
fgene-12-702424 August 17, 2021 Time: 14:56 # 1

ORIGINAL RESEARCH
published: 23 August 2021

doi: 10.3389/fgene.2021.702424

Edited by:
Federica Calore,

The Ohio State University,
United States

Reviewed by:
Xiangqian Guo,

Henan University, China
Lei Li,

Shanghai Jiao Tong University, China

*Correspondence:
Rong Gui

guirong@csu.edu.cn
Yan-Wei Luo

royalway@csu.edu.cn

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Cancer Genetics and Oncogenomics,
a section of the journal

Frontiers in Genetics

Received: 06 May 2021
Accepted: 04 August 2021
Published: 23 August 2021

Citation:
Zhao Q-Y, Liu L-P, Lu L, Gui R and

Luo Y-W (2021) A Novel Intercellular
Communication-Associated Gene

Signature for Prognostic Prediction
and Clinical Value in Patients With

Lung Adenocarcinoma.
Front. Genet. 12:702424.

doi: 10.3389/fgene.2021.702424

A Novel Intercellular
Communication-Associated Gene
Signature for Prognostic Prediction
and Clinical Value in Patients With
Lung Adenocarcinoma
Qin-Yu Zhao1,2†, Le-Ping Liu1†, Lu Lu1, Rong Gui1* and Yan-Wei Luo1*

1 Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China, 2 College
of Engineering and Computer Science, Australian National University, Canberra, ACT, Australia

Background: Lung cancer remains the leading cause of cancer death globally, with
lung adenocarcinoma (LUAD) being its most prevalent subtype. This study aimed to
identify the key intercellular communication-associated genes (ICAGs) in LUAD.

Methods: Eight publicly available datasets were downloaded from the Gene
Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases.
The prognosis-related ICAGs were identified and a risk score was developed by
using survival analysis. Machine learning models were trained to predict LUAD
recurrence based on the selected ICAGs and clinical information. Comprehensive
analyses on ICAGs and tumor microenvironment were performed. A single-cell
RNA-sequencing dataset was assessed to further elucidate aberrant changes in
intercellular communication.

Results: Eight ICAGs with prognostic potential were identified in the present
study, and a risk score was derived accordingly. The best machine-learning
model to predict relapse was developed based on clinical information and the
expression levels of these eight ICAGs. This model achieved a remarkable area
under receiver operator characteristic curves of 0.841. Patients were divided into
high- and low-risk groups according to their risk scores. DNA replication and
cell cycle were significantly enriched by the differentially expressed genes between
the high- and the low-risk groups. Infiltrating immune cells, immune functions
were significantly related to ICAGs expressions and risk scores. Additionally, the
changes of intercellular communication were modeled by analyzing the single-cell
sequencing dataset.

Conclusion: The present study identified eight key ICAGs in LUAD, which could
contribute to patient stratification and act as novel therapeutic targets.

Keywords: lung adenocarcinoma, intercellular communication, prognosis prediction, machine learning, tumor
microenvironment, single-cell RNA-sequencing
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INTRODUCTION

Lung cancer is the leading cause of cancer death and
approximately 1.8 million deaths worldwide in 2020 had lung
cancer as the primary cause (Sung et al., 2021). Non-small-cell
lung cancer (NSCLC), one of the main histological subtypes,
includes approximately 85% of the lung cancer cases. Lung
adenocarcinoma (LUAD) is the most common subtype of NSCLC
(Molina et al., 2008). Despite recent advances in various targeted
therapies, LUAD is still characterized by a low 5-year survival
rate (Ahluwalia et al., 2021). Therefore, it is crucial to identify
a novel gene signature for LUAD patients’ prognosis and for the
exploration of novel therapeutic targets for LUAD.

Intercellular communication, defined as the information
transfer between cells, is vital for cells to grow and
function normally, and may provide a unique perspective
for LUAD prognosis (Mittelbrunn and Sanchez-Madrid,
2012). Cells share information by direct and indirect
signaling, and the related pathways can be regulated at the
gene expression level (Mittelbrunn and Sanchez-Madrid,
2012; Brucher and Jamall, 2014). Direct intercellular
communication involves self-to-self communication and
adjacent communication with nearby cells, while indirect
intercellular communication involves local communication
via hormones over short or large distances, respectively.
Communication, occluding, and anchoring junctions are the
three essential components of intercellular communication
(Brucher and Jamall, 2014).

Aberrant alterations of intercellular communication in the
tumor microenvironment (TME) are related to the occurrence,
invasion, metastasis, and drug resistance of cancers (Xu et al.,
2018; Maacha et al., 2019). Increasing evidence suggests
that versatile immune cells are infiltrated in the TME of
LUAD and play an essential role in cancer progression and
aggressiveness (Ma et al., 2020; Tan et al., 2020). Communication
between tumor cells and tumor-infiltrating immune cells
may significantly affect the functions of the immune system,
potentially deteriorating the clinical outcomes (Parri et al., 2020).
A better understanding of the intercellular communication in
TME could thus shed light on the pathogenesis and prognosis
of LUAD. As a result, intercellular communication plays a
significant role in many pathways and has an important impact
on TME of lung cancer.

Despite the significance of intercellular communication in
LUAD, it is still considered an underexplored domain. A number

Abbreviation: NSCLC, non-small-cell lung cancer; LUAD, lung adenocarcinoma;
TME, tumor microenvironment; ICAG, intercellular communication-associated
gene; DEG, differentially expressed gene; GEO, Gene Expression Omnibus;
FPKM, fragments per kilobase million; TCGA, The Cancer Genome Atlas; TPM,
transcripts per million; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO,
Gene Ontology; LASSO, the least absolute shrinkage and selection operator; PCA,
principal component analysis; CatBoost, Categorical Boosting; AUROC, the areas
under receiver operator characteristic curve; SHAP, SHapley Additive exPlanation;
GSCA, Gene Set Cancer Analysis; SNV, single-nucleotide variant; CNV, copy
number variation; miRNA, micro RNA; CTRP, the Cancer Therapeutics Response
Portal; GDSC, the Genomics of Drug Sensitivity in Cancer; lncRNA, long non-
coding RNA; GRCh38.p13, Genome Reference Consortium Human Build 38 patch
release 13 m6A, N6-methyladenosine; ssGSEA, single-sample gene set enrichment
analysis.

of previous studies have reported gene signatures with prognostic
potential for LUAD, including immune (Zhang et al., 2019),
hypoxia (Mo et al., 2020), and ferroptosis-related genes (Gao
et al., 2021). Nevertheless, limited work has been done so far
to reveal and study the intercellular communication-associated
genes (ICAGs). Besides, computational methods based on single-
cell RNA sequencing data have demonstrated an outstanding
potential in investigating the intercellular communication in
high resolution (Wang Y. et al., 2019; Efremova et al., 2020).
These methods mainly focus on ligand–receptor interactions,
and therefore, less attention has been given to the prognostic
potential of the ICAGs.

The present study aimed to identify the key ICAGs that could
serve as prognostic markers or therapeutic targets for LUAD
patients. Eight publicly available datasets were analyzed and
eight LUAD prognosis ICAGs were identified. Machine learning
models were then developed based on these genes and clinical
information to predict the recurrence of LUAD. Comprehensive
analyses on ICAGs were performed, including mutation, DNA
methylation, post-transcriptional regulation, pathway activity,
and drug resistance correlation analyses. Patients were divided
into high- and low-risk groups according to the expression levels
of these genes. Gene set enrichment analyses were performed on
the differentially expressed genes (DEGs) between the high- and
the low-risk groups. Tumor-infiltrating immune cells, immune
functions and immune checkpoints were evaluated in different
groups by using 10 different approaches. Additionally, a single-
cell RNA sequencing dataset was assessed to elucidate further
differences between the high- and the low-risk groups in the
intercellular communication. The design of the present study was
summarized in Figure 1.

MATERIALS AND METHODS

Expression Microarray Datasets
Systematic data mining and computerized searches in the
Gene Expression Omnibus (GEO) database were conducted in
our study. Seven publicly available LUAD datasets, including
GSE19188, GSE30219, GSE31210, GSE31546, GSE37745,
GSE50081, and GSE68465, were retrieved accessing the overall
survival time. The raw data were downloaded and normalized
using the same methods and parameters described in the original
studies. Probes with missing gene symbols were excluded. The
median expression intensity was used when there were multiple
probe sets mapping to the same gene symbol. Besides, gene
expression data in fragments per kilobase million (FPKM)
values and clinical information of the LUAD dataset from
The Cancer Genome Atlas (TCGA) were also downloaded.
Expression data were then transformed into the transcripts per
million (TPM) values.

An empirical Bayes method was utilized to remove the batch
effects by using the functions provided in the sva R package
(version 3.34.0) (Leek et al., 2012). The datasets from GEO were
combined and used as the discovery set, while the TCGA-LUAD
cohort was used as the validation set.
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FIGURE 1 | Flow chart of the design of the present study.

Identification of Prognosis-Related
ICAGs
The gene list of ICAGs was collected based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG), Gene Ontology
(GO), and Reactome databases (Jassal et al., 2020). A
total of 440 genes were eventually downloaded from these
databases. After duplicates were removed, a list of 426 ICAGs
was obtained.

Univariate COX regression was used to assess ICAGs based
on the discovery set, and the genes significantly correlated to
the overall survival were identified with a P-value threshold
of 0.01. The rigorous P-value cutoff was used to obtain a
better prediction performance. Further, ICAGs with statistical
significance in univariate regression were evaluated using the
least absolute shrinkage and selection operator (LASSO) COX
regression model. ICAGs with the best prognostic value were
screened out. A risk score was then constructed according to the

fitted coefficients of the LASSO COX model. The formula of the
risk score was:

RiskScore = coef1 × ICAG1

+ coef2 × ICAG2 + coef3 × ICAG3 + · · ·

where the ICAG represents the normalized expression of a given
ICAG, and the coef represents its coefficient in the LASSO COX
model. Besides, a nomogram was also developed for convenient
prediction by using the R package regplot (version 1.1).

Samples in the discovery set were divided into high- and
low-risk groups according to whether their risk scores exceeded
the median value. The Kaplan–Meier analysis with a log-rank
test was applied to assess the prognostic difference between
the two risk groups. Principal component analysis (PCA) was
also performed to demonstrate and visualize the differences
between the two groups. Then, the risk score and clinical
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variables were assessed by successively fitting the univariate
and multivariate COX regression models on the GSE31210
dataset of the discovery set. It is noteworthy, that only the
GSE31210 was used because it provided the most detailed clinical
information. Statistical significance (P < 0.05) in both univariate
and multivariate COX regression indicated that the risk score
is an independent prognostic factor for patients with LUAD.
Similarly, the validation set was also divided based on its own
median value of risk scores, and the clinical significance of the
risk score was also assessed on it.

Prediction of Cancer Recurrence by
Using Machine Learning
A machine-learning model called Categorical Boosting
(CatBoost) was developed for the tumor recurrency prediction
to further elucidate the ability of ICAGs to predict clinical
outcomes. CatBoost, one of the gradient boosting algorithms,
iteratively trains a weak decision tree to fit residuals of previous
trees (Prokhorenkova et al., 2018). It is a powerful machine-
learning technique but has yet not been widely adopted in critical
care research (Zhao et al., 2020). In the present study, the ability
of CatBoost to predict cancer recurrency was studied and clinical
potential of ICAGs was further demonstrated. Four datasets that
provided relapse information were firstly selected, including
GSE68465, GSE30219, GSE50081, and GSE31210 datasets. Then,
three different CatBoost models were trained based on three
different feature sets. The first feature set includes only ICAGs
selected by LASSO COX regression, the second one includes
only clinical information such as age, gender, and stage, while the
third set combined the first and the second feature sets.

Ten-fold cross-validation was performed considering the
limited sample size of the utilized datasets. In particular, the
dataset was randomly into 10 subsets. In each iteration, nine
of them were used to train the models and the last one for
validation. After 10 iterations, each subset had been validated
and the validation results were then combined. The areas
under receiver operator characteristic curves (AUROCs) were
calculated to assess the performance of the models. Finally, the
SHapley Additive exPlanation (SHAP) values were calculated
according to a game theory approach to illustrate the effects
of each feature on the prediction results of the third model
(Lundberg et al., 2020).

Gene Set Variant, Pathway Activity, and
Regulatory Network Analyses
Gene Set Cancer Analysis (GSCA1) is an integrated genomic
and immunogenomic online tool for gene set cancer research
based on TCGA cohorts (Liu et al., 2018). The results of single-
nucleotide variants (SNVs), copy number variations (CNVs),
micro RNA (miRNA) network analyses, and pathway activity
were obtained by uploading on the web-based platform the
genes selected by LASSO COX regression and choosing the
TCGA-LUAD cohort. Notably, SNV and CNV were analyzed
based on the TCGA-LUAD cohort, while pathway activity and

1http://bioinfo.life.hust.edu.cn/GSCA/#/

miRNA network analyses were performed on the 32 and 33
cancer types in TCGA, respectively. Additionally, the correlation
of gene expression and drug sensitivity was assessed based on
small molecules from the Cancer Therapeutics Response Portal
(CTRP) (Seashore-Ludlow et al., 2015) and the Genomics of Drug
Sensitivity in Cancer (GDSC) (Iorio et al., 2016).

The cBioPortal for Cancer Genomics2 provides another
web-based resource for exploring, visualizing, and analyzing
multidimensional cancer genomics data (Gao et al., 2013). We
also used cBioPortal to explore selected ICAGs on the TCGA-
LUAD cohort. Results of variant and pathway analyses were
downloaded to enhance our study.

Additionally, long non-coding RNAs (lncRNAs) in the
validation set were identified according to Genome Reference
Consortium Human Build 38 patch release 13 (GRCh38.p13).
Co-expression analysis was conducted by assessing Pearson
correlation between the selected ICAGs and lncRNAs in LUAD
samples. A lncRNA regulatory network was derived according
to the criteria of | Correlation Coefficient| > 0.4 and P < 0.01
using the functions provided in the stats R package (version
3.6.0). If a ICAG have more than 10 significantly correlated
lncRNAs, only 10 lncRNAs with the greatest absolute value of
correlation coefficients were selected. The lncRNA network was
then visualized by using the Cytoscape program.

DNA Methylation and
N6-Methyladenosine
In order to further analyze the selected ICAGs, DNA methylation
data of LUAD (platform: Illumina HumanMethylation450
BeadChip) were downloaded from the TCGA database. The
methylation level of CpGs was represented as β values (Bibikova
et al., 2011). Pearson correlation coefficients and P-values were
calculated between expression and methylation levels of ICAGs.

Besides, 12 N6-methyladenosine (m6A) regulatory genes
were obtained via systematic review in published articles. The
expression levels of these genes were compared by using the two-
sample Wilcoxon test between the high- and the low-risk groups
on the validation set.

Gene Set Enrichment and
Immunogenomic Landscape Analyses
The DEGs between the high- and the low-risk groups in the
TCGA cohort, with adjusted P-value < 0.01 were identified using
the functions provided in the stats R package (version 3.6.0).
Gene set enrichment analyses based on the GO and KEGG
functional and pathway terms were conducted to assess the DEGs
with adjusted P-values threshold of 0.05, using the clusterProfiler
R package (version 3.14.3) (Yu et al., 2012).

Computational methods were used to evaluate the immune
infiltration and functions, including TIMER (Li et al., 2020),
quanTIseq (Finotello et al., 2019), xCell (Aran et al., 2017),
MCP-counter (Becht et al., 2016), EPIC (Racle et al., 2017),
CIBERSORT (Newman et al., 2015) CIBERSORTx (Newman
et al., 2019), and single-sample gene set enrichment analysis

2http://cbioportal.org
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TABLE 1 | Basic information of datasets included in this study.

Dataset ID Number of samples Brief introduction about the dataset Number of deaths Number of relapses

Discovery set 1042

GSE19188 40 A genome-wide gene expression analysis on early-stage NSCLC 24 –

GSE30219 85 Identification of a group of metastatic-prone tumors in lung cancer
according to “Off-context” gene expression defined by the authors

45 27 (83)

GSE31210 226 Gene expression analysis on pathological stage I–II lung
adenocarcinomas

35 64 (226)

GSE31546 16 Development of an EGFR mutation gene expression signature to
predict response and clinical outcome, and identification of genes

associated with the EGFR-dependent phenotype

2 –

GSE37745 106 Biomarker discovery in NSCLC 77 –

GSE50081 127 Validation of a histology-independent prognostic gene signature for
early-stage NSCLC, including stage IA patients

51 37 (124)

GSE68465 442 Gene expression-based survival prediction in LUAD 236 178 (178)

Validation set 535

TCGA-LUAD 535 The LUAD cohort of TCGA, a landmark cancer genomics program,
molecularly characterized over 20,000 primary cancer and matched

normal samples spanning 33 cancer types.

187 –

(ssGSEA) in an attempt to comprehensively analyze the immune
differences between the two groups (Rooney et al., 2015).
Additionally, a list of 79 immune checkpoint genes was
obtained from Hu’s study (Hu et al., 2020), with most of these
genes being ligands, receptors, or important molecules in the
immune checkpoint pathways. The expression of these genes was
compared between the high- and the low-risk groups by using the
two-sample Wilcoxon test.

Modeling the Intercellular
Communication Based on a Single Cell
RNA Sequencing Dataset
The GSE131907 dataset, which is a LUAD single-cell RNA
sequencing dataset, was downloaded from the GEO database.
Raw data are not available due to patient privacy concerns,
and therefore, data normalized (log2TPM) by the contributors
were used in our study. Cell annotations were provided by
contributors. A total of 11 LUAD and 11 distant normal lung
samples were included for further analyses. The expression levels
of genes included in the proposed risk score were evaluated in
different cell types.

Risk scores were calculated at the cell level and averaged
for each LUAD sample. Then, 11 LUAD samples were divided
into high- and low-risk groups according to the median
risk score. Intercellular communication was modeled by using
the CellPhoneDB Python package (version 2.1.7) (Efremova
et al., 2020), and the significantly differentiated between the
two groups ligand–target links were summarized by using
the iTALK R package (version 0.1.0) (Wang Y. et al., 2019).
Specifically, CellPhoneDB integrates existing datasets of cellular
communication and new manually reviewed information,
including the subunit architecture for both ligands and receptors.
The normalized gene expression data and the cell annotations
were analyzed by the relevant Python package, with subsampling,
50 rounds of iterations and 4 calculating threads. The iTALK
R package is another useful toolkit for characterizing and

visualizing intercellular communication. Growth factor, cytokine,
checkpoint, and other types of intercellular communication
were assessed by it. The top 20 ligand–target links with the
greatest differences between the high- and the low-risk groups
were visualized.

RESULTS

Identification of Prognosis-Related
ICAGs
Seven datasets downloaded from GEO were preprocessed as
previously described, and a total of 1042 samples were eventually
used as the discovery set. The results of eliminating batch effect
were presented (see Supplementary Figure 1). Besides, 594
samples were downloaded from TCGA and used as the validation
set, with 535 of them being LUAD samples and 59 of them being
normal samples. The basic information of these datasets was
summarized in Table 1. Besides, the characteristics of research
subjects in each GEO dataset and the TCGA dataset were
presented in Supplementary File 2. A total of 426 ICAGs were
collected, and 354 genes, common in all datasets, were assessed
in this study. Sixty-seven genes were significantly associated
with the overall survival by univariate COX regression (see
Supplementary File 4). Eight genes were finally selected because
they presented non-zero coefficients in the fitted LASSO COX
regression models, as it is shown in Table 2. The risk score was
calculated as follows:

RiskScore = 0.09022× LAMB1+ 0.09287× GJC1+ 0.12437

×CDH4+ 0.16105× GJB3+ 0.14827× SPP1

+0.14339× AFDN+ 0.16016× SKAP2− 0.17981

×ARHGEF6
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TABLE 2 | The prognostic ICAGs identified by using LASSO COX regression.

Gene Coef Encoded protein

ARHGEF6 −0.17981 Rho guanine nucleotide exchange factor 6

SKAP2 0.16016 Src kinase-associated phosphoprotein 2

AFDN 0.14339 Afadin, adherens junction formation factor

SPP1 0.14827 Secreted phosphoprotein 1

GJB3 0.16105 Gap junction beta-3 protein

CDH4 0.12437 Cadherin 4

GJC1 0.09287 Gap junction gamma-1 protein

LAMB1 0.09022 Laminin subunit beta-1

In addition, the nomogram we developed was presented in
Supplementary Figure 2.

Survival Analysis on the Risk Score
Patients in the discovery and the validation sets were divided into
high- and low-risk groups, according to whether their risk scores
exceeded the median values. The Kaplan–Meier analysis with a
log-rank test demonstrated that there were significant differences
in the overall survival between the two risk groups. As shown
in Figures 2A,D, the high-risk group has significantly worse
overall survival compared to the low-risk group (P < 0.001).
PCA also confirmed that patients in the two groups presented
different patterns of gene expression and this finding is illustrated
in Figures 2B,E. As seen, the blue points representing the low-
risk group distributed together, while the red points representing
the high-risk group in another part of space. This indicates
significant differences in the gene expression levels between
the two groups. Furthermore, as shown in Figures 2C,F, our
risk score is significantly associated with the outcome in the
univariate and the multivariate regression (P < 0.001), indicating
the risk score was an independent predictive factor for the
overall survival.

Prediction of Relapse by Using Machine
Learning
Four datasets which provided relapse information were selected,
including GSE68465, GSE30219, GSE50081, and GSE31210. The
Kaplan–Meier analysis also proved that there were significant
differences in the disease-free survival between the high- and the
low-risk groups, as it is shown in Figure 3A.

The CatBoost algorithm was used to develop three machine-
learning models based on different sets of variables to further
elucidate the prognostic value of selected ICAGs. The first feature
set includes only ICAGs selected by the LASSO COX regression
and the model presented an AUROC of 0.663. The second
includes only clinical information such as age, gender, and stage,
and its AUROC was 0.757. The third set combined both clinical
variables and the selected ICAGs, and a remarkable AUROC of
0.841 was achieved. The predictive performances of cancer stage
and age were also assessed. The AUROCs of stage and age were
0.728 and 0.557, respectively. The machine-learning model, based
on all features, outperformed all other predictive methods or
models, as it is shown in Figure 3B.

SHapley Additive exPlanation values were assessed to evaluate
the effects of each variable on the model’s output. SHAP values
for the model using all features were shown in Figure 3C. Red
color represents a high value of that feature, while blue color
represents a low value. A positive SHAP value means that this
feature value will increase the relapse risk, while a negative one
represents a protective effect. The features in Figure 3C were
ordered from top to bottom according to their importance, which
was assessed by the average absolute SHAP values. Moreover, the
relationships between the SHAP values and the gene expression
levels were visualized in Figure 3D. SKAP2, AFDN, CDH4, GJB3,
and GJC1 had similar positive correlation with SHAP values,
while the expression level of ARHGEF6 is negatively correlated
with SHAP values. The relationships between SHAP values and
SPP1 or LAMB1 are not simply linear and needs more research.

Gene Set Variant Analysis on the
Validation Set
Gene Set Cancer Analysis was used for gene set variant analyses.
Supplementary Figure 3 showed the analysis on SNVs of
the eight ICAGs. Missense mutations were the most common
variants, and the C > A and C > T SNVs were the most frequent
variants. The median of variants per sample was 1. LAMB1,
ARHGEF6, and CDH4 are the top mutated genes.

Analysis of CNVs was summarized in Supplementary
Figure 4. From this figure, it is observed that LAMB1, GJC1,
CDH4, and SKAP2 had frequent heterozygous amplification,
while AFDN, SPP1, and GJB3 had frequent heterozygous
deletion. Homozygous variants were less frequently observed in
these genes, but CDH4, SKAP2, LAMB1, and AFDN had more
frequent homozygous variants than other genes.

Regulatory Networks and Methylation
Modification
Micro RNA and lncRNA regulatory networks were visualized in
Supplementary Figures 5A,B, respectively. The figures included
key ICAGs, as well as the miRNAs and lncRNAs that target them.
Methylation modification was summarized in Supplementary
Figure 6. Five genes were shown in Supplementary Figure 6A,
including CDH4, GJB3, LAMB1, SKAP2, and SPP1, of which
expression levels were significantly correlated to their DNA
methylation levels (P-value < 0.05). Besides, the expression levels
of m6A regulatory genes were compared between the high- and
the low-risk groups, as shown in Supplementary Figure 6B.

Pathway Activity and Gene Set
Enrichment Analyses
The results of pathway activity analysis were shown in
Supplementary Figure 7. As shown in Supplementary
Figure 7B, these genes were significantly correlated with the
EMT activation. Besides, the eight genes also presented great
effects on the inhibition of cell cycle. These results confirmed
that the selected genes play an important role in cancer
development and metastasis.

Expressions of 25,168 genes were compared between the
high- and the low-risk groups in the validation set, and
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FIGURE 2 | Prognostic analysis of the risk score in the discovery and the validation sets. (A,D) Kaplan–Meier curves for the comparison of the overall survival
between the high- and the low-risk group. (B,E) The three-dimensional principal component analysis on the two groups. (C,F) Forest plots for the results of the
univariate and multivariate COX regression analyses regarding the overall survival. (A–C) Show the results of the discovery set, while (D–F) show the results of the
validation set. PC, principal component; HR, hazard ratio; CI, confidence interval.

10,830 genes were found to be differentially expressed with
an adjusted P-value < 0.05. Gene set enrichment analyses
were performed. DNA replication, chromosomal region,
cell adhesion molecule binding and cadherin binding were
significantly enriched GO terms, as shown in Supplementary
Figures 8A,B. Cell cycle, focal adhesion, spliceosome, and
homologous recombination were significantly enriched
pathways according to the results of the KEGG pathway
analysis (Supplementary Figures 8C,D). Among these DEGs,
991 had absolute fold changes greater than 2. Specifically, 727
genes were upregulated and 264 were downregulated in the
high-risk group, compared to the low-risk group. The heatmap
and volcano plot of these genes were plotted in Supplementary
Figures 8E,F, respectively.

Immunogenomic Landscape Analyses
Various computational approaches regarding immune
infiltration were conducted and summarized in Figure 4.
As seen, most scores of immune cells were correlated with the
risk score with a negative coefficient as shown in Figure 4B. This
finding suggests that the high-risk group had fewer infiltrated
immune cells. The scores provided by CIBERSORTx were
compared between the two groups, as it is shown in Figure 4C.
As seen, the high-risk group had fewer B cells naïve, B cells
memory, T cells CD8, T cells regulatory, and Mast cells resting

than the low-risk group. But more T cells CD4 memory activated,
Macrophages M0, and Macrophages M1 were infiltrated in the
high-risk group. More Eosinophils were infiltrated in the high-
risk group, but the scores in both groups were too low such
that the comparison of Eosinophils was not clear in the figure.
Additionally, the expressions of 79 immune checkpoint genes
were compared between the high- and the low-risk groups by
using the two-sample Wilcoxon test. The checkpoint genes with
a P-value < 0.05 were summarized in Figure 4D.

Modeling of Intercellular Communication
Based on a Single Cell RNA Sequencing
Dataset
The Single-cell RNA sequencing dataset GSE131907 was used
for further analysis in high resolution. A total of 11 LUAD and
11 distant normal lung samples were included in our study. In
total, 42,679 normal cells and 45,149 tumor cells were assessed.
A total of 22,977 and 22,172 tumor cells were assigned to
high- and low-risk groups, respectively. The risk score and the
expression levels of eight genes in different cells were assessed
and compared, as demonstrated in Figure 5A. As seen, the
expression patterns of these eight genes were different between
the high- and the low-risk groups and also between the LUAD
and normal groups. SPP1 was upregulated in all kinds of cells
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FIGURE 3 | Prediction of LUAD relapse by using machine learning. (A) The Kaplan–Meier curve for the comparison of the disease-free survival between the high-
and the low-risk groups. (B) The receiver operator characteristic curves for the explored predictive models or methods. (C) SHAP values show the variable impacts
on the prediction results of the model using all clinical information and eight ICAGs. (D) The distributions of the SHAP values for each ICAG on the model using all
clinical information and the eight ICAGs. ML, machine learning; AUC, area under curves; SHAP, shapley additive explanation.

and especially the myeloid cells in the high-risk group compared
to the low-risk group. AFDN and SKAP2 were upregulated in the
epithelial cells of the high-risk group. These differences were also
observed between tumor and normal samples. The correlation of
risk scores between different cells was displayed in Figure 5B.
Interestingly, the risk scores of various cells were positively
correlated with each other.

Besides, intercellular communication was modeled by using
CellphoneDB. The patterns of intercellular communication in
the high- and low-risk groups were visualized in Figures 5C,D,
respectively. As shown in Figures 5C,D, less communication was
observed between B lymphocytes, T lymphocytes, NK cells, and
MAST cells than between other cells, but in the high-risk group
(shown in Figure 5D), there was more communication between
epithelial cells and others in comparison with the low-risk group
(shown in Figure 5C).

Furthermore, the differences in communication patterns
between the two groups were compared by using the iTALK
R package, and the results were displayed in Figures 5E–G. In
Figure 5G, red color represents a gain of interaction, indicating
upregulation of the ligand and the receptor genes, while blue
color represents a loss of interaction, indicating downregulation
of the ligand and the receptor genes. The thickness of edges
indicates the expression level of the ligands, while the size of
arrows indicates the expression level of receptors. Although
some ligand–receptor links of autocrine were expressed more
in epithelial cells, several ligand–receptor links were expressed
significantly less in the high-risk group.

Drug Sensitivity Analysis
The correlation of gene expression and drug sensitivity was
assessed based on small molecules from CTRP and GDSC. The
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FIGURE 4 | The immunogenomic landscape analyses on the validation set. (A) Compositions of different infiltrated immune cells estimated by ssGSEA.
(B) Correlation between risk score and immune cells estimated by XCELL, TIMER, quanTIseq, MCP-counter, EPIC, and CIBERSORT. (C) Boxplot for the immune
cell scores in the high- and the low-risk groups, estimated by CIBERSORTx. (D) Boxplot for the expression of an immune checkpoint gene in the high- and the
low-risk groups. Adjusted P-values were showed as: ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001.

correlation coefficients and adjusted P-values were visualized in
Supplementary Figure 9. It is easily observed that these eight
genes were significantly correlated to the sensitivity of various
drugs. Specifically, the positive correlations were commonly
observed on AFDN, GJB3, LAMB1, and SPP1, while ARHGEF6
had negative correlations to most drugs.

DISCUSSION

In this study, we explored the prognostic potential of ICAGs in
patients with LUAD. An eight-ICAG signature was eventually

identified, and a risk score was accordingly derived based on
the analysis of publicly available datasets. Machine-learning
models were developed to predict tumor recurrency based
on clinical information and the expression levels of selected
ICAGs. Comprehensive analyses were conducted, including
gene set variant, regulatory network, pathway activity, gene
set enrichment, immunogenomic landscape, drug sensitivity
analyses as well as modeling of intercellular communication
based on single-cell RNA sequencing.

A large number of studies have shown that cell-to-cell
communication participates in the construction of the TME
of lung cancer, promotes the formation of lung cancer blood

Frontiers in Genetics | www.frontiersin.org 9 August 2021 | Volume 12 | Article 702424

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-702424 August 17, 2021 Time: 14:56 # 10

Zhao et al. Intercellular Communication-Associated Genes in LUAD

FIGURE 5 | Modeling of intercellular communication based on a single cell RNA sequencing dataset. (A) Heatmap for the ICAG expression and the risk score in
different groups. (B) Correlation of the risk scores in different cells. (C,D) Heatmaps for the intercellular communication generated by using CellphoneDB in the
low-risk group (C) and the high-risk group (D). (E,F) The main ligand–target expression between the different cells in the low-risk group (E) and the high-risk group
(F). (G) The top differences in the expression of ligand or target genes between the low- and the high-risk groups. (E–G) were generated by using the iTALK R
package.

vessels, and accelerates tumor invasion and metastasis. Exosomes,
cytokines, etc., can be released by tumor cells into the TME and
blood circulation to promote tumor progression. For example,
MALAT1 derived from exosomes has been found to be highly
expressed in the serum of patients with non-small cell lung
cancer, which can accelerate tumor migration and promote its

growth (Gutschner et al., 2013). Another study showed that
the absorption of vesicles of lung cancer cells by macrophages
promotes the production of M2-like phenotype by tumor-
associated macrophages, which in turn produces IL-1β, which is
beneficial to the survival of tumor cells (Wang et al., 2011). In
short, cell-to-cell communication can regulate the progression,
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metastasis, invasion, and proliferation of lung cancer through a
variety of ways.

In this study, eight genes involved in intercellular
communication were identified and prioritized in the present
study. Previous research has reported the role some of them play
in the progression of cancer. It was found that miR-135a can
inhibit cancer stem cell-driven medulloblastoma development
by directly repressing the expression of ARHGEF6 (Hemmesi
et al., 2015) and ARHGEF6 might be a hub gene in colorectal
cancer (Wang and Zheng, 2014). A high level of Afadin, which is
the protein encoded by AFDN gene, was found to be associated
with poor survival in breast cancer patients (Tabaries et al.,
2019). GJB3, a member of the connexin gene family, was
found to be a potential circulating biomarker for metastatic
pancreatic cancer and might have a unique effect on cell death
(Tattersall et al., 2009; Easton et al., 2019). Choi et al. (2020)
detected the expression levels of GJC1 (Cx45) in HeLa cells
and identified GJC1 as a major component of gap junctions.
However, few studies focused on the role of these genes in
LUAD. The findings in our study will contribute to a deeper
understanding of the effects of these genes on the progression
and relapse of LUAD.

The effects of other selected genes on LUAD or NSCLC
have been previously reported by several studies. It was found
that SPP1 may contribute to immune escape (Zhang et al.,
2017), metastatic progression (Chiou et al., 2019), and second-
generation epidermal growth factor receptor tyrosine kinase
inhibitor resistance (Wang X. et al., 2019). Tanaka et al.
(2016) revealed that SKAP2 is related to tumor-associated
macrophage infiltration and facilitates the metastatic progression
of lung cancer in mise. The prognostic value of SKAP2 was
also reported in previous studies using bioinformatics analyses
(Kuranami et al., 2015; Tanaka et al., 2016; Chen et al., 2019).
Studies showed that CDH4 could be regulated by miR-211-
5p to inhibit the proliferation, migration, and invasion of
LUAD (Zhang et al., 2020). Besides, the aberrant expression
of ligand–receptor pair LAMB1-ITGB1 was identified within
tumor cells in LUAD (Chen et al., 2020). In our study,
the selected ICAGs except ARHGEF6 presented a positive
coefficient, indicating that the upregulation of the expression
levels results in poor prognosis. Our study confirms the results
of these prior studies and may facilitate other research on the
functions of these genes.

The prognostic value of these eight ICAGs was evaluated by
survival analysis. Significant differences were observed in the
overall survival between the high- and the low-risk groups. The
risk score derived by LASSO COX regression was proved to
be an independent predictive factor for the overall survival in
LUAD. Moreover, a machine-learning model based on clinical
information and expression of the eight ICAGs accurately
predicts LUAD recurrence better than other predictive methods
or models. Our risk score and model could contribute to
the determination of the severity of LUAD and to stratify
patients’ prognosis.

Further comparisons between the high- and the low-risk
groups were performed, including gene set enrichment and
immune infiltration analyses. GO and KEGG pathway analyses

demonstrated that cell cycle, focal adhesion, DNA replication,
and cell adhesion molecule binding were enriched by DEGs
between the high- and the low-risk groups. Besides, it was
shown by immune infiltration analyses that there were significant
differences in the TME between the two groups. Previous studies
have already reported that misleading communication within and
between tumor cells and immune cells contributes to immune
escape, metastatic progression, and drug resistance of LUAD
(Tanaka et al., 2016; Chen et al., 2020). In addition, as shown
in Supplementary Figure 7, these eight genes are also involved
in cell growth cycle pathways such as cell cycle pathway and
DNA damage response pathway. Sex hormone receptor pathways
are also related to these eight genes, such as hormone AR
pathway and hormone ER pathway. In addition, PI3K/AKT,
RTK, RAS/MAPK, TSC/mTOR pathways can also interact to
promote the occurrence and development of lung cancer. In
our study, these enriched pathways and microenvironment
differences were likely to result from aberrant changes in the
intercellular communication. More research and experiments are
required to shed light on the effects of aberrant intercellular
communication in cancers.

A single-cell RNA sequencing dataset was used to further
model the intercellular communication in LUAD. The ICAG
expressions in different cells were assessed in the present study,
evaluating the communication relationships between different
cells and comparing the differences in the communication
patterns between the high- and the low-risk groups. Changes
in transferring information may be the key mechanism in
immune escape and therapy resistance of LUAD. Our study
provides insight into the potentially therapy target role of
the ICAGs in LUAD.

According to drug sensitivity analysis, we found that these
eight genes are related to AS605240 (PI3K inhibitor), AZD8055
(mTOR inhibitor), AZD-7762 (cell cycle checkpoint kinase),
vinblastine (a lung cancer targeted drug), and other drugs. The
results are consistent with the results of our previous analysis.
This further supports the results of the previous pathway analysis
and the conclusion of the article.

Several limitations of this study should be considered. Firstly,
the analyses of this study were conducted based on public
datasets, without verification or validation from in vitro or
in vivo biochemical experiments. Thus, the revealed eight-ICAG
signature and our machine-learning models require further
validation in large-scale prospective studies to demonstrate their
robustness. Secondly, various approaches to estimating immune
infiltrated cells or modeling intercellular communication were
used in the present study, but their results were not entirely
consistent. However, any one of these computational approaches
is not a “Gold Standard.” In contrast, they provide different
perspectives to estimate what we are interested in. That is
exactly the reason why we tried as many approaches as possible
in the study, instead of drawing our conclusion based on
anyone of them. Lastly, other factors, such as circular RNAs
and proteins, involved in intercellular communication, were not
included in our study. Multi-omics data may facilitate a deeper
understanding of the pathogenesis and optimize the prediction
of survival in LUAD.
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CONCLUSION

In this study, we comprehensively assessed the role of ICAGs
in LUAD, identifying eight key ICAGs with prognostic value
and developing a risk score as well as machine learning
models to predict the prognosis for patients with LUAD.
These genes may contribute to understanding the pathological
mechanism of LUAD, and could also be considered as potential
therapeutic targets.
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