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Abstract: Tracking technologies offer a way to monitor movement of many individuals over long time
periods with minimal disturbances and could become a helpful tool for a variety of uses in animal
agriculture, including health monitoring or selection of breeding traits that benefit welfare within
intensive cage-free poultry farming. Herein, we present an active, low-frequency tracking system
that distinguishes between five predefined zones within a commercial aviary. We aimed to evaluate
both the processed and unprocessed datasets against a “ground truth” based on video observations.
The two data processing methods aimed to filter false registrations, one with a simple deterministic
approach and one with a tree-based classifier. We found the unprocessed data accurately determined
birds’ presence/absence in each zone with an accuracy of 99% but overestimated the number of
transitions taken by birds per zone, explaining only 23% of the actual variation. However, the two
processed datasets were found to be suitable to monitor the number of transitions per individual,
accounting for 91% and 99% of the actual variation, respectively. To further evaluate the tracking
system, we estimated the error rate of registrations (by applying the classifier) in relation to three
factors, which suggested a higher number of false registrations towards specific areas, periods with
reduced humidity, and periods with reduced temperature. We concluded that the presented tracking
system is well suited for commercial aviaries to measure individuals’ transitions and individuals’
presence/absence in predefined zones. Nonetheless, under these settings, data processing remains
a necessary step in obtaining reliable data. For future work, we recommend the use of automatic
calibration to improve the system’s performance and to envision finer movements.

Keywords: low-frequency tracking; commercial aviary; laying hens; false registrations; tree-based
classifier; animal behaviour

1. Introduction

Tracking technologies generate sequences of chronologically ordered location data
and offer a way to monitor movement of many individuals over long time periods with
minimal disturbances. Tracking technologies have become valuable for detecting health
issues in farm animals at an early stage [1–4] and in cage-free poultry farming, for their
potential to select breeding traits that benefit welfare within cage-free systems [5,6] as
well as to provide scientific information for optimal management [7]. However, cage-free
housings are uniquely complex and may introduce numerous challenges for tracking
technologies. For instance, cage-free housings of laying hens often contain a relatively high
concentration of material that can interfere with tracking signals, including metal hardware
(e.g., perches, floor, feeding lines) and multiple stacked horizontal levels that prevent
direct lines of sight require by some automated tracking technologies (e.g., video tracking,
infrared). Furthermore, compared to most other livestock, laying hens are relatively small
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animals that can be housed in large groups at very high densities, which would likely alter
ultra-high frequency (UHF) radio signals [8]. Compared to most other commonly tracked
livestock (e.g., swine, cattle), laying hens move differently (e.g., flying, jumping between
horizontal tiers) and often faster. These challenges might induce measurement errors (as
defined by the difference between a measured quantity and its true value), both of random
and systematic natures [9]. Random errors are often inevitable and unpredictable, but
their effects can be minimized, for example, by increasing the sample size. On the other
hand, systematic errors are often predictable with consistent causes (e.g., environmental
interference, improper calibration), but their effects are harder to compensate for and can
lead to biases if not appropriately addressed during analysis.

Tracking systems have already been used to examine laying hens within the interior
of a commercial system [10–12]; these tracking systems had to overcome the housing
complexities described above. However, measurement errors were primarily evaluated
within less complex settings (e.g., in small interior or outdoor settings) than commercial
aviaries but focusing on movements of greater precision (i.e., individual location) than
the current effort (transitions between predefined zones). For instance, using an ultra-
wide band (UWB) system, Rodenburg et al. [6] reported an accuracy of 85% in detecting
individuals’ location, and Stadig et al. [13] reported an error of less than 50 cm in 80%
of measurements. These results present great potential for tracking systems to represent
individual positions within free-range areas, as well as a margin to refine the data. Sys-
tematic errors were also investigated, although only within settings less complex than
commercial aviaries. For instance, comparing registrations generated by a UWB system
against video observations, Sluis et al. [14] observed an average overestimation of 40% of
in the distance of broilers moving less than 15 m and an average underestimation of 15% in
the distance of broilers moving more than 30 m. Furthermore, Stadig et al. [13] observed a
larger error in certain areas of the experimental field and a negative influence of rain on the
percentage of successful registrations. These results suggest that various factors, such as
the individual level of activity, specific areas, and weather conditions, could cause errors in
measurement. Although tracking systems within cage-free housing systems are becoming
more popular, they still have challenges to overcome. We therefore studied long-term
tracking in commercial aviaries at the level of visited zones (with five zones) instead of
precise individual locations. In the current study, we used active tags with low-frequency
(LF) tracking and UHF communication that distinguished five zones with key resources,
including the three stacked tiers of a commercial aviary (top floor, nest box, lower floor),
the littered floor underneath, and an outside covered winter garden. This tracking system
is comparable to UWB tracking systems with lower frequencies, with the aim of reducing
possible interactions with the environment, such as liquid and metallic materials [15].

To overcome measurement errors, some studies have mentioned novel placement of
tracking system components [13,16], filtering of registrations that are not possible [13], or
filtering of individual positions that do not move more than the 95% confidence interval
of the system’s positioning errors [17]. When modifying the configuration of the tracking
system is not an option, data processing may be the only alternative to refine and, in some
cases, obtain validated data. Furthermore, tracking data often contain metadata associated
to each registration, which could be used to detect false registrations and increase accuracy.
Due to a potentially large number of available features and interaction effects, manually
defining a rule-based algorithm can be time-consuming and suboptimal, whereas machine
learning may offer a valuable solution for filtering false registrations. Despite potential for
data refinement, there are only a few studies on UWB systems and related technologies that
scrutinize data-processing methods, particularly within the unique settings of housings
of cage-free laying hens. In the current study, we aimed to contribute to the collective
effort of evaluating tracking systems for laying-hen farming, with a focus on the interior
of a commercial aviary system. To achieve this aim, two analysis steps were involved.
First, two data-processing approaches were applied to filter false registrations, including
a simple deterministic approach that filters stays of short durations (SD method) and
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a machine learning approach (ML method) based on a tree-based classifier. The two
processed datasets and the unprocessed dataset were compared against video-observation
results (our gold standard). This evaluation was conducted in terms of the number of
transitions per individual within the predefined zones and individuals’ presence/absence
in each zone every second. Secondly, to better evaluate the tracking system, we studied the
effect of filtering false registrations based on the ML method over a two-month period on
144 tracked animals under three potential influencing factors: different areas of the aviary,
external temperature, and external humidity. We selected these factors because they have
already shown to be associated, to some extent, with tracking-system performance and
could introduce biases in our own work and that of others using comparable technology if
associated with false-registrations.

2. Materials and Methods
2.1. Ethical Statement

The study was conducted according to the cantonal and federal regulations for the
ethical treatment of experimentally used animals and approved by the Bern Cantonal
Veterinary Office (BE-45/20).

2.2. Animals and Housing

As part of a larger study examining effects of on-farm hatching, approximately
4800 chicks were reared in an Inauen Natura rearing barn previously described by
Stratmann et al. [18] and located at the Aviforum facility in Zollikofen, Switzerland. At
seven days of age, focal animals were selected, and at approximately 16 weeks of age,
all animals were transferred to an on-site commercial laying barn containing a Bolegg
Vencomatic Terrace aviary. The aviary system is split into 20 identical pens separated by a
vertical grid, with each pen containing 225 animals and an outside, covered winter garden
that can be accessed through a pop hole (illustrated in Figure 1). Eight of the 20 pens were
used for the current study, with 18 focal animals per pen (a total of 144). On the same
day as the transfer to the laying barn, we mounted a tracking tag enclosed within a cloth
backpack (mass: 15.6 g; height: 14.5 cm; width: 13 cm) on the back of each focal hen. These
backpacks were identifiable from video cameras based on their unique colour combination.
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Figure 1. Housing setup, including the pens and aviary location in the barn, winter-garden zone, pop
holes, and cameras.

2.3. Tracking System

To track hens across different areas within a pen, we distinguished five zones with key
resources, including the three stacked tiers of a commercial aviary (top, nest box, lower), the
littered floor underneath, and the winter garden, as illustrated in Figure 2A. During the laying
phase, transitions between the five zones were assessed continuously for each focal hen by
means of a customized tracking system. For this, three identical stations of a low-power,
active tracking system (®Gantner Solutions GmbH, Schruns, Austria) were installed within
the laying barn, each covering either two or three pens (Stations 3–5: pens 3, 4, 5; Stations 8–9:
pens 8, 9; Stations 10–12: pens 10, 11, 12). Each station involved several components, including
five markers (1 per zone) emitting signals through a cable (creating separately enclosed fields
for each zone; Figure 2B); active tags (mass: 28.1 g) that can receive signals; and lastly, a reader
that communicates through UHF (868 MHz), with the tags and a dedicated computer.
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lower tier) and the littered floor; (B) simplified 3D model of the tracking system covering two pens,
including the four markers of the four indoor zones and their associated cables.

The receiving strength of the LF signal (RSS) is used to determine theoretical distance
to the antenna loop. At almost every position in any zone, the tag can receive the signal of
multiple markers. This signal last for 50 ms. It is important that during that time, the tag
only receives the signal of one marker; otherwise, signals would overlap and might not be
valid. Therefore, the markers send at different transmission intervals (varying from 1.6 to
2.1 s depending on the zone) a fixed low carrier frequency signal of 0.125 MHz (LF-signal)
that is modulated to allow markers to be differentiated. Within a 10-s interval, a tag could
theoretically receive between five and six signals per marker, but this number will often be
lower, as every marker has a maximum range of only two to three metres. Every time a tag
receives an LF-signal, an algorithm (tag-algorithm) is applied to the registered LF signals
received within the past 10 s to evaluate whether the tagged hen has transitioned to a new
zone. The tag algorithm reports a new transition when a tag receives the absolute strongest
signal value from the same marker twice within 10 s and if the associated zone differs
from the last registered zone (pseudo-code in the Supplementary Text S1). Following the
installation of the tracking-system stations, each pen was calibrated under field conditions
to ensure a correct interpretation of information obtained by the devices. More specifically,
a tracking tag was positioned in each of the 44 predefined critical locations per pen (e.g.,
where two zones border one another) to evaluate RSS against observed distance to the
antenna loop and to adjust the LF signal of specific markers as necessary.

Individual transitions to a zone registered by the tracking system are hereafter called
registrations. More specifically, we will refer to correct registrations (CR) for registered
zones where the animal is located (i.e., true zone as determined by video) and to false regis-
trations (FR) for registered zones not consistent with the true zone for the bird (FR). Among
CRs, we distinguish two types of registrations: (1) registrations that are not associated
with a true transition (corrected registrations) and (2) registrations associated with a true
transition (transitional registrations). Our goal was to obtain only transitional registrations,
and data processing was used towards this objective.

2.4. Video Observations to Detect False Registrations

Two cameras per pen were placed within the indoor portion of each pen in such a manner
that each location where an animal could transition between any of the three indoor zones was
visible. The view did not cover the interior of the pop hole nor the winter garden and thus did
not allow transitions to the winter garden to be filmed. For the generation of the video-based
tracking data as a gold standard, video data were collected over the third and fourth weeks
for an 11-day period simultaneously with the collection of the tracking data. Single animals
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were visually tracked by two trained observers independent of one another in order to classify
each registration as FR or CR. An inter-rater reliability test between the two observers for
137 registrations, including four random hens and four different days, resulted in an inter-rater
reliability of perfect agreement, with all recordings classified correctly by both observers.

For the evaluation of the two processing methods (SD and ML) and the unprocessed
tracking data against video-based tracking data as the gold standard, two sets of registra-
tions were analysed through video, generating two datasets: (1) the training dataset used
to develop the ML method; and (2) the test dataset used to evaluate the two processing
methods, as well as the unprocessed tracking data, against video-based tracking data. As
described in the Section 2.5, the training dataset was used in a cross-validation process to
split the data into validation and training sets and select for the optimal models.

The training dataset was composed of 4274 registrations classified as FR or CR by
means of 241 h of video observations divided into 79 batches, varying from 0.5 h to 7 h,
involving 44 tracking tags over 11 days. The batches were selected based on the visual
representations of individuals’ movement across all days to ensure a broad variation of
movement sequences and a reasonable number of observations across zones, stations, and
tracking tags. To avoid introducing noise in model training, the training dataset did not
contain registrations from the winter-garden zone due to the limited camera view in the
pop holes described earlier. The training dataset comprised 13% FR and 87% CR.

The test dataset was composed of 865 registrations classified as FR or CR by means of
96 h of video observation. More specifically, 48 batches (six/pen) of 2-h video (including
47 randomly selected tracking tags) were randomly chosen over six days and reduced to
42 batches due to technical issues (e.g., backpacks not visible from the cameras). As the test
dataset was used to evaluate two processing methods, including one that did not require
training, the test dataset contained registrations from each of the five zones, including the
winter garden. However, as the classifiers can only be tested on classes included in the
training process, all registrations from the winter garden were processed solely by the SD
method. Registrations in the winter garden were retained in the evaluation of both processing
approaches for two main reasons: first, to avoid any bias towards poorer/greater performance
of the SD method, if that zone would be more easily/laboriously detected by the tracking
system compared to the other zones; second, even if the winter-garden zone is processed by
the SD method when evaluating the ML method, its performance is still influenced by the
ML method, typically when the ML method filters a registration to the litter zone reported
between registrations in the winter-garden zone (as there would be one less transition to the
winter garden). When a registration to the winter-garden zone could not be clearly classified
through video observation (i.e., animal could be either in the pop hole or the winter garden),
CR was used for biological relevance. We decided to define the pop-hole area (illustrated in
Figure 1) as part of the winter-garden zone (and not the litter zone), as exposure to natural
light in the pop hole is more similar to the winter-garden zone than the litter zone. To better
evaluate the tracking system, in addition to the tracking system’s registrations, the test dataset
contained all true transitions observed during video observations that were not reported
by the tracking system (missed transitions). Missed transitions represented 0.6% of the test
dataset. The test dataset comprised 5% FR and 95% CR.

2.5. Evaluation of the Two Data Processing Methods

As the tracking system used in this study evaluated the location of a tag every time
the tag received an LF-signal, longer records have more opportunities for self-correction
and therefore are more likely to be accurately record the location. Therefore, an intuitive
and simple way to process the data is to filter all registrations that last for less than a certain
threshold (SD method). We used a one-minute threshold with the objective of minimizing
loss of actual transitions while maintaining a good representation of the true data.

To account for more of the available information during data processing, we used a
machine learning approach (ML method) based on decision-trees, which, in addition to the
registration duration used by the SD method, employed 13 features of the registrations (de-
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tailed in Table 1), including the RSS, the zone, and the station identities. The zone identities
of the previous and next registrations (of the same tag) were also included to account for
the movement sequence. The durations of the previous and next registrations were also
included, as we expected the duration to be the most important feature for detecting FR. Our
goal was to build a model to process (clean) the data rather than generate predictions about
hen movement patterns. We aimed to isolate the true signal of hen movement, which can be
used in future research to evaluate the drivers of hen behaviour. As such, our model is inde-
pendent of external factors that could be of potential interest for future investigation (e.g.,
weather). Three classifiers (random forest, gradient boosting, CatBoost) based on decision-
trees [19] were used to account for potential non-linearity and interaction effects [20]. The
gradient-boosting classifier is a greedy algorithm that sequentially trains a shallow decision
tree in order to correct the errors of the previously trained tree [21], and the CatBoost model
is a recently developed gradient-boosting algorithm [22,23] that was selected in this study
for its ability to process categorical features during training (algorithms of the classifiers
further detailed in Supplementary Text S2). Following hyperparameter selection through a
3-fold cross-validated grid search (detailed in Table S1 of the Supplementary Materials) and
model training on the training dataset, the performances of the classifiers were evaluated on
the held-out test dataset using three common classifier performance measures [24]: (1) accu-
racy, defined as the fraction of predictions correctly classified by the model; (2) precision
of class X, defined as the proportion of the predicted class X that is correctly classified by
the model; and (3) recall of class X, defined as the proportion of the observed (true) class X,
that is correctly classified by the model. To better contrast predictionsof the three tree-based
classifiers on the test dataset in order to select one for the ML method, we used McNemar’s
non-parametric test for pairwise binary classifier comparison [25] to test the null hypothesis
that two models have similar proportions of errors. The normalized importance of features
was generated for the selected model to understand the model’s reliance on each feature
when producing its predictions. Finally, the ML method used the selected classifier to clas-
sify registrations as FR and CR and then filtered FR from the unprocessed data. However,
due to the limitations of video in covering the pop-hole area, the SD method was applied
here to filter registrations in the winter-garden zone.

Table 1. Record features used to train the model and the normalized importance of features in the
final CatBoost model.

Feature Name Description

previous zone; zone;
next zone

zone identity of the previous/considered/next registered record with
the strongest LF signal, indicating the zone where the individual has

transitioned/is transitioning/will transition to

RSS a measurement of the power present in the strongest received LF
signal (dB)

tracking system ID identity of the tracking-system copy

previous duration;
duration; next duration

reported time of stay in the zone from the previous/considered/next
registered record

zone2 second zone identity with the strongest LF signal

RSS of zone2 a measurement of the power present in the second strongest received
LF signal (dB)

zone3exist binary feature that equals 1 if the tag registers a signal of at least three
different zones during the last 10 s, and otherwise equals 0

next2zone = zone;
previous2zone = zone

binary feature that equals 1 if the registered second zone from the
next/previous record is the same as the occurring zone, and

otherwise equals 0

We contrasted the two data-processing approaches by applying them to the unpro-
cessed test dataset (i.e., including CR and FR). The resulting two processed datasets (ML
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and SD datasets), as well as the unprocessed test dataset, were then compared against the
respective gold-standard dataset (i.e., registrations identified as CR through video observa-
tion). In each case, we evaluated two things: (1) the animal’s location (or more specifically,
their presence/absence in each zone) and (2) the animal’s movement. To evaluate how well
these datasets represented individuals’ presence/absence in each zone at each second, we
compared their associated categorical time series (containing five categories, one for each
zone). The performance was evaluated in terms of accuracy, macro-averaged recall, and
macro-averaged precision (where the macro-averaged recall/precision is the average of
the recall/precision across each zone). To evaluate how well these datasets represented
individuals’ movement, we compared the total number of individual transitions per batch,
per zone in each case. Performance was evaluated with the explained variance score (EV)
and the mean absolute error (MAE), defined as:

EV = 1− variance{yGS − ŷ}
variance{yGS}

, MAE =
1

nsamples
∑nsamples−1

i=0

∣∣∣∣∣yGSi − ŷi

∣∣∣∣∣
where ŷ contains information from a processed dataset and yGS contains the respective
gold-standard information. The EV is used to measure the magnitude of the expected effect
on the number of transitions [26]. The MAE is used to measure, in an unambiguous and
natural manner, the magnitude of the expected average error [27] in terms of the number
of transitions (for a two-hour batch). This analysis was performed with Python version
3.8.5 using the SciKit Learn package [28] for the performance measures and the CatBoost
package [22] for the CatBoost classifier.

2.6. Investigation of Influencing Factors

When comparing large datasets with thousands of hours of tracking per animal,
comparison with video recordings as a gold standard becomes impractical. Therefore, to
further evaluate the tracking system, we used the tree-based classifier from the ML method
to identify FR (IFR) and studied the estimated error rate, defined as the number of IFRs
against the total number of registrations, in relation to specific factors. The estimated error
rate had a value of one when all records were filtered by the ML method and a value of
zero when none was filtered. This approach has some limitations due to probable FRs not
being detected or some being falsely detected. However, by removing the limitation on the
number of days and individuals used, a broader investigation of the systems’ performance
can be conducted. Data processing with the ML method is shown in the Results section to
filter most of the true FRs (recall of class FR: 93%) and to filter mostly true FRs (precision of
class FR: 84%). Therefore, IFRs should highlight most of the FRs from the unprocessed data
and should be composed mainly of FRs. We applied the ML method over a two-month
period, involving 144 animals, during which the hens were kept under similar management
conditions every day, including 15 h of artificial light and six hours with access to the winter
garden. To avoid biasing the data towards a greater error rate when the winter garden
was closed, we excluded all registrations of transitions to the winter garden for periods
when it was closed. We evaluated the estimated error rate in relation to different areas by
reporting the mean ± SD of the estimated error rate across individuals for each of the five
zones in each of the eight pens (40 pen-zone areas). We evaluated the estimated error rate
in relation to external weather variables by fitting a mixed-effects logistic regression (link
function: logit, R package “lme4” [29]) on the ratio of IFR to the total registrations minus
IFR (per hour), with pen identity nested in station identity as a random term and hourly
external humidity (%) and temperature (◦C) as explanatory variables. External humidity
was rescaled by dividing its values by 10. To control for variations barn management and
animal behaviour throughout the day, the hour of the day was also added as a fixed effect.
External humidity and temperature were obtained from the LSZB weather station (~12 km
from the barn) and accessed via the Wolfram alpha API in Python.
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3. Results
3.1. Evaluation of the Two Data Processing Methods

On the test dataset, the three classifiers showed stable (over 100 random seeds) accu-
racy, recall, and precision (Figure S1 of the Supplementary Materials), and the McNemar’s
test showed a similar proportion of errors between each classifier (p > 0.05). Thus, with
an accuracy of 99%, we selected the CatBoost algorithm for the ML method because of its
ability to handle categorical variables in Python. Additionally, 84% of the time that the
model identified an FR, the model prediction was correct (precision of class FR). and 100%
of the time that the model identified a CR, the model prediction was correct (precision of
class CR). Additionally, 93% of the FR observations were classified by the model as FR
(recall of class FR), and 99% of the CR observations were classified by the model as CR
(recall of class CR). The zone identity, RSS, and the previous registrations’ zone identity
were the three most important features, accounting for 21%, 19%, and 13% of the overall
importance of the features, respectively, while duration accounted for 7% (Figure 3A). To
further illustrate the importance of the features, Figure 3B show the RSS and duration
of the test dataset’s registrations, split into CR and FR (from video observations). The
receiving strength of the LF signal was generally higher for the correct registrations of all
indoor zones. We also observed longer duration of stay to be more frequent among the
correct registrations, with the exception of registrations in the lower perch zone, where no
difference in the duration of stay was observed between correct and false registrations.
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The unprocessed, SD and ML datasets all determined an individual’s zone (every
second), with an accuracy of 99%, 98%, and 100%, respectively, and displayed the same
values (99%, 98%, and 100%, respectively) for the macro-averaged precision and macro-
averaged recall. We found the ML and the SD datasets to underestimate the number of
transitions by an average 0.27 and 0.06 transitions per zone, respectively, for a two-hour
batch, in contrast to the unprocessed dataset, which overestimated the number of transitions
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by approximately 0.5 transitions per zone, on average, for a two-hour batch (average
number of transitions per batch, per zone by video observation was 1.8). The percentage of
variance of the ground-truth data recovered by the unprocessed, SD and ML datasets was
23%, 91%, and 99%, respectively, which is further illustrated in Figure 4.
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3.2. Investigation of Influencing Factors

The estimated error rate across pen-zone areas varies from 0.0 ± 0.0 (e.g., litter area
within each pen of Stations 10–12) to 0.5 ± 0.19 for Pen 8, suggesting that half of the
registrations in the winter garden from Pen 8 were filtered by the ML method. The
estimated error rate per pen-zone area is further detailed in Figure 5. Furthermore, we
found a negative effect of humidity (p = 0.003) on the estimated error rate, with an odds
ratio of 0.96 (95%-CI [0.94, 0.99]), indicating a 4% lower likelihood of obtaining a false
registration with an increase in humidity of 10%. Additionally, we found a negative
effect of temperature (p < 0.001) on the estimated error rate, with an odds ratio of 0.97
(95%-CI [0.96–0.98]), indicating a 3% lower likelihood of obtaining a false registration with
an increase in temperature of 1 ◦C (for further details, see Table S2 of the Supplementary
Materials). The difference between the unprocessed and the processed data (by the ML-
method) is further illustrated in Figure 6 through a visual representation of an animal’s
transitions over eight consecutive days. For instance, observed several transitions filtered
by the ML method between the lower-perch and top-floor zones.
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4. Discussion

We found the presented LF tracking system accurately determined the presence of
animals in a given zone (at the second level), with macro-averaged precision, and macro-
averaged recall of 99% when compared against video observations of the test dataset.
This good performance might be explained by the tag algorithm, which searches for new
transitions, on average, every 0.5 s (i.e., each time a tag receives an LF signal), thus regularly
providing opportunities for correctional records. However, the number of transitions in
a zone generated by the tracking system was overestimated and only explained 23% of
the true variance (as observed by video). Therefore, the unprocessed tracking data did not
constitute a good representation of individual transitions between the five zones, which
could be emphasized by the observed differences in the estimated error rate within specific
pen-zone areas. On the one hand, we observed clear differences in the estimated error rate
of a given zone across different stations (e.g., winter-garden zones in Stations 10–12, Stations
3–5, and Stations 8–9 had a mean estimated error rate varying, across their respective pens,
between 0.07 and 0.14, 0.12 and 0.16, and 0.44 and 0.5, respectively). On the other hand,
we observed differences within pens of the same station (e.g., nest-box zone in Stations
3–4 had an estimated error rate of 0.05 ± 0.07 in Pen 3, 0.3 ± 0.19 in Pen 4, and 0.03 ± 0.05
in Pen 5). The observed differences in the estimated error rate across different pen-zone
areas aligned well with locations described through anecdotal notes made during video
observations describing precise locations where a tracking tag generated a high amount
of FR (by repeatedly switching between two, sometimes non-neighbouring zones) while
the animal was immobile (weak spots). An explanation for the existence of weak spots
may be the pen furnishing blocking the line of sight between tags and signal cables, which
is known to cause signal interference in UWB systems [16]. More specifically, metallic
materials can absorb the signal and distort the electromagnetic field, which could either
block or enhance the signal, rendering RSS a poor representation of the distance to the
signal cable, possibly explain errors between non-neighbouring zones. Our tracking system
was designed to use a lower frequency than a common UWB system in order to avoid
possible interactions with metallic materials, although signals may still be affected.
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Furthermore, the existence of weak spots may be attributed to the calibration process, a
manual and time-consuming step performed independently for each station and iteratively
through each pen. When a tracking tag was detected in an incorrect zone during the
calibration process, the LF values of specific markers were adjusted. As the pens are steel
cages, the LF field generated by each marker can be slightly inhomogeneous. As a result,
when an LF signal value is adjusted, all measurements must be repeated to ensure that
the change in the LF value did not lead to further detection errors. The difficulty lies in
setting the LF values of the markers in such a way that the correct zone is detected in all
locations of the tracking system. In particular, the nest-box zone is a small zone located
between two zones (Figure 2), and a change in the LF value of the marker had a greater
effect on the neighbouring zones because it quickly led to the tracking tag being detected in
the incorrect zone. Therefore, we recommend the use of an automatic calibration process to
improve the system’s performance. To achieve this, within each zone, several tags would
be placed at predefined locations of critical measurement points. Each signal strength
received by any tag from any marker would be registered. An algorithm would be executed
every 10 s (ensuring enough time for adjustment of LF signal values to take place in the
field) on all RSS registered within the past 10 s. This algorithm would identify the most
problematic zone, defined, for example, by the zone with the smallest dB difference in
relation to another zone (across all tags in that zone). If this difference does not exceed the
limit of 1 dB in relation to another zone, the LF signal value of the associated marker is
automatically adjusted. As soon as 100 consecutive runs induce no adjustment of an LF
signal, the calibration is complete. An automatic calibration would save time as only one
person would work on the calibration. This would also offer new opportunities, such as
smaller zones, allowing for registration of finer movements. For instance, in our settings,
it might be possible to differentiate between the nest boxes and the balcony in front the
nest boxes (currently, both are registered as the nest-box zone). Furthermore, automatic
calibration would ensure more homogeneous LF values across markers from the same zone
across all pens, and consequently, more comparable datasets across different stations and
pens would be generated.

Our tracking system’s poor performance in representing individual transitions high-
lights the importance of processing automatically generated datasets. Relevant data-
processing studies are lacking, although they could help to standardize this process to
generate comparable datasets across different studies. The benefit of this work is most
essential in light of rapid development in technology in order to manage and improve
the welfare of animals within commercial livestock systems [1,2,30–35]. We showed that
the data processed by a simple filtering of registrations associated with short durations
(<1 min) of stays was suitable for monitoring the number of transitions per individual per
zone, accounting for 91% of the actual variance (as observed by video). We further reported
a gain in performance using a tree-based classifier to filter false registrations, accounting for
99% of the true variance in the number of transitions per individuals, which could partly
be explained by the additional information provided to the ML method. Indeed, zone
identity and RSS were the two main features upon which the tree-based classifier based its
predictions, while the SD method was based solely on the duration of the stay. Interestingly,
this also suggests that our expectation of the record’s duration being the most important
feature to detect FR was incorrect when other features are included. The current study did
not allow for this comparison when a single feature is used; however, further studies using
a simple rule-based approach should consider the RSS addition to the records’ duration.
The importance of features further suggests that the zone identities of the previous and
next registered record are of greater importance than the duration of stay from the previous
and next registrations. Results concerning the importance of can offer direction on how to
improve similar tracking systems, for instance, by including a threshold of RSS values for
each zone based, for example, on the result of an automatic calibration. Another possibility
would be to include the SD method as part of the tag algorithm, although this would
eliminate the possibility of registering fast transitions between two zones (<1 min).
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The ML method required additional efforts, for instance, more video observations,
compared to the SD method and statistical modelling in R or Python. Therefore, the choice
between both methods relies on a compromise between time accorded in data processing
and the performance of the processed data. In the current study, the SD method recovered
8% less of the true variance in the number of transitions per individuals than to the ML-
method. To put this value in context, we used simulated sampling to estimate the impact
of a comparable loss on the effect size (measured by the Pearson correlation) of a simulated
movement variable, M, on a simulated health variable, H. The two simulated variables
(M and H) followed a standard normal distribution, with a Pearson correlation coefficient
varying from 0.15 to 0.40 to cover potentially interesting ranges of effect sizes when studying
movements in relation to health [36,37] and heritability of behaviour [38–40]. By adding
noise to M (and calling the result M’), we estimated (over 10,000 simulations, per sample
size) the percentage of cases where significance would be lost (p > 0.05), depending on the
initial effect size and sample size. Our estimations suggest that a change in percentage of
the initial variance explained by M’ from 0.99 to 0.91 would change the significance of a
critical test in 26% (or 25%) of cases when applying a sample size of 80 (or 120) and an
initial effect size of 0.25 (or 0.2), respectively (see details in Figure S2 of the Supplementary
Materials). Therefore, using a tree-based classifier to filter false registrations can be greater
value for studies with small sample and effect sizes (e.g., n = 120, effect size of 0.2) than
the filtering approach using stays of short duration as threshold. For large sample sizes or
samples with strong correlations between the measured movement and the trait of interest,
the SD method might produce equally reliable results as the ML method.

Our results further reported a marginal effect of periods of time characterized by
higher humidity or higher temperature, associated with a lower estimated error rate of
transitions to the winter garden. Because air is our medium of signal transmission, when
humidity is changes, the magnetic field is also expected to change. As calibration was
conducted in August 2020, the performance of the tracking system may be optimized for a
period with higher temperature than average. Additionally, as Richards et al. [41] reported,
associations between daily weather conditions and mean pop-hole usage in laying hens,
including an increase in mean pop-hole usage associated with an increase in temperature,
and the influence of the weather conditions on animal behaviour may be explanatory. In
spite of these results, external environmental factors cannot be controlled for and are part of
the experiment. However, these results can aid in interpretation and awareness of possible
limitations for subsequent analyses of these or similar tracking data.

5. Conclusions

The active LF tracking system evaluated in this study determined the presence/absence
of birds in a zone with an accuracy of 99% but overestimated the number of transitions by
birds per zone, explaining only 23% of the true variation (as observed by videos). However,
we showed that filtering stays of short durations rendered the data suitable for monitoring
the number of transitions per individual, explaining 91% of the true variation, and that the
use of a tree-based classifier to filter false registrations recovered an additional 8% of the
true variation. Simulations further suggested that a machine learning approach for data
processing could be of greater value than a simple deterministic approach in studies with
small sample and small effect sizes. Results also suggest that filtering false registrations
may reduce the effect of systematic errors towards certain pen-zone areas and towards
periods of time characterized by lower humidity or temperature values. However, results
also suggest that these factors might, to some extent, remain in the processed data and should
be considered properly in subsequent analyses. In conclusion, this tracking system is well
suited for complex indoor housing (similar to commercial aviaries) to measure the transitions
of individuals and the presence/absence of birds in predefined zones (thus, duration of
stays in zones). Nonetheless, under these settings, data processing remains a necessary step
in obtaining reliable tracking data. For future work, we recommend the use of automatic
calibration to improve the system’s performance and to envision finer movements.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s22020659/s1, Table S1. Selected grid-search parameters for the random forest, gradient
boosting, and CatBoost classifiers. When a parameter is not applicable for a specific classifier, the
“-” notation is used. Table S2. Output of the logistic regression with the proportion of IFR to the
number of registrations minus IFR as response variable and the humidity, temperature, and hour of
day as fixed effects. Figure S1. Precision per class (0: FR; 1: CR), recall per class (0: FR; 1: CR), and
accuracy of the three classifiers over 100 random seeds. Figure S2. Percentage of simulations that lost
significance (p > 0.05) of associated initial effect size (measure by Pearson correlation between two
simulated samples from a normal distribution: M’ and H) after a change in percentage of the true
variance recovered by M’ from 0.99 to 0.91, depending on the initial effect size (varying from 0.16 to
0.4) and sample size (varying from 80 to 280).
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