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Abstract

For years, we have relied on population surveys to keep track of regional public health sta-
tistics, including the prevalence of non-communicable diseases. Because of the cost and
limitations of such surveys, we often do not have the up-to-date data on health outcomes of
a region. In this paper, we examined the feasibility of inferring regional health outcomes
from socio-demographic data that are widely available and timely updated through national
censuses and community surveys. Using data for 50 American states (excluding Washing-
ton DC) from 2007 to 2012, we constructed a machine-learning model to predict the preva-
lence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical
risk factors), based on population socio-demographic characteristics from the American
Community Survey. We found that regional prevalence estimates for non-communicable
diseases can be reasonably predicted. The predictions were highly correlated with the ob-
served data, in both the states included in the derivation model (median correlation 0.88)
and those excluded from the development for use as a completely separated validation
sample (median correlation 0.85), demonstrating that the model had sufficient external va-
lidity to make good predictions, based on demographics alone, for areas not included in the
model development. This highlights both the utility of this sophisticated approach to model
development, and the vital importance of simple socio-demographic characteristics as both
indicators and determinants of chronic disease.

Introduction

It is well known in public health that socio-demographic factors are key determinants of
health and wellbeing in a population [1,2]. Much research exploring determinants of health
collects these measures routinely but largely ignores these factors, beyond simply adjusting or
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stratifying statistical analyses. Demographic factors are also usually very difficult, or in some
cases impossible, to change and so little direct attention is paid to their relative contribution to
health or disease and the contribution itself is rarely quantified. While standard demographics
are included in most studies and used within standard analytic approaches these factors may
be underestimated and the influence of inequalities between socio-demographic groups over-
looked. Socio-demographic factors are known to be important, yet the full extent of their con-
tribution to health and illness is not necessarily obvious.

New machine learning techniques provide a potentially very powerful means of building
high quality predictive models, particularly in situations where relationships between variables
are complex and may not be fully elucidated using standard statistical techniques. In recent
years, a variety of machine learning approaches have been applied to health issues and have
demonstrated high quality and valid predictions [3-6], although to date these approaches have
focused predominantly on individual-level clinical records and outcomes. Machine learning
techniques may be particularly useful in exploring health issues where complex interactions
exist between a large number of determinants and the outcomes of interest, in ways that tradi-
tional regression approaches may not be able to adequately model, or to identify a priori. There
are a number of ways that the proposed machine learning models may contribute to addressing
challenges in public health. These new techniques may be able to provide insight not only into
existing relationships but also provide higher predictive utility than traditional approaches, ex-
panding the role of socio-demographic data from merely contributing to explanations of pat-
terns of health, to predicting their distribution in communities. A major challenge in
monitoring population health is the regularity, timing and granularity of data available. If they
are able to achieve sufficient precision, modelled estimates can play an important part in strate-
gic decision making[7], and machine learning models may provide a route to this required
level of precision. Such predicted statistics, based only on a small set of population-level char-
acteristics, may be able to fill gaps in data collection from more traditional sources, or facilitate
development of estimates for smaller geographic regions, for which it may not be feasible or
cost-effective to produce survey-based estimates.

Another persistent challenge in population health is identifying the characteristics of com-
munities, environments and policies that promote health and wellbeing. These characteristics
have the potential to inform both intervention design and future community planning to sup-
port health. There is potential that analysis of situations where the measured rates of health
outcomes diverge substantially from demographic-based predictions may help to identify such
areas of best practice and provide much needed information, in the style of ‘natural experi-
ments’ evaluations, to inform future health promotion policies and activities[8]. Finally, it is
often extremely difficult to compare the health outcomes of states or other areas where the
population demographic profiles may be very different. It may be difficult, for instance, for pol-
icy-makers to accurately compare states with much younger or older than average population
profiles, to determine whether the health system is performing well. Divergence of observed
from predicted values may provide a method for ranking states’ performance in promoting
population health that takes account of the full and extensive effect of demographic character-
istics [8]. States or countries may then be ranked, or league tables generated according to the
measured rates of disease outcomes compared to rates predicted by demographic variables
alone. This provides a fairer method of comparing achievements in prevention and treatment
across states with very diverse population demographics.

In this paper, we explore the extent to which a simple set of socio-demographic factors can
be used to predict the prevalence of non-communicable diseases and risk factors at the state
level in the United States. Further, we explore the extent to which ‘demography is destiny’ in
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the observed health outcomes, or whether there is evidence that some states have achieved sig-
nificantly better or worse outcomes than we would expect based on their demography alone.

Methods

Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we con-
structed a machine learning model to predict the prevalence of six non-communicable disease
(NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-
demographic characteristics from the American Community Survey[9]. The 50 states were
randomly sampled into two groups: a derivation group of 30 states and a validation group of
20 states. The outcome data from the derivation group of states was used to ‘train’ the system
and develop the model, and was therefore assumed to have all data about NCDs and risk fac-
tors. Data from the validation group was not used in the model development, but was used to
test the accuracy of the model’s predictions, emulating regions with no existing NCD
surveillance program.

For each of the six outcomes, a model predicting the prevalence was derived using the deri-
vation group data during 2007-2010. The model was then validated using both the chronically
separated data (for 2011-2012) from the derivation group and the out-of-sample data from the
validation group (See Figs 1 and 2). The feasibility of using the model across states was mea-
sured through both the model's predictive performance on the validation group and the perfor-
mance difference between the (chronically separated) data from the derivation group and the
validation group.

Dependant variables: NCD prevalence data from the Behavioral Risk
Factor Surveillance System

All data for state-level prevalence of NCDs and risk factors was drawn from the Behavioral
Risk Factor Surveillance System (BRFSS) [10,11]. The BRESS is an ongoing telephone-based
population health survey, conducted by the United States Centers for Disease Control and Pre-
vention (CDC). Survey results, including state-based population estimates of diseases and risk
factors, are published online annually by the CDC. At the time of writing, the most recent data
available were for year 2012. Table 1 shows the risk factors included in the study[10]. The risk
factor “High blood pressure” was only available in the dataset every second year (2007, 2009,
and 2011). All other variables have annual prevalence data.

Independent variables: Socio-demographic data from the American
Community Survey

Data on demographic and social characteristics of each state were extracted from the American
Community Survey (ACS) [9]. The ACS collects a wide range of community characteristics
through mail and telephone calls. Data aggregated at the state level are updated annually. In
this study, state-level summary data were included for the following population socio-demo-
graphic variables: age, gender, race, household income, employment status, marital status and
education. The data used in the model development were continuous variables representing
the percentage of the state population falling within each category for each characteristic. The
details of the variables and the categories for each of the characteristics are shown in Table 1.
Some demographic data can also be found from the BRFSS, which covers veteran status,
marital status, number of children in household, education level, employment status, and in-
come level (See Section 8.5 to 8.10 of the BRFSS codebook). We chose not to use these demo-
graphic variables from BRFSS, to reduce potential selection bias shared by the independent
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States in the derivation group States in the derivation group
2007-2010 Do

2011-2012

States in the validation group
2011-2012

Model Derivation Model Validation

Fig 1. Data used for model derivation and validation. The 50 states were randomly sampled into a derivation group of 30 states and a validation group of
20 states (See Fig 2). Models were derived from data of the derivation group during years 2007 to 2010, and were validated using 2011-2012 data of both the

derivation group and the validation group.

doi:10.1371/journal.pone.0125602.g001

variables and the dependent variables. By using independent variables from an independent
source, we should have generalizable results. In particular, for a region with no BRFSS-like sur-
vey system in place (e.g., many low-to-median income nations), our model can still predict the
prevalence of particular health outcomes, as long as some basic demographics data
are available.

In the same consideration, we chose not to include prior-year health outcomes (dependent
variables) as independent variables. Although this may increase the accuracy of prediction, it
relies on the presence of a BRFSS-like system.

Derivation and validation of models for inferring NCD prevalence from
census data

For each NCD or risk factor prevalence (denoted Y), a regression model was derived to esti-
mate the prevalence of the risk factor in a region:

Y =c+ B - (ACS variables) (1)

Regression models in the form of (1) were fitted using the data from the 30 states from the deri-
vation group during 2007 to 2010 (See Fig 1). Each observation unit corresponds to a combina-
tion of some state and some year (e.g., Arizona and 2007, Arizona and 2008, and so on). Due to
the large number of variables involved, the regression model was fitted using least square with
lasso penalization [12] on the regression coefficients B. Lasso has a control parameter that de-
cides the number of variables being selected for a given health index, and this was determined
by 10-fold cross-validation. Apart from the lasso regression, a number of other general
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derivation group
validation group

Fig 2. States allocated to the derivation (training) group and the validation (testing) group for model development. 30 states from the derivation
group were coloured blue; 20 states from the validation group were coloured red.

doi:10.1371/journal.pone.0125602.9002

machine learning methods—regression with stepwise feature selection, group lasso, random
forest, and Gaussian process regression—were also used to fit the data, ensuring the results
were robust against the choice of learning methods. The estimated models were validated using
out-of-sample data from 1) 2011-2012 data from the derivation group, and 2) 2011-2012 data
from the validation group. In validation, the model generated the estimates for NCD and risk
factors based on the ACS variables from the validation sample. The estimates were compared
with the prevalence reported by BRESS. Correlation between the predicted and observed vari-
ables was calculated. In addition, states were classified into prevalence quintiles for each of the
six NCD outcomes, according to both observed and predicted values, and the quintile classifi-
cations compared for each outcome and year.

While the results for the validation group directly measure the model’s prediction perfor-
mance, it is the performance difference between the derivation cohort and the validation cohort
that can be used to assess the degree of over-fitting in the model and its generalizability to
unseen data.

Results

The 2011 mean prevalence of the six outcomes, as per the BRFSS, was similar between the
states in the derivation and validation groups (Table 2). The two risk factors—high blood pres-
sure and obesity—were the most prevalent, affecting between one in four and one in three of

PLOS ONE | DOI:10.1371/journal.pone.0125602 May 4, 2015 5/13



el e
@ ' PLOS ‘ ONE Machine Learning to Predict Health Outcomes from Demographic Data

Table 1. Independent and dependent variables included in the study, measuring proportions of popu-
lation for different survey responses.

Variable Details and categories
Independent variables (American Community Survey)

Age Proportion (%) of population aged: 18—25 years* / 25-34 / 35—
44 / 45-54 | 55-64 / 65 years and over

Sex Proportion (%) of males in population

Race Proportion (%) of population: White* / Black or African

American / Asian / Native Hawaiian or Other Pacific Islander /
American Indian or Alaska Native / Two or more races / Other

Household income Proportion (%) of population with annual total household
income: <USD $15,000* / $15,000-$24,999 / $25,000-$34,999 /
$35,000-$49,999 / $50,000 or more

Employment status Proportion (%) of population: Employed* / unemployed

Marital status Proportion (%) of population: Married* / Divorced / Widowed/
Separated / Never married

Education Proportion (%) of population with the following levels of formal

education: Did not complete high school* / high school
graduate / some college or associated degrees / Bachelor
degree or higher

Dependent variables (Behavioral Risk Factor Surveillance Survey)

High blood pressure State-level proportion of adults (%) who have ever been told
they have high blood pressure. Self-reported.

Obese State-level prevalence (%) of population with body mass index
(BMI) greater than 30kg/m?. Based on self-reported weight and
height.

Cardiovascular Disease—Angina or State-level prevalence (%) of self-reported chronic heart

coronary heart disease condition. “Has a doctor, nurse, or other health professional

ever told you that you had angina or coronary heart disease?”

Cardiovascular Disease—Heart attack ~ State-level prevalence (%) of self-reported history of AMI. “Has
a doctor, nurse, or other health professional ever told you that
you had a heart attack, also called a myocardial infarction?”

Cardiovascular Disease—Stroke State-level prevalence (%) of self-reported history of stroke.
“Has a doctor, nurse, or other health professional ever told you
ever told you that you had a stroke?”

Diabetes State-level prevalence (%) of lifetime diabetes diagnosis.
Excluding gestational diabetes only diagnoses and borderline /
pre-diabetes. “Has a doctor, nurse, or other health professional
ever told you that you have diabetes?”

*reference category.

doi:10.1371/journal.pone.0125602.t001

those surveyed. The prevalence of each cardiovascular disease was less than 5% of the popula-
tion in both derivation and validation states.

Standardised coefficients, showing the contributions of the independent socio-demographic
variables to the models are shown in Fig 3. The strongest independent predictor of state-level
health outcomes was education levels, in particular the proportion of the state’s population
with a bachelor’s degree or higher.

The performance of the prediction models, using only information about the states’ socio-
demographic profiles, compared with the out-of-sample observed data is shown in Table 3,
and as scatter plots in Fig 4. Pearson correlations between the predicted and observed values
ranged between 0.823 (prevalence of high blood pressure) and 0.906 (Angina or CHD) for the
2011 and 2012 estimates of the derivation states. Correlations in the validation states were
lower for the same years, varying between 0.753 (prevalence of obesity) and 0.911 (prevalence
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Table 2. Prevalence of NCD and risk factors for the derivation group states and the validation group states at year 2011, defined by proportion of
positive responses to the corresponding BRFSS questions.

Intermediate risk factor
High blood pressure
Obese

Diseases

Cardiovascular Disease-Angina or CHD
Cardiovascular Disease-Heart attack

Cardiovascular Disease-Stroke
Diabetes

doi:10.1371/journal.pone.0125602.t002

Age...18.to.24.years (R)
Age...25.t0.34.years

Age...35.to.44.years

Age...45.to.54.years

Age...55.t0.64.years
Age...65.years.or.more

Gender...Female (R)

Gender...Male

Race...White (R)
Race...American.Indian.and.Alaska.native
Race...Asian
Race...Black.or.African.American
Race...Native.Hawaiian.and.other.Pacific.Islander
Race...Some.other.race
Race...Two.or.more.races
Household.income...Less.than.15000 (R)
Household.income...15000.t0.24999
Household.income...25000.t0.34999
Household.income...35000.t0.49999
Household.income...50000.or.more
Employment.status...Employed (R)
Employment.status...Unemployed
Marital.status...Never.married
Marital.status...Now.married (R)
Marital.status...Separated

Marital.status... Divorced

Marital.status... Widowed
Education...Less.than.high.school.graduate (R)
Education...High.school.graduate
Education...Some.college.or.associate.degree
Education...Bachelor.degree.or.higher

Angina or coronary

”’.‘”.“”HH“‘“‘“.*"”'

State Prevalence, mean (sd)

Derivation group Validation group

31.1 (3.3) 32.5 (4.1)
27.6 (3.2) 27.8 (2.7)
4.2 (0.9) 4.3(0.8)
4.4 (0.9) 45 (0.9)
2.9 (0.5) 3.1(0.7)
9.4 (1.3) 9.7 (1.4)

of diabetes). The median relative absolute error ranged between 0.184 (prevalence of stroke)
and 0.052 (prevalence of obesity). Similar numbers result from other statistical models (see
Table 4). In general, the model appeared to slightly under-estimate the absolute prevalence of
the outcomes in 2011 and somewhat more so in 2012, reflecting in negative bias in the valida-
tion data set. When the values were used to classify states into quintiles of NCD prevalence, the
model predictions performed well, and the performance was similar in both years of validation
data. Overall, 50% of the 550 state-year-NCD prevalence rate combinations were classified into
the same quintile by the predictions of the demographic-based machine learning model as by
their survey-obtained observed data, while 92% of estimates were classified within one quintile
(plus or minus) of the observed quintile. There was no difference between 2011 and 2012 in the
proportion of states correctly classified into quintiles of NCD prevalence (data not shown).

In the exploration of states which had actual (observed) prevalence rates that were substan-
tially different from the rates predicted by the demographic model (Table 4), many more states
had observed values that were more than 10% greater (worse) than expected than had observed

Diabetes Heart attack High blood pressure Obese Stroke

;-‘.——L++~.1‘-4-‘-)‘l¢¢»

|
-an41»++++-+++fh+«L“+rprn<

|
*,..‘o*..,.*++‘+.4‘,,,.‘.§4¢l4.

- - -
- - +

"‘-"[-‘-—t+++~o~&-1'"00¢0f~

- - -

Fig 3. Coefficients of independent demographical variables in models predicting different NCD and risk factors. The dashed lines show the zeros.
The center dots show the means of coefficients. The thicker bars show * sd and the thinner bars show + 2sd based on 1000 models with resampling of the

training data.
doi:10.1371/journal.pone.0125602.9003
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Table 3. Accuracy of risk factor and disease estimates evaluated using out-of-sample data from 2011 and 2012.

RMSE* (bias) Median Absolute Error Pearson correlation (95% ClI)
(Median Relative Absolute
Error)
Derivation Validation Derivation Validation Derivation Validation

Intermediate risk factor

High blood pressure 3.436 (-2.901) 4.159 (-3.601) 2.672 (0.097) 3.491 (0.12) 0.823 (0.658-0.913) 0.864 (0.683-0.945)

Obese 1.723 (-0.7) 2.084 (-0.089) 1.196 (0.043) 1.515 (0.052) 0.872 (0.794-0.922) 0.753 (0.577-0.862)
Diseases

Angina or CHD 0.528 (-0.299) 0.72 (-0.457) 0.298 (0.076) 0.458 (0.131) 0.906 (0.847-0.943) 0.806 (0.698-0.907)

Heart attack 0.541 (-0.361) 0.552 (-0.304) 0.398 (0.097) 0.385 (0.103) 0.9 (0.837-0.939) 0.861 (0.751-0.924)

Stroke 0.409 (-0.301) 0.537 (-0.399) 0.242 (0.091) 0.463 (0.184) 0.876 (0.794-0.922) 0.866 (0.759-0.927)

Diabetes 1.381 (-1.158) 1.188 (-1.008) 1.115 (0.126) 0.908 (0.103) 0.851 (0.762—-0.909) 0.911 (0.838-0.952)

*RMSE stands for Root Mean Squared.

doi:10.1371/journal.pone.0125602.t003

values lower than expected. Almost all states (47) had observed values at least 10% worse than
predicted for at least one indicator in at least one of the validation years. This is consistent with
the observation that the model generally underestimated prevalence of NCDs in the later years
of data. There were just 15 states which had at least one NCD prevalence outcome in 2011 or
2012 that was lower (better) than the predicted prevalence by at least 10%. In 2011, 5 states
(Alaska, Colorado, Iowa, New Mexico and Rhode Island) were better than expected on at least
two indicators. In 2012, Montana was the only state in which at least two indicators were 10%

better than predicted.
2011
Angina or CHD Diabetes Heart attack High blood pressure Obese Stroke
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Fig 4. Predicted vs Observed values of state NCD and risk factor prevalence. Agreement between the predicted and the observed values is reflected by
proximity of the points with the diagonal dashed lines.

doi:10.1371/journal.pone.0125602.9004
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Table 4. Prediction performance of different models.

Intermediate risk factor
High blood pressure
Obese

Diseases
Cardiovascular Disease - Angina or CHD
Cardiovascular Disease - Heart attack
Cardiovascular Disease - Stroke
Diabetes

RMSE on validation group (bias)

Stepwise regression Group lasso Random forest Gaussian process regression
2.324 (-1.231) 3.35 (-2.652) 4.387 (-3.676) 3.141 (-2.438)

2.194 (-0.658) 2.059 (-0.451) 2.512 (-0.765) 2.113 (-0.852)

0.818 (-0.467) 0.657 (-0.376) 0.678 (-0.308) 0.489 (-0.121)

0.595 (-0.164) 0.518 (-0.24) 0.64 (-0.328) 0.547 (-0.288)

0.513 (-0.312) 0.491 (-0.327) 0.493 (-0.36) 0.57 (-0.343)

1.091 (-0.839) 1.166 (-0.999) 1.498 (-1.204) 1.432 (-1.05)

*The following software packages were used: the stepAlC function from the MASS R package [13](for stepwise regression), the gimnet R package [14]
(for group lass), the randomForest R package [15] (for random forest), and the GPML Matlab toolbox [16] (for Gaussian process regression). For
Gaussian process regression, feature selection was first performed with Hilbert-Schmidt Independence Criterion Lasso [17]. The mean function was a

constant function of the mean prevalence in the training set. The covariance function was the squared exponential with a maximum allowable covariance

10 and a length parameter 10.

doi:10.1371/journal.pone.0125602.t004

Discussion

This study found that regional prevalence estimates for non-communicable diseases can be rea-
sonably predicted (generally correlated with observed data at > 0.80), using a very simple set of
routinely collected socio-demographic characteristics of the population, with the application of
machine learning models to existing datasets. This highlights both the utility of this sophisticat-
ed approach to model development, and the vital importance of simple socio-demographic
characteristics as both indicators and determinants of chronic disease.

The derived model’s predictions of NCD prevalence, across 6 outcomes, for 2 years of data
(that were not included in the original model development), were highly correlated with the
observed data, in both the states included in the derivation model (median correlation 0.88)
and those excluded from the development for use as a completely separated validation sample
(median correlation 0.85), demonstrating that the model had sufficient external validity to
make good predictions, based on demographics alone, for areas not included in the
model development.

While the results are promising, there are some potential weaknesses inherent in the nature
of the data used. Firstly, there are weaknesses in the data available for NCD prevalence esti-
mates from the BRESS, as they rely on somewhat subjective, self-reported indicators of chronic
disease[10]. Potential issues with these indicators include recall and reporting biases, and biases
in relation to systematic differences in diagnosis levels of disease. As a result, these indicators
do not necessarily provide a ‘gold standard’ estimate of prevalence either for training or testing
the machine learning models, and may explain some of the variation in the precision
of estimates.

The demographic data in this study was obtained from the American Community Survey
(ACS). The complex design of ACS and BRFSS implies that important differences exist be-
tween these two surveys. First, the sampling units in ACS are Household Units (or Group
Quarters), while the sampling units in BRFSS are owners of a telephone number. Next, ACS re-
lies on mail, internet, telephone, and in-person visits to maximize the response rate, while
BRESS relies on telephone (both landline and mobile phones) interviews only. Finally, BRFSS
data are collected by each state health department. Although uniform guidelines exist, each
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state may carry out the survey differently. Despite these and other differences, both ACS and
BREFSS aim at the same target population (the state population of age 18 and above), with so-
phisticated weighting methods. By using two separate data sources for demography and health
outcomes, it is likely that any shared selection bias would be minimised, although the reported
model accuracy may look lower.

BREFSS was based on landline numbers until year 2011, when mobile numbers were included
as well. At the same time, sampling weights were also changed. Such changes in survey meth-
odology may also decrease the prediction accuracy reported here.

Both ACS and BRFSS data were prevalence proportion estimates with survey weighting ac-
counted for. Any interpretation of the results should be made with that in mind.

A further possible limitation, particularly in relation to applying the models for forward pre-
dictions of NCD trends, is the inability of the model to adapt to secular changes in NCD preva-
lence, which are likely to occur at a much faster rate than changes in the demographic profile
of the regions. This provides an explanation of why all of the models investigated in this study
consistently underestimated prevalence for later years (Table 4), in particular for 2012
(Table 5), while the relative ranking of states remained just as accurate. This under-estimation
may be more pronounced for models based on the lasso penalty, which shrink model coeffi-
cients towards the zero. A key strength of the study on the other hand, was that the demo-
graphic data used are simple, widely available, and for this study were drawn from an entirely
separate data collection system.

Predicting outcomes based on socio-demographic (e.g. census) data has several potential fu-
ture uses beyond simply quantifying the central role that demographics characteristics play in
determining population health outcomes. The level of prediction accuracy achieved in this
demonstration, could be applied to fill gaps in data collection from more traditional sources.

The approach taken in this paper is related to, although distinct from, the practice of eco-
logical inference, and some cautions must therefore be applied to interpretation. Ecological in-
ference typically uses aggregate data to infer conclusions about individual relationships[18].
The technique demonstrated in this paper used aggregate (state level) demographic character-
istics to predict state level NCD prevalence. The results do not, however, provide any insight
into individual-level associations between demographic characteristics and NCDs. That is,
while the model uses state demographic profiles to accurately predict state-level NCD preva-
lence, it does not and cannot infer that an individual with certain characteristics would have a
higher or lower likelihood of suffering from an NCD. To avoid potentially misleading conclu-
sions and an ‘ecological fallacy’ the model’s predictions must remain at and be interpreted at
an area level. Further, it is also important that the results of the machine predictions are

Table 5. Number of states with observed values differing from predicted values by greater than 10%
of estimate, by outcome and year.

NCD prevalence >10% NCD prevalence >10%
better than predicted by worse than predicted by
demographic model demographic model
2011 2012 2011 2012
CVD—Angina/CHD 6 0 9 23
CVD—AMI 5 2 17 24
CVD—Stroke 4 1 21 27
Diabetes 1 2 15 26
High blood pressure 0 n/a 24 n/a
Obesity 2 4 3 5

doi:10.1371/journal.pone.0125602.t005
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interpreted with caution, and that any extrapolation or future predictions are not stretched too
far from the ‘training’ data. It is plausible that the observed ecological associations may not be
stable over time. If models trained using aggregate data estimated at one level (e.g. state) are to
be applied to predict prevalence at a different geographic level (e.g. regions), care must be
taken to validate the approach with observed data where possible, as relationships between
population demographics and NCD prevalence may differ at different geographical levels[19].

When richer data are available, more accurate prevalence estimates may be achieved. In the
well-known Global Burden of Disease Study 2010 [20], a carefully crafted model produces
prevalence estimates from 179 covariates. In particular, random effects for different levels of
geographic regions model the prevalence similarity of neighbouring regions; data from previ-
ous years were included to improve accuracy. In this article, we focus on the utility of widely
available socio-demographic survey data, and aim for a model that generalizes to a region with
no previous data. Hence we opted for a simpler model with only demographic variables. Such a
model does not assume data from multi-level geographic partitions or from previous years.

Analysis of situations where the measured rates of health outcomes diverge substantially
from machine predictions may help to identify areas of best practice or areas with greater need
for investment in action and policy to prevent and manage the disease. In this study, a small
number of states were found to have NCD prevalence levels substantially better than would be
expected based on their demographic profiles. It can be deduced that those states outperform-
ing their predicted values by the greatest amount have endogenous characteristics, environ-
ments, or most importantly, policy settings, which promote health and may be protective
against NCDs. These findings open up possibilities for future comparative analysis to identify
the most important modifiable influences, which may hold promise for intervention and
policy development.

For service planning purposes, this study powerfully illustrates the strength to which simple
demographic characteristics can be used to predict likely disease burden, with the application
of sophisticated modelling techniques. When considering these results from a public health in-
tervention perspective, they are a striking reminder of the crucial importance to population
health of so many variables that we routinely diminish or 'adjust for', when pursuing further ev-
idence about our modifiable risk factors of interest.

The research described here is a simple demonstration of the potential for machine learning
techniques to contribute to the field of public health research, as well as a clear reminder of the
central importance of underlying socio-demographic factors in determining health. The tech-
nique demonstrated raises the possibility of future low cost approaches to appropriately esti-
mating disease burden in regions where data collection is infrequent or difficult. There are
numerous questions still to be answered, however, and application of the technique in a variety
of contexts is needed to determine the extent to which results can be extrapolated to different
environments or disease profiles. It remains to be determined, for example, whether the models
can perform as well in situations where outcomes or exposures (demographics) are more het-
erogeneous between regions, or less stable over time.

Conclusions

Demography appears to play a very important role in population health ‘destiny’ in terms of
important health outcomes. The findings of our research, using socio-demographic character-
istics to model and accurately predict chronic disease implies both that fundamental popula-
tion characteristics underpinning patterns in health and illness deserve close attention, and
that sophisticated analysis of these characteristics can provide useful insights for understanding
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observed trends in population health and to inform future strategic decision making for im-
proved health outcomes.
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