 35 (5.3)

French-American-British classification, N (%)
M0 49 (3.7) 35 (5.4)
M1 326 (24.6) 157 (23.6)
M2 458 (34.6) 178 (26.8)
M3 0 0
M4 248 (18.7) 163 (24.5)
M5 191 (14.4) 83 (12.5)
M6 46 (3.5) 19 (2.9)
M7 6 (0.5) 3 (0.5)

European LeukemiaNet 2017 category, N (%)
Favorable 518 (37.8) 231 (34.8)
Intermediate 510 (37.2) 166 (25.0)
Adverse 247 (13.0) 250 (37.7)

Complex karyotype (≥3 abnormalities) 154 (11.9) 75 (11.3%)
Extramedullary disease, N (%) 201 (14.5) 16 (5.9)
White blood cell count, median (IQR), x109/L 20.4 (4.8-56.4) 23.8 (6.4-60.3)
Hemoglobin, median (IQR) in mmol/L 5.9 (5.0-7.0) 5.6 (5.0-6.3)
Platelet count, median (IQR) x109/L 52 (27-95) 53 (30-102)
Lactate dehydrogenase, median (IQR) in U/L 453 (288-821) 466 (291-787)
Bone marrow blasts, median (IQR) in % 63 (45-79) 80 (58-90)
Peripheral blood blasts, median (IQR) in % 41 (12-74) 23 (4.5-67)
Achieved CR after induction therapy, N (%) 1008 (72.9) 445 (67.0)
Median OS, in months 17.1 17.3
Overall survival ≥ 2 years, N (%) 610 (44.1) 290 (43.7)

Table 1. Patients’ baseline characteristics. 

For a division of the internal cohort by clinical trials, see Online Supplementary Table S5. SAL: German Study Alliance Leukemia registry; 
AMLCG: AML Cooperative Group; n/N: number; IQR: interquartile range; AML: acute myeloid leukemia; CR: complete remission.
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Prediction of 2-year overall survival 
Analogous to CR/CRi prediction, the ML pipeline was 
used to predict 2-year overall survival. For OS, F1-scores 
ranged between 0.60 and 0.70 (Table 2) while AUROC 
ranged between 0.63 and 0.74 (Figure 5). Again, random 
forest (F1: 0.67; AUROC: 0.73), logistic regression (F1: 0.70; 
AUROC: 0.74) and artificial neural nets (F1: 0.63; AUROC: 
0.70) were selected for hyperparameter tuning. Artificial 
neural nets again did not converge and F1 did not im-
prove over 1,000 iterations. Random forest and logistic 
regression both converged over 1,000 iterations (Online 
Supplementary Figure S2). While F1 did not improve for 
logistic regression, random forest showed an increased 
F1 of 0.68 after hyperparameter tuning. The feature se-
lection algorithm chose the 25 most important features 
based on the same threshold that was previously used 
for CR prediction (Figure 6A). Again, the most important 
feature selected by the algorithms was patient age at in-
itial diagnosis. Selected genetic features encompassed 

mutations in TP53, NPM1, double-mutated CEBPA, muta-
tions in the bZIP domain of CEBPA, U2AF1, SF3B1, ASXL1, 
FLT3-ITD and -TKD (n=62, 4.48%), WT1 (n=102, 7.38%), 
PTPN11, KRAS (n=79, 5.71%), and DNMT3A (n=396, 28.63%), 
t(8;21), del(5) or del(5q), inv(16) or t(16;16), del(17) or 
del(17p), which again differed between patients who sur-
vived 2 years or longer (Figure 3C) or died within 2 years 
after initial diagnosis (Figure 3D). Selected clinical and 
laboratory features were hemoglobin concentration at in-
itial diagnosis, white blood cell count, peripheral blood 
blast count, bone marrow blast count, platelet count and 
lactate dehydrogenase level at initial diagnosis, as well 
as the presence of extramedullary manifestations. Uni-
variate logistic regression showed significantly increased 
odds of surviving 2 years or longer for t(8;21), inv(16) or 
t(16;16), double-mutated CEBPA, mutations in the bZIP 
domain of CEBPA, FLT3-ITD with low (<0.5) variant allele 
ratio (irrespective of NPM1 status), mutations of NPM1 as 
well as higher hemoglobin at initial diagnosis (Figure 6B). 

Figure 2. Performance of the machine learning algorithms for prediction of complete remission or complete remission with 
incomplete hematologic recovery. Nine machine learning algorithms were trained and tested on 1,383 patients for whom 
multimodal clinical, laboratory and cytogenetic as well as molecular genetic data were available (train-test split 9:1, 10-fold 
cross-validation). Micro-average area under the receiver operating characteristic curve (AUROC) was used to evaluate 
performance of the imbalanced data set regarding achievement or failure of complete remission after intensive induction 
therapy. ANN: artificial neural net; CR: complete remission; CRi: complete remission with incomplete hematologic recovery; FPR: 
false positive rate; KNN: k nearest neighbor; LR: logistic regression; pSVM: polynomial support vector machine; RBF-SVM: radial 
basis kernel function support vector machine; RF: random forest; SVM: (linear) support vector machine; TPR: true positive rate.
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Significantly lower odds were found for higher age at in-
itial diagnosis, higher white blood cell count, lactate de-
hydrogenase, and peripheral blood blast count, presence 
of extramedullary manifestations as well as del(17) or 
del(17p), del(5) or del(5q) and mutations of DNMT3A, 
FLT3-ITD with high (≥0.5) variant allele ratio (again irre-
spective of NPM1 status), SF3B1, U2AF1 and TP53 (Figure 
6B). In multivariable analysis including AML status (de 
novo or secondary AML), mutations in SF3B1 (OR=0.32, 
95% CI: 0.14-0.69; P=0.004) and U2AF1 (OR=0.16, 95% CI: 
0.06-0.46; P=0.001) were independent markers of de-
creased odds of surviving 2 years after initial diagnosis. 

In a multivariable model adjusting for double-mutated 
CEBPA, mutations of the bZIP domain of CEBPA were still 
significantly associated with increased odds of 2-year OS 
(OR=2.36, 95% CI: 1.01-5.23; P=0.036). For continuous 
variables, every 1-year increase in age was associated 
with a 4.27% decrease in the odds of surviving 2 years or 
longer after initial diagnosis (Online Supplementary Figure 
S4A). For hemoglobin, every one mmol/L increase until 
normal values was associated with a 14.08% increase of 
the odds (Online Supplementary Figure S4B). Increases in 
white blood cell count, peripheral blood blast count and 
lactate dehydrogenase concentration were also associ-

A B

Figure 3. Mutational spectrum of aberrations selected by machine learning for prediction of complete remission and overall 
survival. Patients who achieved complete remission (CR)/complete recovery with incomplete hematologic recovery (CRi) after 
intensive induction therapy (A) showed different molecular patterns regarding molecular features selected by machine learning 
than patients who failed to achieve CR (B). The mutational spectrum of the cohort of patients who achieved CR largely 
comprised normal karyotypes (no aberrations) as well as mutations of NPM1 and FLT3-ITD. In the cohort of patients failing to 
achieve CR the rate of complex karyotypes (≥3 aberrations), del17, del5 or del5p, as well as mutations in TP53, ASXL1, RUNX1, 
U2AF1, SF3B1 and IKZF1 was higher than that in patients who achieved CR. Patients who survived longer than 24 months (C) were 
less likely to harbor del17, del5 or del5q, or have mutations in TP53, SF3B1, ASXL1 and U2AF1 than patients who died within 24 
months after initial diagnosis (D). 
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ated with decreases in the odds of survival, however ef-
fect sizes were smaller than those for age or hemoglobin 
(Online Supplementary Figure S4C-E). For molecular gen-
etics associated with 2-year OS, such as ASXL1, DNMT3A, 
SF3B1, U2AF1, and TP53 mutations, higher variant allele 
frequency was associated with decreased rates of 2-year 

OS (Online Supplementary Figure S5). For biallelic CEBPA 
mutations and CEBPA-bZIP, variant allele frequency was 
not available for analysis. 

External validation 
We obtained an external independent cohort of 664 pre-

Figure 4. Feature selection for prediction of complete remission. (A) Five-feature selection metrics (linear correlation, chi-
square test, recursive feature elimination, lasso regularization and random forest ranking) were implemented to select patient 
features for the classification algorithms (Figure 1) in order to predict complete remission (CR) after intensive induction therapy. 
Based on a continuous feature support metric to aggregate to single metrics mentioned above with a predefined cut-off of 0.5 
(determined by optimal classification performance), 27 features were automatically selected to be included for prediction of CR. 
(B) For each of these features predicted by machine learning, odds ratios and 95% confidence intervals (95% CI) were calculated. 
BMB: bone marrow blast count; FLT3h/low: FLT3-ITD ratio, h=high>0.5; Hb: hemoglobin; karyotype, c: complex aberrant 
karyotype (≥3 aberrations); karyotype, n: normal karyotype (no aberrations); LDH: lactate dehydrogenase; PBB: peripheral blood 
blast count; PLT: platelet count; WBC: white blood cell count. 
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viously untreated AML patients who received intensive 
induction chemotherapy on two randomized multicenter 
phase III trials of the German AML Cooperative Group 
(AMLCG) between 1999 and 201219 to validate our trained 
models for CR and 2-year OS prediction. Detailed pa-
tients’ characteristics and genetic alterations available 
for the validation cohort are shown in Table 1 and Online 
Supplementary Tables S4 and S5, respectively. Both pre-
viously trained prediction models including the above-
mentioned prognostic variables for CR and 2-year OS 
prediction were tested on the validation cohort without 
re-training. It should be noted that not all prognostic 
variables included in the final prediction models for 
training and testing were available in the external valida-
tion cohort. Mutation status for FLT3-TKD and IKZF1 was 
missing. For CR prediction, F1 ranged between 0.72 and 

0.76 while AUROC ranged between 0.71 and 0.80 (Online 
Supplementary Figure S6). For prediction of 2-year OS, F1 
ranged between 0.58 and 0.69 while AUROC ranged be-
tween 0.65 and 0.75 (Online Supplementary Figure S7). 
Table 2 provides details of the performance metrics in 
the internal test set and external validation cohort.  

Discussion 
Based on genetic and clinical data from a large multi-
center cohort of patients we implemented ML models to 
derive prognostic parameters and subsequently predict 
CR and 2-year OS in AML patients who received intensive 
induction therapy. Our ML models were completely ag-
nostic of any pre-existing models or risk scores such as 

Prediction of CR/CRi after intensive induction therapy

ML model F1-score Precision Recall AUROC

Test Val. Test. Val. Test Val. Test Val.

Random forest 0.75 0.76 0.77 0.77 0.78 0.78 0.86 0.78

Linear SVM 0.75 0.76 0.76 0.77 0.77 0.78 0.84 0.78

Logistic regression 0.75 0.76 0.76 0.77 0.77 0.77 0.84 0.78

Adaptive boosting 0.75 0.75 0.75 0.75 0.76 0.77 0.80 0.74

Gradient boosting 0.74 0.74 0.74 0.74 0.75 0.76 0.79 0.76

Polynomial SVM 0.73 0.72 0.76 0.76 0.77 0.77 0.80 0.77

Artificial neural net 0.73 0.73 0.73 0.73 0.74 0.73 0.77 0.71

RBF-SVM 0.72 0.74 0.75 0.76 0.76 0.77 0.83 0.80

k nearest neighbor 0.72 0.72 0.73 0.72 0.75 0.75 0.82 0.77

Prediction of OS ≥2 years

Random forest 0.67 0.68 0.67 0.68 0.67 0.68 0.73 0.73

linear SVM 0.70 0.69 0.70 0.69 0.70 0.69 0.74 0.71

Logistic regression 0.70 0.69 0.70 0.69 0.70 0.69 0.74 0.72

Adaptive boosting 0.66 0.66 0.67 0.67 0.66 0.66 0.74 0.65

Gradient boosting 0.65 0.65 0.65 0.65 0.65 0.65 0.72 0.73

RBF-SVM 0.67 0.67 0.67 0.67 0.67 0.67 0.72 0.75

Artificial neural net 0.63 0.63 0.63 0.63 0.63 0.63 0.70 0.68

k nearest neighbor 0.60 0.61 0.60 0.62 0.59 0.61 0.63 0.70

Polynomial SVM 0.60 0.58 0.61 0.60 0.61 0.60 0.70 0.69

Table 2. Performance metrics for prediction of complete remission/complete remission with incomplete hematologic recovery 
and 2-year overall survival by different machine learning models. 

Performance of the machine learning models was assessed using the F1-score, precision and recall as well as micro-average area under the 
receiver operating characteristic curve (see Figures 2 and 5 and Online Supplementary Figures S6 and S7). A comparison between our internal 
test set (Test) and an external validation cohort (Val.) is shown. Precision (positive predictive value) is the fraction of true positives among all 
positive predictions. Recall (sensitivity) is the fraction of positive predictions among all true positives. F1-score is the harmonized mean of 
precision and recall. CR: complete remission; CRi: complete remission with incomplete hematologic recovery; ML: machine learning; AUROC: 
area under the receiver operating characteristics curve; SVM: support vector machine; RBF: radial basis function kernel. OS: overall survival.
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ELN 2017.17 Nevertheless, among the selected features for 
both CR and OS we found many established markers of 
good or poor prognosis. Regarding mutational status, es-
tablished markers for AML risk stratification17 such as 
TP53, ASXL1, RUNX1, FLT3-ITD, NPM1, and double-mutated 
CEBPA were selected. Mutations of TP53 are known to be 
associated with higher age, complex karyotypes and 
lower response rates to chemotherapy, yielding poor out-
comes.22,23 Accordingly, mutations of RUNX124 and ASXL125 
have been reported to be associated with lower CR rates 
as well as poor survival and AML with mutated RUNX1 is 
considered a provisional entity in the 2016 WHO classifi-
cation.26 In contrast, AML with mutations of NPM127–29 or 
AML with biallelic CEBPA mutations30 were reported to 
be associated with improved outcomes and distinct co-
mutational phenotypes, and also constitute distinct en-
tities in the 2016 WHO classification.26 The prognostic 
role of FLT3-ITD mutations largely depends on the allelic 
ratio and concurrent mutations of NPM1.31,32 Additionally, 
in our CR model U2AF1, IKZF1, and SF3B1 mutations were 
identified as predictive markers for decreased odds of 

achieving CR while mutations in U2AF1, SF3B1, as well as 
DNMT3A were also predictive for decreased 2-year OS. In 
a multivariable model adjusting for AML status (de 
novo/secondary AML) independent prognostic value was 
confirmed. Mutations of U2AF1 and SF3B1 affect RNA 
splicing and are frequent in myelodysplastic syndromes33 
while in AML they are more commonly found in second-
ary rather than de novo AML and previous studies re-
ported poor outcomes.34 IKZF1 is a well-established 
marker of adverse risk in acute lymphoblastic leukemia,35 
however, its role in AML is still controversial. Previous 
studies have shown frequent co-mutational patterns in 
AML suggesting antecedent myeloproliferative neo-
plasms,21,21 nevertheless their prognostic impact is 
unclear. In AML with mutated DNMT3A, prognostication 
is controversial: various studies found inferior survival, 
but these results have been questioned by other ana-
lyses that either found no differences in outcomes or im-
proved survival.36–38 Additionally, mutations of the bZIP 
domain of CEBPA were significantly associated with in-
creased odds of achieving CR and 2-year OS irrespective 

Figure 5. Performance of machine learning algorithms for prediction of overall survival ≥2 years. As for the prediction of 
complete remission (Figure 1), machine learning algorithms were also implemented for prediction of overall survival. Micro-
average area under the receiver operating characteristic curve (AUROC) was used to evaluate performance. ANN: artificial neural 
net; CR: complete remission; CRi: complete remission with incomplete hematologic recovery; FPR: false positive rate; KNN: k 
nearest neighbor; LR: logistic regression; OS: overall survival; pSVM: polynomial support vector machine; RBF-SVM: radial basis 
kernel function support vector machine; RF: random forest; SVM: (linear) support vector machine; TPR: true positive rate.
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of biallelic status in multivariable models which is in ac-
cordance with recent reports.39,40 Regarding cytogenetic 
features, we initially one-hot encoded every cytogenetic 
aberration found in the entire cohort; however, to reduce 
data dimensionality41 those that were present in less than 
1% of the cohort were automatically excluded (as was the 
case for rare molecular genetic features). Cytogenetic 

features selected by our algorithm were inv(16)/t(16;16), 
t(8;21), del(5)/del(5q), and del(17) or del(17p), which are 
established markers for outcome prediction.17 Strikingly, 
t(8;21) was associated with the largest increase in odds 
for both achievement of CR as well as 2-year OS (only 
1/52 patients with t(8;21) did not achieve CR) which is in 
line with previous reports.42,43 With respect to baseline 

Figure 6. Feature selection for prediction of overall survival ≥2 years. (A) As for the prediction of complete remission (CR)/complete 
remission with incomplete hematologic recovery (CRi) (Figure 3), the feature selection algorithms were implemented to determine 
predictive features for overall survival (OS). Based on a continuous feature support metric with the same predefined cut-off that 
was used for CR/CRi prediction, 20 features were selected to predict OS ≥2 years. (B) For each of these features, odds ratios and 
95% confidence intervals (95% CI) were calculated. BMB: bone marrow blast count; FLT3h/low: FLT3-ITD ratio, h=high>0.5; Hb: 
hemoglobin; karyotype, c: complex aberrant karyotype (≥3 aberrations); karyotype, n: normal karyotype (no aberrations); LDH: 
lactate dehydrogenase; PBB: peripheral blood blast count; PLT: platelet count; WBC: white blood cell count. 
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clinical and laboratory parameters, our analysis showed 
both CR rates and 2-year OS were significantly associ-
ated with age and hemoglobin level at initial diagnosis. 
Increasing age was associated with progressively lower 
odds of achieving CR and surviving for 2 years or longer 
despite the fact that all patients in our cohort received 
intensive induction therapy. Age is associated with high-
risk molecular and cytogenetic features, lower fre-
quencies of favorable markers and poor CR rates and 
survival.5,44 Correspondingly, decreasing hemoglobin 
levels at initial diagnosis were associated with decreased 
odds of achieving CR and OS. Using these pre-trained ML 
prediction models, we validated our findings in an exter-
nal multicenter cohort of 664 AML patients. Model per-
formance remained stable in the external validation 
despite the fact that two important prognostic variables 
– FLT3-TKD and IKZF1 - were missing in the external vali-
dation cohort, thus demonstrating adequate model 
transferability both for CR and 2-year OS predictions. 
Smaller discrepancies in performance between the in-
ternal test set and the external validation cohort may 
stem from missingness of these prognostic variables 
and/or random fluctuations. Potentially, an inclusion of 
more external data into the models’ training may further 
boost performance and even out smaller discrepancies 
in performance metrics.  
The performance of previous efforts at CR prediction in 
AML using conventional statistical approaches was re-
portedly moderate. In an analysis of over 4,500 inten-
sively treated adult patients including commonly 
available clinical characteristics as well as FLT3 and NPM1 
mutation status, Walter et al.7 reported an AUROC be-
tween 0.71 and 0.78 while Krug et al.45 similarly reported 
an AUROC of 0.72 in a cohort of more than 2,000 patients 
aged ≥60 years with newly diagnosed and intensively 
treated AML. These moderate accuracies even in large 
data sets incentivize the implementation of new ap-
proaches for data processing in risk evaluation. So far, 
only a few studies have used ML to predict CR in AML. 
Gal et al.46 reported a k-nearest neighbor classifier evalu-
ating bone marrow specimens from 473 AML patients be-
tween 8 days and 28 years old with an AUROC of 0.81 in 
their test set. The recent Dialogue for Reverse Engineer-
ing Assessment and Methods (DREAM) Acute Myeloid 
Leukemia Outcome Prediction Challenge was a crowd-
sourcing effort of 270 registered participants and 79 con-
tributing teams developing over 60 algorithms on 
proteomic data from a training set of 191 and a test set 
of 100 AML patients with response to therapy being the 
primary clinical endpoint in sub-challenge one.47 A final 
AUROC of 0.796 and a balanced accuracy of 0.779 were 
reported for the best performing model in the sub-chal-
lenge using a random forest model with an evolutionary 
weighting approach to feature selection.47 Arguably, re-

cent ML efforts in risk stratification, including our study, 
demonstrate the feasibility of ML technology to identify 
patients at high risk of treatment failure even considering 
that most of these recent studies using ML had far 
smaller data sets than the previously reported models 
using conventional statistical approaches. In order to im-
plement these models meaningfully into clinical practice, 
they should not only include genetic alterations, but also 
acknowledge clinical patients’ characteristics. While gen-
etic alterations are undoubtedly powerful predictors of 
disease progression, a third of observed variation in sur-
vival still stems from demographic and clinical data.48 We 
believe that the combination of both clinical and genetic 
data is essential for ML approaches to be beneficial for 
clinical practice in terms of treatment decision support, 
possibly in the form of knowledge banks, as recently re-
ported by Gerstung et al.49 They used a data-mining ap-
proach comparing different statistical models for 
outcome prediction with respect to matched genomic 
and clinical data of 1,540 patients. Gerstung et al.49 re-
ported that models including a larger variety of relevant 
data are able to predict patients’ outcome more pre-
cisely than done so by restricted models such as the ELN 
2017 classification.17 We concur that predictive models 
incorporating a wide variety of available data from 
multiple sources for an individual patient may potentially 
provide a more detailed outlook on the outcome of that 
particular patient. However, a lack of clinical variables 
reduces the transferability of ML models based solely on 
genomic data sets to everyday clinical use as in-depth 
genetic sequencing is often either not available or not 
implemented in routine diagnostics. Our approach, how-
ever, utilizes both commonly available clinical variables 
as well as genetic events that can easily be extracted by 
commercial next-generation sequencing panels en-
compassing the most commonly mutated genes in AML. 
Furthermore, our approach was trained and tested on a 
large multicenter data set and validated on multicenter 
external data showing high accuracy in identifying pa-
tients at risk of primary treatment failure after intensive 
induction regimens. In such patients, in whom intensive 
therapy likely does more harm than good, novel regimens 
with less toxicity can be used, such as the combination 
of venetoclax and azacitidine for older patients with 
newly diagnosed AML.50  
A limitation of our approach, however, is its retrospective 
nature. Many recent efforts of ML in hematology, includ-
ing our study, are based on historic data sets.11 Another 
limitation of our study is the unavailability of data on 
measurable residual disease. Assessment of measurable 
residual disease has become increasingly important in 
treatment surveillance in AML.51 All of the patients in our 
study were treated with conventional chemotherapy 
regimens, except a minority of patients from the SORAML 
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study who were additionally treated with sorafenib. How-
ever, according to the original report, sorafenib did not af-
fect CR rate or OS.15 Future work will address the ability 
of ML to predict response to novel treatment regimens, 
measurable residual disease as well as prospective vali-
dation and the implementation of CR prediction for the 
individual patient at initial diagnosis, ideally including data 
for a variety of targeted therapies. ML performance is 
known to scale with sample size and a challenge will be 
the transfer to smaller data sets as data from trials with 
targeted therapies emerge. As another limitation of our 
approach, estimation of OS was confined to a binary clas-
sification after dichotomization of the cohort of patients 
into those who survived longer than 2 years and those 
who died within 2 years after initial diagnosis. The F1 
scores for OS prediction were lower than those for CR 
prediction. This is arguably a result of the dichotomization 
of OS and consequent loss of longitudinal information re-
garding different survival times. Future work will focus on 
the implementation of longitudinal ML regression models 
for a more precise estimation of survival times.  
In order to be implemented into clinical practice, such ML 
models must be easily accessible by practicing clinicians, 
build on commonly available data and should be cost-ef-
fective while providing accurate and robust prediction re-
sults to guide therapeutic strategies. An important goal of 
our work from a technological perspective was the trans-
ferability of our ML pipeline to other cases as most parts 
of the pipeline are automated and can, potentially, be used 
for other use cases after adequate data pre-processing, as 
demonstrated in external validation. Therefore, future work 
will also focus on transferability of our methodology to 
other cancer entities which is advantageous over more 
static conventional statistical approaches that are de-
signed for a specific data set. Incorporating nine ML clas-
sifiers instead of one into the pipeline acknowledges that 
one classifier may be better suited for one use case while 
another may be superior in a different use case. This is es-
pecially evident in the direct comparison of performance 
between the internal test set and external validation co-
hort. for example in CR prediction for which the best per-
forming algorithms in internal testing were random forest, 
logistic regression and linear SVM while in external valida-
tion RBF-SVM was superior to random forest, logistic re-
gression and linear SVM, thereby demonstrating the 
relevance of including more than one ML algorithm in 
cancer data analysis.  
In summary, we evaluated nine ML models on a large 
multicenter data set of 1,383 intensively treated AML pa-
tients and demonstrated high accuracy for CR and OS pre-
diction in both internal testing and external validation. We 

provide a method to automatically select predictive fea-
tures from different data types, cope with gaps and redun-
dancies, apply and optimize different ML models and 
evaluate optimal configurations in a scalable and reusable 
ML platform. In a proof-of-concept manner, our algorithms 
utilize both established markers of favorable or adverse 
risk and also provide further evidence for the roles of 
U2AF1, IKZF1, SF3B1, DNMT3A and bZIP mutations of CEBPA 
in AML risk prediction. Our study serves as a fundament 
for prospective validation and data-driven ML-guided risk 
assessment in AML at initial diagnosis for the individual pa-
tient. 
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