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Abstract

Eukaryotes, including the unicellular eukaryotes such as yeasts, employ multiple levels of

gene regulation. Regulation of chromatin structure through chromatin compaction cas-

cades, and influenced by transcriptional insulators, might play a role in the coordinated

regulation of genes situated at adjacent loci and expressed as a co-regulated cluster. Subte-

lomeric gene silencing, which has previously been described in the yeast Saccharomyces

cerevisiae, is an example of this phenomenon. Transcription from a common regulatory ele-

ment located around a shared intergenic region is another factor that could coordinate the

transcription of genes at adjacent loci. Additionally, the presence of DNA binding sites for

the same transcription factor may coordinate expression of multiple genes. Yeasts such as

the industrially important Kluyveromyces marxianus may also display these modes of regu-

lation, but this has not been explored to date. An exploration was done using a complete

genome and RNA-seq data from a previous study of the transcriptional response to glucose

or xylose as the carbon source in a defined culture medium, and investigating whether the

species displays clusters of co-localised differentially expressed genes. Regions of possible

subtelomeric silencing were evident, but were non-responsive to the carbon sources tested

here. Additionally, glucose or xylose responsive clusters were discovered far from telomeres

which contained some of the most significantly differentially expressed genes, encoding

enzymes involved in the utilisation of alternative carbon sources such as the industrially

important inulinase gene INU1. These clusters contained putative binding sites for the car-

bon source responsive transcription factors Mig1 and Adr1. Additionally, we investigated the

potential contribution of common intergenic regions in co-regulation. Some observations

were also made in terms of the evolutionary conservation of these clusters among yeast

species and the presence of potential transcriptional insulators at the periphery of these

clusters.

Introduction

It is known that in Saccharomyces cerevisiae multiple levels of gene regulation exist. Chromatin

silencing and desilencing occurs in regions on the genome especially close to the telomeres,

known as X and Y elements, which are enriched in transcription factor binding sites [1]. These
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regions are located approximately six to seven kilobases from the telomeres [1] and the process

is, therefore, named subtelomeric gene silencing. Chromatin silencing spreads from these

regions and may silence several genes together. The physical organisation of the genes at

neighbouring loci might be a mechanism to coordinate expression of genes with similar func-

tions. It has also been shown that, contrary to expectation, tRNA genes could serve as tran-

scriptional insulators [2]. These regions on the genome associate via TFIIIC, the RNAP III

general transcription factor complex, to the nuclear matrix or nuclear cytoskeleton, thereby

organising chromatin into functional units and isolating the transcriptional unit from the

effects of neighbouring regulatory elements and gene silencing [2]. Also, transcription factors

binding in a shared intergenic region between two genes with an outwardly oriented transcrip-

tional direction as a reverse forward direction pair (RF), may allow co-regulation of the two

target genes. This mode, which is referred to here as outward transcription, is related to, but

somewhat distinct from, divergent transcription from bidirectional promoters. It can also

involve the sharing of a common regulatory element, but is associated with non-coding (anti-

sense) transcript formation [3, 4]. Finally, evolutionary events such as gene duplication would

create a copy also of the gene regulatory elements, along with their associated genes. This

might be expected to result in co-regulation of such a duplicated region.

It is reasonable to believe that genes with common functions and which are associated with

the same metabolic pathways would be co-regulated through a combination of these mecha-

nisms. For instance, by co-localisation on the genome, they may employ more than one of the

above-mentioned higher level regulatory features. By considering gene expression profiles and

transcriptional orientation in the context of chromosomes, such patterns may be revealed [1].

A comparison of the conservation of gene order among multiple sister species may strengthen

the notion that the ordering and proximity of a set of genes improves the functioning of a gene

cluster across species [5]. Some transcription factors bind many regulatory regions and are

responsible for distinct metabolic or lifestyle programs. Mig1 and Adr1 are two important

transcription factors involved in glucose repression and derepression in S. cerevisiae [6]. Mig1,

a zinc finger protein that recognises a conserved GC box described as [GC][CT]GGGG, is a

transcriptional repressor in S. cerevisiae [7, 8]. It was later shown that a flanking AT box was

also important in S. cerevisiae, thus the motif may be better described as [ATG][AT][AT]
[AT][ATG]N[GC][CT]GGGG [9]. Adr1 is an activator of many genes involved in the utili-

sation of alternative carbon sources by S. cerevisiae, especially those encoding enzymes

involved in peroxisomal β-oxidation [10]. The consensus pattern for Adr1 has been described

as [TGA][TC]GG[AG]G [11]. It usually binds as a dimer in opposite directions between two

and 36 bp apart, and the more precise motif can be thus be described as C[CT]CC[GA]
[TCA]N{2–36}[TGA][TC]GG[AG]G, the reverse being identical. The longer, more pre-

cise patterns make computational identification of such binding sites more accurate and ren-

ders the chances of random occurrence of matching sequences less likely by orders of

magnitude.

The yeast Kluyveromyces marxianus has in recent years gained increasing attention as a

potential biofuel producer with several advantages over S. cerevisiae, such as a high growth

rate, thermotolerance and the ability to naturally utilise pentoses such as xylose [12, 13]. The

transcriptomic response of K. marxianus strain DMKU3-1042 to glucose and xylose in a com-

plex culture medium has been explored by Lertwattanasakul et al. [14]. More recently, we per-

formed an RNA-seq analysis combined with a multi-network analysis of K. marxianus
UFS-Y2791 grown in a chemically defined medium, also with glucose and xylose as respective

carbon substrates [15]. A strong up-regulation of peroxisomal metabolism in a xylose medium

in the absence of glucose was evident, as well as up-regulation of several genes involved in the

utilisation of alternative carbon sources, including genes of the 2-methylcitrate cycle. Based on
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the enumerative method of heptamer frequency comparison, it was found that, firstly, Adr1 and,

secondly, Mig1 were strong candidates as major regulators of up-regulated genes in K. marxianus
in a xylose medium containing no glucose, thus representing glucose derepressed conditions [16].

RNA-seq data of the Adr1 and Mig1 transcripts also supported their respective roles as activator

and repressor of transcription. K. marxianus produces the industrially important enzyme inuli-

nase, and it was shown earlier by Lertwattanasakul et al. [17] that two putative binding sites for

Mig1 existed in the regulatory region of the INU1 gene of K. marxianus DMKU3-1042 that are

perfectly conserved in four other strains of this species. These sequences were TTAAATCCGGGG
at bp 155 and TTTTTCCTGGGG at 500 bp from the translation start site, respectively. Both match

the combined AT box, GC-box consensus as previously described by Lundin et al. [9].

It was also found that the RNA-seq data from K. marxianus UFS-Y2791 could be effectively

mapped to a complete genome of K. marxianus DMKU3-1042 [16]. This made it possible to

consider differential gene expression in the context of chromosomes. In this report, RNA-seq

data were mapped to complete chromosomes to discover the presence of clusters of co-local-

ised genes that are also co-regulated. The potential roles of chromatin silencing, outward tran-

scription and transcriptional insulators are all considered. Further, the functional organisation

of the genome in terms of metabolic pathways that were up-regulated in the xylose medium

compared to the glucose medium was investigated. These were the up-regulated genes of per-

oxisomal metabolism, the 2-methylcitrate cycle and sugar transporters. Also, transcription fac-

tor motif searches were done to determine whether putative binding sites for Adr1 and Mig1

might co-localise with any up-regulated gene clusters.

Materials and methods

Experimental protocols were described in Schabort el al. [15] and are summarised below.

Strains and cultivation

K. marxianus UFS-2791 was cultivated in aerobic shake flasks at 35˚C in a chemically defined

medium containing glucose or xylose as carbon substrate. RNA was extracted in mid-expo-

nential phase [15].

RNA-seq and differential expression

RNA-seq reads from K. marxianus UFS-Y2791 from previous work [15] were mapped to the

complete genome of K. marxianus DMKU3-1042 [14] using TopHat2 [18, 19] in Galaxy [20].

The genome annotation file (.gff3) for strain DMKU3-1042 was used for the analysis to serve

as quantitation window for differential expression testing in CuffDiff [21]. Alignment pile-ups

were converted to intervals using the Pileup-to-Interval tool in SAM Tools [22] as imple-

mented in Galaxy. Throughout, up-regulation refers to genes that were up-regulated in the

xylose medium compared to the glucose medium.

Enrichment for clusters of concordantly transcribed genes

An algorithm was developed for Reactomica [15], implemented in the Wolfram language for

mapping differential expression to chromosomes and to map intervals from alignment pile-

ups to DNA for visualisation. To find segments of concordantly transcribed genes indicative of

chromosomal level regulation (differentially regulated in the same direction), the number of

consecutive genes considered as a segment was first decided on. Setting the segment length

cut-off too low would result in too little evidence for concordant transcription, while setting

the length cut-off too high might exclude regions of true chromosomal level regulation but
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without being activated in either state by transcription factors (most genes are constitutively

transcribed). Accordingly, a segment length of six consecutive genes was chosen, and to allow

for the additional level of transcription factor regulation, a minimum of four genes in a seg-

ment had to be concordantly transcribed with the rest constitutively transcribed. To estimate

the expected probability of such segments, a randomised sampling method was used. During

each of 100 000 iterations, the ordered gene lists per chromosomes were joined, this gene list

shuffled, the expression states of six sequential genes sampled, and the fraction of segments

with at least four concordantly transcribed genes ((U> = 4 and D = = 0) or (D> = 4 and U = =

0)) was obtained (where U and D denote up and down regulation respectively, in xylose

medium compared to glucose medium and C denote constitutive regulation). After each itera-

tion, this concordant fraction was compared to the concordant fraction in the single observed

genome, which was analysed as separate chromosomal gene lists. The fraction of occurrences

in which the randomised segments displayed a higher concordant fraction than the observed

genome was used as the p-value for the hypothesis test that the ordering of gene expression

was random. Code for random sampling and discrete statistics was developed in Python. (Also

see S1 Stats Report for a discussion on the statistical methodology.)

The association between concordant transcription and a common

intergenic region

A test was performed to see whether it was more likely for a pair of genes that share an inter-

genic region to display concordant transcription (regulated in the same direction), as compared

to those pairs with different intergenic regions. Genes located adjacent on the chromosome

were assigned to pairs and pairs were classified according to their pattern of differential expres-

sion as combinations of up (U), down (D) and constitutive (O), and subsequently as concordant

(UU+DD) and discordant (UO+DO+UD) transcription. The pairs with both genes constitu-

tively transcribed (OO) were excluded from the analysis as they served no purpose in classifica-

tion. In total, 1 041 out of the 5 209 pairs analysed were classified as concordant or discordant.

The likelihood ratio, L, was calculated as the ratio of probability values as described below, in

which the symbol N refers to the number of pairs with a certain orientation of transcription.

L ¼
PðconcordantjcommonÞ
PðconcordantjdifferentÞ

P concordantjcommonð Þ ¼
NðconcordantjcommonÞ

NðconcordantjcommonÞ þ NðdiscordantjcommonÞ

P concordantjdifferentð Þ ¼
NðconcordantjdifferentÞ

NðconcordantjdifferentÞ þ NðdiscordantjdifferentÞ

As a significance test, the R implementation of Fischer’s exact test [23] was used to compare

the groups of pairs with common and different transcriptional orientations as described in the

contingency Table 1 below, resulting in an odds ratio and a p-value for the odds ratio not being

equal to unity.

Table 1. Contingency table for Fischer’s exact test [23] used in this study.

common (RF) different (FF,RR, FR)

concordant 24 49

discordant 245 723

https://doi.org/10.1371/journal.pone.0190913.t001
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Motif searches

The dimeric binding model of Adr1 binding used was similar to that of Cheng et al. [11] as a

regular expression C[CT]CC[GA][TCA]N{2–36}[TGA][TC]GG[AG]G, the reverse

being identical. The core recognition site (GC-box) for Mig1 was described as [GC][TC]GG
[GA]G (and C[CT]CC[AG][GC] in the opposite direction) [8]. The more restrictive GC

box, AT box pattern was modelled as [ATG][AT][AT][AT][ATG]N[GC][TC]GGGGand

the reverse of this pattern as CCCC[GA][GC]N[TAC][AT][AT][AT][CAT], based on the

binding sequences reported by Lundin et al. [9] or as [TC][AG]CACCC[AG] from the Sac-
charomyces Genome Database (SGD) [24]. The Adr1 DNA binding motif was modelled either

as [TGA][TC]GG[AG]Gas previously described [11], or as a dimeric binding site C[CT]CC
[GA][TCA]N{2–36}[TGA][TC]GG[AG]G.The DNA binding motif for Aft1 was mod-

elled as [TC]GCACC[TC] from de Freitas at al. [25].

Results

Out of a total of 5 162 genes, 323 were up-regulated in the xylose medium, while 245 were

down-regulated in RNA-seq data of K. marxianus UFS-Y2791 [15]. Differential expression val-

ues were mapped to the complete chromosomes of K. marxianus DMKU3-1042 as annotated

by Lertwattanassakul et al. [14] and represented in Fig 1 (also see Table A and Fig J in S1 Text).

In all chromosomes, except for chromosomes 5 and 6, there seems to be a pattern in that sev-

eral genes close to the telomeres have low expression levels under both conditions of glucose

or xylose as carbon source (Fig 1, tracks 1 and 2). These resemble a reasonable positioning for

subtelomeric silencing. Notably, these regions were non-responsive to the provision of glucose

or xylose as carbon source. However, further away from telomeres, other gene clusters that dis-

played concordant transcription as either up-regulated or down-regulated sets were visible on

the chromosomes. The p-value for the hypothesis test for random occurrence of at least four

concordantly transcribed genes in a segment of six adjacent genes ((U> = 4 and D = = 0) or

(D> = 4 and U = = 0)) was calculated at 1.5×10−4, indicating that this configuration is highly

unlikely to occur by chance.

On initial inspection, two such gene clusters immediately visible on chromosome 1 were

those between 1 Mbp and 1.2 Mbp, which were both up-regulated in the xylose medium com-

pared to the glucose medium, in a surrounding setting of constitutively expressed genes (Fig 2

and Fig A in S1 Text). Another was visible on chromosome 7, between at 874 Kbp. These three

regions were classified as having at least four concordantly transcribed genes regulated in the

upward direction in xylose medium, and hence a p-value of occurrence by change of 1.5×10−4.

The first gene cluster contained the inulinase gene INU1 on the 5’ end, followed by ARN1

(siderophore iron transporter ARN1), KLMA_10520 (uncharacterised protein AN0679),

FMP23 (protein FMP23), ZTA1 (probable quinone oxidoreductase) and KLMA_10523

(uncharacterised protein) (Fig 2). This cluster had all six genes up-regulated. The second gene

cluster contained three repeats of the putative high-affinity glucose transporter HGT1 as well

as GLC3, with four genes up-regulated. These three paralogs likely originated via gene duplica-

tion. In both of these clusters it seems that the gene on one end of the cluster was the most sig-

nificantly up-regulated, with a decreased up-regulation further away from that side. The fold

change in INU1 transcript level was 90.4-fold, decreasing to 3.2-fold for gene KLMA_10523

on the opposite side of the gene cluster. In the second cluster, the three copies of HGT1

showed respective fold-changes of 843, 61 and 12-fold, while the GLC3 gene showed a fold

change of 2.3. This pattern bears a resemblance to the mechanism of chromatin silencing

which spreads from one locus to other loci [1]. However, the highest fold changes within the

clusters were on the centromeric side, and the regions were far from the telomeres. Notably, in
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both the clusters, a putative tRNA gene occurs on the periphery (Fig 2) which might serve as

transcriptional insulator [2]. Another putative tRNA was found downstream of the HGT1

cluster, while another was present halfway between the two clusters.

Biological significance of gene clustering

In the three regions considered to be significant, 14 genes were found to be up-regulated. This

is a small percentage (14.3%) out of the total of 323 up-regulated genes on the whole genome.

However, these contain some of the genes unique to K. marxianus which are also of industrial

importance, including the inulinase gene INU1, as well as sugar transporters, the FOX2 gene

of peroxisomal β-oxidation, some genes of the 2-methylcitrate cycle, and others apparently

involved with metal ion metabolism.

Significance of outward transcription in co-regulation of adjacent gene

pairs

A statistical test was performed to estimate whether gene pairs with a common intergenic

region (RF orientation) showed a higher likelihood of being concordantly transcribed, as

Fig 1. Visual representation of genomic chromosomes 1 to 8 and the mitochondrial chromosome mapped with

RNA-seq data from K. marxianus UFS-Y2791 using the genome annotation by Lertwattanassakul et al. [14]. Black

represents intergenic regions. Track 1, normalised transcript levels with glucose as carbon source; Track 2, normalised

transcript levels with xylose as carbon source. Warmer colours represent highly expressed genes with red indicating the

highest; colder colours represent lowly expressed genes with violet indicating the lowest. Track 3, up/down classifier

scheme (as xylose/glucose): red, up-regulated; green, down-regulated; grey, constitutively expressed. Track 4, colouring

scheme reflects the log2 of fold changes, from glucose to xylose (as xylose/glucose): warmer colours represent the

highest positive fold changes, colder colours the highest negative fold changes and grey the constitutively expressed

genes. Also see Table A in S1 Text for transcript levels and fold changes, and Fig J in S1 Text for a colour key.

https://doi.org/10.1371/journal.pone.0190913.g001
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opposed to those pairs different intergenic regions (FF, RR, FR) (see Materials and Methods).

Of 5 209 adjacent gene pairs, only those pairs with at least one differentially regulated gene

were investigated (1 041), of which 269 had a common intergenic region and with 24 display-

ing concordant transcription, while 772 pairs had different intergenic regions of which 49 dis-

played concordant transcription. The likelihood ratio L was calculated at 1.41, suggesting that

there was some bias towards concordant transcription when sharing an intergenic region, as

compared to pairs with different intergenic regions. However, the Fisher’s exact test resulted

in an odds ratio of 1.44, with a p-value of 0.166, suggesting that this was not a statistically sig-

nificant global observation.

However, the discovery of co-regulated gene clusters based on positional enrichment of

transcriptional data may evidently be explained away partly by outward transcription, since

three adjacent pairs of outwardly transcribed genes form a cluster of six genes and hence up to

three of the pairs may have RF orientation. Each of the three clusters investigated were initially

considered. It showed that for the INU1 cluster, four out of six concordantly regulated genes

shared two intergenic regions (two pairs centred around two intergenic regions), explaining

66.6% of the concordant regulation. For the FOX2 cluster, two out of the four concordantly

expressed genes had a common intergenic region, explaining 50% of the concordant regula-

tion. For the HGT1 sugar transporter cluster, none of the concordantly transcribed genes had

a common intergenic region.

An estimate was also calculated to determine whether there was reason to believe that con-

cordantly regulated clusters should arise due to a higher than expected prevalence of gene

Fig 2. Visual representation of two clusters of up-regulated genes on chromosome 1. See Fig 1 for explanation of the colouring of the tracks. Gene515 is a putative

tRNA gene immediately downstream of the cluster containing INU1, downstream of SES1. Gene542 is another putative tRNA gene in the HGT1 cluster, immediately

downstream of the HGT1 repeat. Immediately downstream of the HGT1 cluster is tRNA Gene547, and halfway between the two clusters, tRNA Gene527 is visible. Also

see Table A in S1 Text for transcript levels and fold changes, and Fig J in S1 Text for a colour key.

https://doi.org/10.1371/journal.pone.0190913.g002
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pairs with a common intergenic region (with RF orientation), regardless of the concordance of

their expression patterns. Considering only those pairs with at least one differentially

expressed gene (1 041 pairs), the expected number of RF pairs was 260.25 (exactly 25% of the

cases), assuming randomised orientation. The observed number was 269, which is not signifi-

cantly different. Hence, skewed orientation of gene pairs does not seem to contribute signifi-

cantly to finding concordantly regulated clusters.

Functional organisation, evolutionary conservation and regulatory

potential of the gene cluster containing the inulinase gene INU1

Fig 3 shows the direction of gene transcription in the gene cluster containing INU1. To gain

insight into the functional organisation of the up-regulated gene cluster containing the

biotechnologically important inulinase gene INU1, the functional annotation of the two

uncharacterised proteins KLMA_10520 and KLMA_10523 was considered.

Gene KLMA_10520 has the GO terms "FMN binding [GO:0010181] and oxidoreductase

activity [GO:0016491]" associated on the UniProt database. For gene KLMA_10523, a search

on ProtoNet [26] suggested that the protein may bind to the enzyme protein phosphatase type

1, based on structural similarity with other proteins in its protein structural cluster from vari-

ous species, including GIP1 in S. cerevisiae. Several highly similar sequences were found by a

BLASTP search, but all of these were to uncharacterised proteins. The best characterised was

the GIP1 gene product, which is a meiosis-specific regulatory subunit of the Glc7 protein phos-

phatase [27]. Using BLASTP, GIP1 was found but at a low statistical significance with only a

short region matching GIP1. DELTA-BLAST improved the query coverage to 35% with an

improved statistical significance (E-value = 2e-05) to GIP1 (see Fig B in S1 Text). The match-

ing region was 197 bp long with a 40% similarity and 26% identity (Fig C in S1 Text). A con-

served domain or protein family was not reported by DELTA-BLAST.

Perhaps most significant in assigning putative homology to the KLMA_10523 gene was its

genomic context. The genomic view of the Saccharomyces Genome Database [28] showed that

both the ZTA1 and FMP23 genes are present in S. cerevisiae as well, and transcribed in the

same orientation as in K. marxianus (compare Fig 3 and Fig D in S1 Text). In both species,

transcription of the genes ZTA1 and FMP23 occurs away from each other where their coding

regions are separated by a short intergenic region. The organisation of this region of the

genome was thus conserved after the genome duplication and reshuffling events in the evolu-

tionary past of the Saccharomycetes. In S. cerevisiae, GIP1 is found directly downstream of

ZTA1 and transcribed in the same orientation as ZTA1. This was found to be exactly the situa-

tion in K. marxianus (compare Fig 3 and Fig D in S1 Text). Most probably, GIP1 and

Fig 3. The gene cluster containing INU1, between 1.09 Mbp and 1.11 Mbp on chromosome 1, showing the

direction of transcription. The colouring scheme reflects the log2 of fold changes, from glucose to xylose (as xylose/

glucose): warmer colours represent the highest positive fold changes, colder colours the highest negative fold changes

and grey the constitutively expressed genes. The direction of the arrows indicates the direction of transcription.

Gene515 is a putative tRNA gene immediately downstream of the cluster containing INU1.

https://doi.org/10.1371/journal.pone.0190913.g003
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KLMA_10523 had a common ancestor. Following the same rationale, aligning KLMA_10521

with the RPS11B protein, the ribosomal subunit gene immediately downstream from FMP23

in S. cerevisiae did not result in any significant similarity. ARN1 was found on chromosome

VIII of S. cerevisiae (Fig E in S1 Text). The amino acid sequence of the EFM1 gene product,

which occurs immediately upstream of ARN1 (see Fig E in S1 Text), had a closest match to the

protein of the YHL039W gene in K. marxianus, namely 906 968 bp to 908 632 bp on chromo-

some 8 (AP012220.1), and not on chromosome 1 where the gene cluster containing INU1 is

found. The closest match to the gene product of INU1 of K. marxianus in S. cerevisiae was the

invertase encoded by SUC2. In S. cerevisiae, SUC2 is found on chromosome IX (Fig F in S1

Text). The Yeast Gene Order Browser [5] is a useful tool to investigate synteny among regions

on yeast genomes. Fig G in S1 Text shows that GIP1, ZTA1 and FMP23 are conserved in a

region of synteny in all pre-genome duplication yeasts, along with FAL1, CIS1, the tRNA gene

tV-UAC, and SES1. Conversely, ARN1 is only shared among Lanchaea thermotolerans (K.

thermotolerans), L. waltii (K. waltii) and S. cerevisiae, but absent from K. lactis, L. kluyveri (S.

kluyveri) and other pre-genome duplication yeasts (Fig H in S1 Text).

In summary, it is thus likely that FMP23, ZTA1 and KLMA_10523 (GIP1) in S. cerevisiae
originated from a single genomic region in the last common ancestor, and were kept intact in

S. cerevisiae after the genome duplication event and subsequent extensive rearrangements,

while ARN1 and KLMA_10520 were moved to other regions. The potential chromatin silenc-

ing insulator tRNA Gene515 (tV-UAC) was also conserved in this segment among the 11 yeast

species investigated using the Yeast Gene Order Browser (Fig G in S1 Text).

Notably, both FMP23 and ARN1 have been implicated in the response to metal ion concen-

tration. It has been suggested that FMP23 (YBR047W) was involved in copper or iron balance,

as in S. cerevisiae it is up-regulated in response to copper depletion and its regulatory region is

enriched with binding sites for the Aft1 and Aft2 transcription factors [29]. Aft1 and Aft2 con-

trol a number of iron responsive genes [29]. ARN1 also is regulated by Aft1 [30]. This raises

the question whether the Aft1 and Aft2 binding sites possibly originated in the common ances-

tor of Kluyveromyces and Saccharomyces, which suggests that they might also be present in K.

marxianus and concentrated over the gene cluster containing INU1.

The exact consensus pattern GTGCACCC for the Aft1 binding site in the regulatory region

of FMP23 did not result in any matches in the gene cluster investigated here. However, using

the consensus motif [TC]GCACC[TC] from de Freitas at al. [25] revealed two potential bind-

ing sites for FMP23 and ZTA1, as well as one that was in the region of the core promoter of

ARN1, but which may equally serve as a regulator of the KLMA_10520 gene (Fig 4). In addi-

tion, the motif was also found at the region upstream of the inulinase gene INU1. In SGD, the

motif is described as "PyPuCACCCPu” ([TC][AG]CACCC[AG]), which is more specific.

Using this pattern revealed that the binding site in the core promoter region of ARN1 matched

the more specific pattern, as did the pattern closest to the ZTA1 start site (Fig 4, red lines). If

these were true functional binding sites for Aft1, this cluster may be responsive to concentra-

tions of metal ions. This finding might also have a direct application, as it suggested that inuli-

nase production in this yeast might be further inducible by adjustment of the concentration of

metals such as iron or copper.

Since the alleviation of glucose repression is a likely explanation for the up-regulation of

many genes in S. cerevisiae, it was expected that Adr1 and Mig1 may regulate this response

[18]. The short and degenerate core binding site of Adr1 resulted in too many putative binding

sites to be considered. The much more restrictive dimeric binding model revealed only two

binding sites in the whole region, one of which was directly upstream of the FMP23 gene (Fig

4). Mig1 is also an important transcriptional repressor in S. cerevisiae. Both the GC box motif

and the combined AT box, GC box motifs were scanned through the gene cluster. Three of the
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combined AT box, GC box motifs were found in this region (Fig 4, magenta lines), of which

two were the sites reported by Lertwattanasakul et al. [18]. The other motif is in the same

upstream intergenic region of INU1, directly downstream of the ARN1 gene. A larger number

of the more degenerate GC box motifs was also detected (Fig 4, green lines), which appeared

to be concentrated over the up-regulated gene cluster as opposed to the neighbouring regions.

The regulation of this gene cluster may thus both be responsive to the concentration of the car-

bon source and to metal ions.

The dimeric Adr1 binding sites were notably absent in the gene cluster containing the

sugar transporter gene HGT1 (Fig 5), except for one in-between two of the HGT1 gene copies.

The same HGT1 gene also had a candidate site for Aft1 binding. However, each of the three

HGT1 copies had candidate binding sites for the GC box, AT box Mig1 model in their

upstream regulatory regions, which were the only such sites in the whole region. As was the

case with the INU1 cluster, candidate Mig1 sites were concentrated around the genes with the

most significant up-regulation. Since gene duplication is the most likely explanation for

observing three copies of the same gene, it is expected that the same regulatory features were

also copied and may have been conserved. In terms of the positioning of Mig1, Adr1 and Aft1,

the three upstream regulatory regions do not bear a resemblance with one another.

Genes of the 2-methylcitrate cycle are up-regulated and co-localised

A gene cluster with four up-regulated genes (FOX2, KLMA_70428, ICL2 and KLMA_70430)

was found on chromosome 7 (Fig 6). The FOX2 gene encodes one of the enzymes of β-oxida-

tion, a pathway which was strongly up-regulated in the xylose medium along with many other

peroxisomal genes [14, 15]. No other peroxisomal genes were, however, found close to the

FOX2 gene. Further investigation showed that peroxisomal genes were distributed among

chromosomes. The up-regulated isocitrate lyase 2 gene, ICL2, was also found within the clus-

ter. ICL2 does not encode the glyoxylate cycle enzyme Icl1, but instead encodes an isocitrate

lyase isozyme belonging to the 2-methylcitrate cycle. All three genes encoding enzymes of the

2-methylcitrate cycle were strongly up-regulated in the xylose medium [15]. Strikingly, the

Fig 4. Candidate DNA binding sites for Adr1, Mig1 and Aft1/Aft2 in the vicinity of a gene cluster containing

INU1, between 1.09 Mbp and 1.11 Mbp on chromosome 1. The colouring scheme reflects the log2 of fold changes,

from glucose to xylose (as xylose/glucose). Black lines, candidate Adr1 binding sites using the dimeric binding model;

magenta lines, candidate Mig1 binding sites using the GC box, AT box model; green lines, candidate Mig1 binding

sites using the core GC box model; blue lines, Aft1/Aft2 consensus motif [TC]GCACC[TC]; red lines, Aft1/Aft2

consensus motif PyPuCACCCPu ([TC][AG]CACCC[AG]).

https://doi.org/10.1371/journal.pone.0190913.g004
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Fig 5. Candidate DNA binding sites for Adr1, Mig1 and Aft1/Aft2 in the vicinity of a gene cluster containing

three copies of HGT1, between 1.14 Mbp and 1.17 Mbp on chromosome 1. The colouring scheme reflects the log2 of

fold changes, from glucose to xylose (as xylose/glucose). Black lines, candidate Adr1 binding sites using the dimeric

binding model; magenta lines, candidate Mig1 binding sites using the GC box, AT box model; green lines, candidate

Mig1 binding sites using the core GC box model; blue lines, Aft1/Aft2 consensus motif [TC]GCACC[TC]; red lines,

Aft1/Aft2 consensus motif PyPuCACCCPu ([TC][AG]CACCC[AG]).Gene542 is a putative tRNA gene in the

HGT1 cluster, immediately downstream of the HGT1 repeat, and immediately downstream of the HGT1 cluster is

tRNA Gene547.

https://doi.org/10.1371/journal.pone.0190913.g005

Fig 6. A cluster of up-regulated genes on chromosome 7. See Fig 1 for explanation of the colouring of the tracks.

https://doi.org/10.1371/journal.pone.0190913.g006
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other two genes of the 2-methylcitrate cycle, namely 2-methylcitrate dehydratase (PDH1) and

citrate synthase 3 (CIT3), were found to be located close to the FOX2-containing gene cluster

and adjacent to each other (Fig 6).

Using the dimeric binding model for Adr1 revealed one candidate binding site upstream of

FOX2 (Fig 7), which is in accordance with data for S. cerevisiae where FOX2 was shown to be

under the regulation of Adr1 [10]. Adr1 was also found to be the most likely candidate regula-

tor of up-regulated genes based on the enumerative method of heptamer frequency compari-

sons [17]. Four other candidate Adr1 sites were found in proximity of the gene cluster, but

were either inside the coding regions or downstream of the genes. The GC box, AT box motif

for Mig1 resulted in one candidate binding site upstream of the PDH1 gene, immediately

downstream of CIT3.

Discussion

In this work, regions were found close to telomeres that harboured sequences of genes that were

expressed at very low levels under conditions with glucose or xylose as sole carbon sources, sug-

gesting that subtelomeric silencing might only appear under certain conditions, or that both

glucose and xylose lead to silencing. Other differentially regulated gene clusters were discovered

that may be under the control of chromatin desilencing in response to the carbon source. These

resembled the expression patterns of subtelomeric regions found in S. cerevisiae [1], but were

not located close to telomeres. The silencing of genes due to chromatin compaction and the

reverse process occur in a cascaded fashion which spreads across parts of a chromosome. It

seems that the most significantly up-regulated genes in these clusters were along the periphery

of the clusters, with a gradual decrease in differential expression towards the other side. Notably,

the two clusters investigated on chromosome 1 both had putative tRNA genes on the down-

stream side. The tV-UAC tRNA gene (Gene515 in K. marxianus UFS-Y2791) was found down-

stream from the proposed INU1-containing gene cluster (Fig G in S1 Text), which also has

been conserved at this locus among the 11 of the yeast species investigated. It is noteworthy that

in S. cerevisiae the tV-UAC tRNA gene is the last of a segment of six genes conserved among

yeast species. Similarly, the putative tRNA tK-CUU (gene 542) is located downstream of the

proposed HGT1-containing gene cluster (Fig I in S1 Text). These tRNA genes may, therefore,

possibly serve as transcriptional insulators, encapsulating the genomic regions into functional

Fig 7. Candidate DNA binding sites for Adr1 and Mig1 near a gene cluster on chromosome 7 containing FOX2.

The colouring scheme reflects the log2 of fold changes, from glucose to xylose (as xylose/glucose). Black lines,

candidate Adr1 binding sites using the dimeric binding model; magenta lines, candidate Mig1 binding sites using the

GC box, AT box model; green lines, candidate Mig1 binding sites using the core GC box model.

https://doi.org/10.1371/journal.pone.0190913.g007
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clusters in three-dimensional space, tethered to the nuclear matrix [2], which could result in

concordant transcriptional regulation. However, the clusters that were investigated in this study

have been re-constituted from different parts of the common ancestor (Figs G-I in S1 Text).

Hence, the clusters discovered in this manner of transcriptional profiling positional enrichment

do not seem to be supported by syntenic mapping of gene order, although it is evident that seg-

ments within these clusters were conserved, such as the FMP23, ZTA1 and KLMA_10523

(GIP1), SES1, tV-UAC sections of the INU1 containing cluster, and the UBC8, GLC3, tK-CUU

segment in the HGT1 containing cluster. These were joined to segments containing sugar utili-

sation genes such as INU1, which is unique to K. marxianus.
Outward transcription from common intergenic regions and regulatory elements may be a

contributor to co-regulation, although the Fischer’s exact test could not conclusively provide

evidence for this bias towards concordant transcription around RF oriented gene pairs. This

itself might bias the discovery of gene clusters by positional enrichment using transcriptional

data, partly explaining away the potential role of chromatin silencing, e.g. for the INU1 con-

taining cluster (66%) and for the HGT1 containing cluster (50%), but not for the FOX2 con-

taining cluster (0%).

Glucose repression involves transcription factors, where Mig1 serves as a repressor and

Adr1 as an activator. These were also highlighted in previous work to be likely important in

the differential response to glucose and xylose in K. marxianus [17]. The mechanism of Mig1

repression is to recruit chromatin silencing proteins such as Tup1 [31] leading to the silencing

of chromatin. Thus, the exact location of Mig1 sites, such as the distance from the transcription

start site and the orientation of its binding, may be less important as opposed to those tran-

scription factors that interact with RNAPII via the Mediator complex. Candidate GC box, AT

box Mig1 sites were found in the regulatory regions of these clusters, and their abundance also

appeared to correlate with the most significantly up-regulated genes, notably for the INU1

containing cluster, the three HGT1 copy cluster and for the PDH1 gene. For the HGT1 gene

cluster, it is expected that the gene duplication events may have resulted in co-regulation of

these three genes due to copied regulatory elements. Even though the positioning of regulatory

motifs for Mig1, Adr1 and Aft1 did not follow the same pattern in the three genes, it does not

rule out that some of these elements might have originated from the same ancestral motifs.

Whether other regulatory elements were conserved in these regions can be addressed by phy-

logenetic comparisons of sister species and is under investigation.

It was interesting to note that the highly up-regulated FOX2 gene of peroxisomal β-oxida-

tion was found in a cluster together with the ICL2 gene of the up-regulated 2-methylcitrate

cycle, and that the other two genes of this pathway were found to be up-regulated and located

close to this cluster and adjacent to each other. Adr1, which is known to regulate peroxisomal

genes, was found to have a candidate site in the regulatory region of the FOX2 gene. It was also

noteworthy that the INU1 gene encoding inulinase was found in a cluster of other up-regu-

lated genes known to be associated with the response to metal ion concentrations in S. cerevi-
siae. Since this segment of the genome has been conserved in S. cerevisiae even after severe

reshuffling of the genome in the evolutionary past, it is speculated that the same regulatory

mechanisms originated in the earlier common ancestor. In accordance with this notion, candi-

date binding sites for the metal responsive Aft1/Aft2 binding sites were found for these genes,

as they also occur in S. cerevisiae.

Conclusions

The genomic context of complete chromosomes provided another route of exploration of

RNA-seq data in the differential expression response of K. marxianus UFS-Y2791 to glucose
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and xylose as respective carbon sources. The up-regulated gene clusters identified in this work,

based on positional enrichment, presented an interesting perspective on gene regulation. Gene

regulation of pathways such as the 2-methylcitrate cycle may be coordinated both by transcrip-

tion factors and their localisation along the chromosome, in which a spread of chromatin

silencing or desilencing could coordinate the regulation of a gene cluster. Outward transcrip-

tion seems to be a significant contributing factor to co-regulation of the INU1 and HGT1 con-

taining clusters. Yet for others like the genes encoding peroxisomal β-oxidation, the

coordination may be more dependent on common transcription factor binding sites. Finding

co-localisation of the INU1 gene with metal-responsive genes, as well as candidate binding

sites for a metal responsive transcription factor, provide an interesting perspective on the use

of co-regulated gene clusters. Perhaps such knowledge could be used in an industrial scenario

where the adjustment of metal ion concentrations, in particular copper and iron, may be used

to further improve the production of inulinase, along with a non-fermentable carbon source to

impose glucose derepression. Further experimental validation of predictions would improve

this line of research. Insertion of a gene along with its promoter for which its activation condi-

tion is well defined into these clusters would further support higher level gene regulation, if it

adopted that of the clusters. Ultimately, additional high-throughput data in the form of chro-

matin immunoprecipitation should be invaluable as complementary datasets to the computa-

tional analysis of genomic and RNA-seq data presented here that suggest higher level gene

regulation in this extraordinary yeast species.
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