Review began 01/17/2022
Review ended 01/21/2022
Published 01/23/2022
© Copyright 2022
Alsanea et al. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Classical 11 β-Hydroxylase Deficiency Caused by a Novel Homozygous Mutation: A Case Study and Literature Review

Mohammad N. Alsanea ${ }^{1}$, Abdulmoein Al-Agha ${ }^{2}$, Mohamed Abdelmaksoud Shazly ${ }^{2}$
1. Internal Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU 2. Pediatrics, King Abdulaziz University Faculty of Medicine, Jeddah, SAU

Corresponding author: Mohammad N. Alsanea, dr.malsanea@gmail.com

Abstract

Congenital adrenal hyperplasia (CAH) is an uncommon condition and 11β-hydroxylase deficiency ($11 \beta \mathrm{OHD}$) accounts for $0.2-8 \%$ of cases. In this study, we report a three-year-old girl with a known diagnosis of classical CAH on maintenance treatment with hydrocortisone who presented with abnormal genitalia and persistent hypertension. Genetic testing confirmed the diagnosis of autosomal recessive CAH due to 11β OHD as a result of a novel homozygous pathogenic mutation, c.53dup p.(Gln19Alafs*21), in the CYP11B1 gene. Physicians should consider the possibility of classical 11β OHD in CAH patients presenting with persistent hypertension, even if other laboratory biomarkers are equivocal.

Categories: Endocrinology/Diabetes/Metabolism, Pediatrics
Keywords: atypical genitalia, hypertension, hyperplasia, adrenal, congenital

Introduction

Congenital adrenal hyperplasia (CAH) is a genetic endocrine metabolic disease characterized by autosomal recessive defects in one of the adrenal enzymes responsible for glucocorticoid biosynthesis [1,2]. It was first discovered by De Crecchio in 1865 [3]. The spectrum of clinical presentations of CAH depends on the defective enzyme and the severity of the defect. Clinical manifestations stem from both the failure to synthesize hormones distal to the enzymatic block and from the accumulation of cortisol precursors proximal to the block, often with a shift to other biologically active steroids [2]. CAH leads to diminished production of cortisol and decreased or increased production of mineralocorticoids and/or androgens depending on the site of the block. Patients with CAH show a wide spectrum of clinical presentations depending on the underlying enzyme deficiency, including deficiency of 21 -hydroxylase, 11β-hydroxylase, 3β-hydroxysteroid dehydrogenase, and 17α-hydroxylase [4]. The majority of CAH cases $(90-99 \%)$ occur due to 21 -hydroxylase deficiency, while 11β-hydroxylase deficiency ($11 \beta \mathrm{OHD}$) accounts for only $0.2-8 \%$ of cases $[5,6]$. In this study, we report a case of congenital adrenal hyperplasia due to 11β OHD in a three-year-old girl who presented with abnormal genitalia and hypertension.

Case Presentation

A three-year-old girl from Yemen with a known diagnosis of classical congenital adrenal hyperplasia on maintenance treatment with hydrocortisone 2.5 mg thrice daily. She was brought to the Pediatric Endocrine Clinic because of repeated episodes of hypertension for six months duration. Her review of systems and past medical history were insignificant and unremarkable. Her antenatal and natal histories were normal. She was born at full term via spontaneous vaginal delivery with a birth weight of 3100 g . Upon delivery, abnormal genitalia was observed. Her parents were first-degree cousins and there was no family history of similar conditions. On examination, her height and weight were 103 cm and 16.80 kg , respectively, which were both above the 75 th percentile for her age and sex. Her systolic and diastolic blood pressure average measurements were 164 and 91 mmHg , respectively, heart rate was 110 beats $/ \mathrm{min}$, temperature was $36.8^{\circ} \mathrm{C}$, and respiratory rate was 22 breaths $/ \mathrm{min}$. She had no dysmorphic features. Systemic examination normal except for hyperpigmented elbows and knees; however, genital examination revealed hyperpigmentation, bifid labioscrotal folds, a single urogenital sinus with an enlarged phallus, and no palpable gonads (Figure 1). She had no signs of hyperandrogenism. The laboratory results are shown in Table 1.

Cureus

FIGURE 1: Genitalia of the patient $(46, X X)$ showing (a) hyperpigmentation, (b) bifid labioscrotal folds, a single urogenital sinus with an enlarged phallus, and no palpable gonads.

Cureus

Parameter	Test Result	Reference Range
Hemoglobin	$11.9 \mathrm{~g} / \mathrm{dL}$	$10.2-15.2 \mathrm{~g} / \mathrm{dL}$
Leukocytes	7.87 K/uL	5-17 K/uL
Platelets	406 K/uL	150-450 K/uL
Blood Glucose	4.6 mmol/L	3.9-6.7 mmol/L
Adrenocorticotropic hormone	4.1 Pmol/L	1.6-13.9 Pmol/L
Morning Cortisol (8 AM)	$288.35 \mathrm{nmol} / \mathrm{L}$	140-690 nmol/L
Renin	1.58	0.6 to $4.3 \mathrm{ng} / \mathrm{mL} / \mathrm{h}$
Aldosterone	2.67	2-9 ng/dl
Testosterone	$1.25 \mathrm{nmol} / \mathrm{L}$	0.42-2.06 nmol/L
Dehydroepiandrosterone sulfate	4.70 umol/L	1.65-11.60 umol/L
Androstenedione	13.2 ng/dL	5-51 ng/dL
17-Hydroxy-progesterone	$11.7 \mathrm{ng} / \mathrm{dL}$	4-115 ng/dL
Estradiol	43.32 Pmol/L	26-125 Pmol/L
Follicle-stimulating hormone	$1.31 \mathrm{IU} / \mathrm{L}$	1.5 to 33.4 IU/L
Luteinizing hormone	$0.10 \mathrm{mlU} / \mathrm{L}$	0.5-76.3 mIU/L
Sodium	$139 \mathrm{mmol} / \mathrm{L}$	136-145 mmol/L
Potassium	3.6 mmol/L	$3.5-5.1 \mathrm{mmol} / \mathrm{L}$
Chloride	$107 \mathrm{mmol} / \mathrm{L}$	98-107 mmol/L
Urea (BUN)	$2.2 \mathrm{mmol} / \mathrm{L}$	$2.5-6.4 \mathrm{mmol} / \mathrm{L}$
Creatinine	30 umol/L	53-115 umol/L
Urine analysis	Negative	Negative
Urine culture	Negative	Negative

TABLE 1: Laboratory analysis of the patient while she was on her maintenance replacement therapy.

BUN: blood urea nitrogen

Imaging modalities were used to rule out other associated abnormalities. Renal ultrasonography showed normal kidneys and internal female reproductive organs with a small prepubertal uterus and hydrocolpos with possible inferior vaginal stenosis at the level of the urogenital sinus. A voiding cystourethrogram (VCUG) showed no evidence of vesicoureteral reflux. The results of the other systemic investigations were normal. Chromosomal analysis revealed a normal karyotype of 46,XX and genetic testing, which was previously ordered upon her presentation in the clinic, confirmed the diagnosis of autosomal recessive CAH due to $11 \beta 0 H D$ as a result of a homozygous pathogenic mutation, c.53dup p.(Gln19Alafs*21), in the CYP11B1 gene. She was commenced on an angiotensin-converting-enzyme inhibitor (Captopril) 6.5 mg thrice daily with good response, bringing her blood pressure average measurements back to the normal range after four weeks.

Discussion

The worldwide incidence of CAH due to 11β OHD is approximately $1: 100,000$ live births in the general nonconsanguineous population [7]. The incidence of 11β OHD varies geographically, with most cases occurring in the Middle East and North Africa [8]. Moreover, 11β OHD constitutes up to 25% of CAH cases in Saudi Arabia and up to 8% in most other populations [9,10$]$. Of the 11β HD cases, 58% are a consequence of consanguineous marriages [8]. Classical CAH patients present with salt-wasting or simple virilizing form at birth or in the neonatal period [4]. Notably, there are no definite criteria to differentiate between all types of

Cureus

CAH; this factor increases the diagnostic challenges associated with such disorders. CAH should be considered as a spectrum of phenotypes, ranging from asymptomatic to severe [11]. The enzymatic deficiency of 11β-hydroxylase reduces the conversion of 11-deoxycortisol (S) and 11-deoxycorticosterone (DOC) to cortisol and corticosterone, leading to their accumulation and shunting into androgens [1]. Classic $11 \beta O H D$ presents with features of hyperandrogenism, such as virilization of the external genitalia in female newborns, peripheral precocious puberty, and advanced bone age due to premature epiphyseal closure [1,5,7]. Moreover, elevation in the levels of mineralocorticoid-like precursors, such as DOC, leads to the development of mild to moderate hyporeninemic hypertension in two-thirds of the cases at the time of diagnosis, sodium retention, hypokalemia, and acidosis [12-15]; other features include hirsutism, acne, and hyperpigmentation [16]. Our patient had persistent hypertension despite being on hydrocortisone for her CAH. Moreover, she did not present with any classic metabolic abnormalities associated with CAH. The novel genetic mutation we discovered has not been reported previously, and the diagnosis of classic 11β OHD CAH was confirmed. Other known mutations causing classic 11 ßOHD CAH are summarized in Table 2. The presence of refractory hypertension seems to be a distinctive finding in CAH due to classical $11 \beta O H D$, regardless of the presence or absence of other classical biochemical features of CAH [13,17-19]. Recognition and treatment of the underlying cause of hypertension are important because it can lead to retinopathy, left ventricular hypertrophy, intracranial aneurysms, and cerebrovascular disease [10,20-22]. Physicians should be aware that persistent hypertension may be the only presenting symptom of the 11β OHD type of CAH.

Cureus

Classic 11ßOHD		
Mutation	Clinical presentation or notes	Reference
c.954G > A;p.Thr318Thr	Hypertension, severe virilization	Kandemir et al. [23]
p.Arg141*	Hypertension, severe virilization	Kandemir et al. [23] Solyom et al. [24] Zhang M et al. [25]
p.Leu299Pro	Severe virilization	Kandemir et al. [23]
p.His125Thrfs*8	Macrogenitalia, no hypertension	Polat S et al. [26]
p.Leu463_Leu464dup	Testicular adrenal rest tumor	Polat S et al. [26]
p.G379V, p.Q356X	Found in Tunisian population	Kharrat M et al. [27]
IVS7+1G>A	Uniparental disomy	Matsubara K et al. [28]
R448H Non-classic 11ßOHD	Moroccan Jews	White PC et al. [29]
p.(Arg143Trp)	Premature pubarche, accelerated growth	Menabò S et al. [30]
p.(Arg332GIn)	Acne, accelerated growth	Menabò S et al. [30]
p.(Ser150Leu)	Premature pubarche, absent virilization	Polat S et al. [26]
p.(Gly446Ser)	Premature pubarche	Kandemir et al. [23]
p.F79I; p.R138C	Premature pubarche, high-normal blood pressure	Reisch N et al. [19]
p.R143W	Hirsutism, primary amenorrhea	Reisch N et al. [19]
p.P159L	Premature pubarche, accelerated growth	Parajes S et al. [18]
p.M88I; p.R383Q	Peripheral precocious puberty	Parajes S et al. [18]
p.R366C	Hirsutism	Parajes S et al. [18]
p.T401A	Accelerated growth	Parajes S et al. [18]
p.P42S	Acne, precocious adrenarche	Joehrer K et al. [31]
p.N133H	Precocious adrenarche	Joehrer K et al. [31]
p.T319M	Acne, precocious adrenarche	Joehrer K et al. [31]

TABLE 2: Summary of genetic mutations causing classic 11 及OHD CAH.
11β OHD: 11ß-hydroxylase deficiency; CAH: congenital adrenal hyperplasia

Conclusions

The present study reports the case of a three-year-old patient with classical $11 \beta O H D$ presenting with persistent hypertension and carrying a novel homozygous mutation in the CYP11B1 gene. Persistent hypertension in patients with CAH can be a distinguishing clinical feature for differentiating $11 \beta 0 \mathrm{HD}$ from other types of CAH. In this case, we highlight the presence of persistent hypertension in the absence of classic metabolic derangements as a clue for the diagnosis of classic 11β OHD. The possibility of classical $11 \beta O H D$ should always be considered in patients with persistent hypertension, even if other laboratory biomarkers are inconsistent with CAH. Such patients should be carefully identified, diagnosed early, and managed appropriately to avoid the unfavorable consequences of longstanding hypertension.

Additional Information

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the

Cureus

submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Wang D, Wang J, Tong T, Yang Q: Non-classical 11β-hydroxylase deficiency caused by compound heterozygous mutations: a case study and literature review. J Ovarian Res. 2018, 11:82. 10.1186/s13048-018-0450-8
2. Auchus RJ: The classic and nonclassic concenital adrenal hyperplasias . Endocr Pract. 2015, 21:383-9. 10.4158/EP14474.RA
3. Grumbach MM, Shaw EB: Further studies on the treatment of congenital adrenal hyperplasia with cortisone: IV. Effect of cortisone and compound B in infants with disturbed electrolyte metabolism, by John F. Crigler Jr, MD, Samuel H. Silverman, MD, and Lawson Wilkins, MD, Pediatrics, 1952;10:397-413. Pediatrics. 1998, 102:215-21.
4. Bulsari K , Falhammar H: Clinical perspectives in congenital adrenal hyperplasia due to 11β-hydroxylase deficiency. Endocrine. 2017, 55:19-36. 10.1007/s12020-016-1189-x
5. Valadares LP, Pfeilsticker AC, de Brito Sousa SM, et al.: Insights on the phenotypic heterogenity of 11β hydroxylase deficiency: clinical and genetic studies in two novel families. Endocrine. 2018, 62:326-32. 10.1007/s12020-018-1691-4
6. Nimkarn S, Lin-Su K, New MI: Steroid 21 hydroxylase deficiency congenital adrenal hyperplasia . Pediatr Clin North Am. 2011, 58:1281-300, xii. 10.1016/j.pcl.2011.07.012
7. Miller WL, Auchus RJ: The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011, 32:81-151. 10.1210/er.2010-0013
8. Khattab A, Haider S, Kumar A, et al.: Clinical, genetic, and structural basis of congenital adrenal hyperplasia due to 11β-hydroxylase deficiency. Proc Natl Acad Sci U S A. 2017, 114:E1933-40. 10.1073/pnas. 1621082114
9. Al-Mograbi H, Abu-Odeh A, Habahbeh Z, Al Nader M, Hasan MA: Hypertension in children with ambiguous genitalia: six cases. Saudi J Kidney Dis Transpl. 2004, 15:157-66.
10. White PC: Inherited forms of mineralocorticoid hypertension. Hypertension. 1996, 28:927-36. 10.1161/01.hyp.28.6.927
11. Speiser PW: Nonclassic adrenal hyperplasia. Rev Endocr Metab Disord. 2009, 10:77-82. 10.1007/s11154-008-9097-x
12. Singer-Granick C, Hill ID, Rolston RK: Does primary salt wasting occur in 11-beta-hydroxylase deficiency? . J Pediatr Endocrinol Metab. 1995, 8:275-80. 10.1515/jpem.1995.8.4.275
13. White PC: Steroid 11 beta-hydroxylase deficiency and related disorders . Endocrinol Metab Clin North Am. 2001, 30:61-79. 10.1016/S0889-8529(08)70019-7
14. Rösler A, Leiberman E, Cohen T: High frequency of congenital adrenal hyperplasia (classic 11 betahydroxylase deficiency) among Jews from Morocco. Am J Med Genet. 1992, 42:827-34. 10.1002/ajmg. 1320420617
15. Burren CP, Montalto J, Yong AB, Batch JA: CYP11 beta 1 (11-beta-hydroxylase) deficiency in congenital adrenal hyperplasia. J Paediatr Child Health. 1996, 32:433-8. 10.1111/j.1440-1754.1996.tb00945.x
16. Parsa AA, New MI: Low-renin hypertension of childhood. Endocrinol Metab Clin North Am. 2011, 40:36977, viii. 10.1016/j.ecl.2011.01.004
17. Zachmann M, Tassinari D, Prader A: Clinical and biochemical variability of congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. A study of 25 patients. J Clin Endocrinol Metab. 1983, 56:222-9. 10.1210/jcem-56-2-222
18. Parajes S, Loidi L, Reisch N, et al.: Functional consequences of seven novel mutations in the CYP11B1 gene: four mutations associated with nonclassic and three mutations causing classic 11\{beta\}-hydroxylase deficiency. J Clin Endocrinol Metab. 2010, 95:779-88. 10.1210/jc.2009-0651
19. Reisch N, Högler W, Parajes S, et al.: A diagnosis not to be missed: nonclassic steroid 11β-hydroxylase deficiency presenting with premature adrenarche and hirsutism. J Clin Endocrinol Metab. 2013, 98:E1620-5. 10.1210/jc.2013-1306
20. Akyürek N, Atabek ME, Eklioğlu BS, Alp H: Ambulatory blood pressure and subclinical cardiovascular disease in patients with congenital adrenal hyperplasia: a preliminary report. J Clin Res Pediatr Endocrinol. 2015, 7:13-8. 10.4274/jcrpe. 1658
21. Ardhanari S, Kannuswamy R, Chaudhary K, Lockette W, Whaley-Connell A: Mineralocorticoid and apparent mineralocorticoid syndromes of secondary hypertension. Adv Chronic Kidney Dis. 2015, 22:185-95. 10.1053/j.ackd.2015.03.002
22. Kacem M, Moussa A, Khochtali I, Nabouli R, Morel Y, Zakhama A: Bilateral adrenalectomy for severe hypertension in congenital adrenal hyperplasia due to 11beta-hydroxylase deficiency: long term follow-up. Ann Endocrinol (Paris). 2009, 70:113-8. 10.1016/j.ando.2008.12.005
23. Kandemir N, Yilmaz DY, Gonc EN, Ozon A, Alikasifoglu A, Dursun A, Ozgul RK: Novel and prevalent CYP11B1 gene mutations in Turkish patients with $11-\beta$ hydroxylase deficiency. J Steroid Biochem Mol Biol. 2017, 165:57-63. 10.1016/j.jsbmb.2016.03.006
24. Solyom J, Racz K, Peter F, Homoki J, Sippell WG, Peter M: Clinical, hormonal and molecular genetic characterization of Hungarian patients with 11β-hydroxylase deficiency. Int J Disabil Hum Dev. 2001, 2:3744. 10.1515/IJDHD.2001.2.1.37
25. Zhang M, Liu Y, Sun S, Zhang H, Wang W, Ning G, Li X: A prevalent and three novel mutations in CYP11B1 gene identified in Chinese patients with 11-beta hydroxylase deficiency. J Steroid Biochem Mol Biol. 2013, 133:25-9. 10.1016/j.jsbmb.2012.08.011
26. Polat S, Kulle A, Karaca Z, et al.: Characterisation of three novel CYP11B1 mutations in classic and nonclassic 11β-hydroxylase deficiency. Eur J Endocrinol. 2014, 170:697-706. 10.1530/EJE-13-0737
27. Kharrat M, Trabelsi S, Chaabouni M, et al.: Only two mutations detected in 15 Tunisian patients with 11β -
hydroxylase deficiency: the p.Q356X and the novel p.G379V. Clin Genet. 2010, 78:398-401. 10.1111/j.13990004.2010.01403.x
28. Matsubara K, Kataoka N, Ogita S, Sano S, Ogata T, Fukami M, Katsumata N: Uniparental disomy of chromosome 8 leading to homozygosity of a CYP11B1 mutation in a patient with congenital adrenal hyperplasia: implication for a rare etiology of an autosomal recessive disorder. Endocr J. 2014, 61:629-33. 10.1507/endocrj.ej13-0509
29. White PC, Dupont J, New MI, Leiberman E, Hochberg Z, Rösler A: A mutation in CYP11B1 (Arg-448----His) associated with steroid 11 beta-hydroxylase deficiency in Jews of Moroccan origin. J Clin Invest. 1991, 87:1664-7. 10.1172/JCI115182
30. Menabò S, Polat S, Baldazzi L, et al.: Congenital adrenal hyperplasia due to 11-beta-hydroxylase deficiency: functional consequences of four CYP11B1 mutations. Eur J Hum Genet. 2014, 22:610-6. 10.1038/ejhg.2013.197
31. Joehrer K, Geley S, Strasser-Wozak EM, et al.: CYP11B1 mutations causing non-classic adrenal hyperplasia due to 11 beta-hydroxylase deficiency. Hum Mol Genet. 1997, 6:1829-34. 10.1093/hmg/6.11.1829
