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Abstract
1.	 The ecological and environmental science communities have embraced machine 

learning (ML) for empirical modelling and prediction. However, going beyond pre-
diction to draw insights into underlying functional relationships between response 
variables and environmental ‘drivers’ is less straightforward. Deriving ecological 
insights from fitted ML models requires techniques to extract the ‘learning’ hid-
den in the ML models.

2.	 We revisit the theoretical background and effectiveness of four approaches 
for deriving insights from ML: ranking independent variable importance (Gini 
importance, GI; permutation importance, PI; split importance, SI; and conditional 
permutation importance, CPI), and two approaches for inference of bivariate 
functional relationships (partial dependence plots, PDP; and accumulated local 
effect plots, ALE). We also explore the use of a surrogate model for visualization 
and interpretation of complex multi-variate relationships between response varia-
bles and environmental drivers. We examine the challenges and opportunities for 
extracting ecological insights with these interpretation approaches. Specifically, 
we aim to improve interpretation of ML models by investigating how effective-
ness relates to (a) interpretation algorithm, (b) sample size and (c) the presence of 
spurious explanatory variables.

3.	 We base the analysis on simulations with known underlying functional relation-
ships between response and predictor variables, with added white noise and the 
presence of correlated but non-influential variables. The results indicate that 
deriving ecological insight is strongly affected by interpretation algorithm and 
spurious variables, and moderately impacted by sample size. Removing spurious 
variables improves interpretation of ML models. Meanwhile, increasing sample 
size has limited value in the presence of spurious variables, but increasing sam-
ple size does improves performance once spurious variables are omitted. Among 
the four ranking methods, SI is slightly more effective than the other methods in 
the presence of spurious variables, while GI and SI yield higher accuracy when 
spurious variables are removed. PDP is more effective in retrieving underlying 
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1  | THE NEED TO IMPROVE MACHINE 
LE ARNING INTERPRETABILIT Y IN ECOLOGY

Ecologists and environmental scientists often find themselves 
searching for tools to model and predict complex, nonlinear and 
high-dimensional systems. In recent years, our ability to predict com-
plicated systems has greatly improved through the development of 
machine learning (ML) algorithms. A substantial body of literature 
has accumulated on applications of ML in the ecological and envi-
ronmental sciences (e.g. Cutler et al., 2007; Elith & Leathwick, 2017; 
Elith et  al.,  2008; Marmion et  al.,  2009). However, when prediction 
is not the primary goal, most ML methods tend to behave like ‘black 
boxes’, meaning that it can be challenging to derive new understand-
ing or ecological insights from these statistical models, irrespective 
of their predictive abilities (Roscher et al., 2020). For example, if we 
are interested in understanding the distribution of species richness 
sampled across a study domain (the ‘response’ variable), we might use 
ML methods to fit relationships with a set of candidate independent 
(‘predictor’) variables (e.g. variables describing the spatial and tempo-
ral variation in climate, soils and disturbance). The resulting ML model 
may closely fit the training data and provide accurate predictions for 
locations between sample plots. However, without appropriate visu-
alization or interpretation tools, that same model may provide little or 
no insight into the functional (or causal) relationships between species 
diversity and underlying climatic, edaphic and biotic interactions.

The ability of ML approaches to predict accurately is 
valuable, but ecological interpretation of the underlying 

functional relationships can be challenging (Lucas, 2020; Wenger & 
Olden, 2012). Nonetheless, the often superior predictive ability of 
ML approaches, relative to more traditional approaches (e.g. linear 
and nonlinear regression), suggests that the functional relationships 
are embodied in the fitted ML models. The challenge, therefore, is to 
provide tools to extract (quantify and/or visualize) those functional 
and ecological relationships from the black box. In particular, we 
would hope that ML will help answer three key ecological questions: 
(a) Which predictor variables are the most influential in determining 
the behaviour of the response variable? (b) What are the functional 
relationships between predictors and the response variable? And (c) 
how do interactions among predictors determine the complex and 
often nonlinear patterns in the response variable?

To extract ecological insights, we need a comprehensive un-
derstanding of interpretation approaches for ML models and how 
to generate reliable and accurate interpretation results (Brieuc 
et al., 2018; Cutler et al., 2007; Lucas, 2020). Earlier studies focused 
on the accuracy of variable importance estimations (Gini impurity 
and mean decrease in accuracy) related to impacts of correlated pre-
dictors (e.g. Gregorutti et al., 2017; Strobl et al., 2008), scale of mea-
surement and number of categories (e.g. Nicodemus,  2011; Strobl 
et al., 2007) and their intrinsic stability (Calle & Urrea, 2011; Wang 
et al., 2016). Mean decrease in accuracy is sensitive to dataset noise 
(Calle & Urrea, 2011), while the performance of the Gini coefficient 
is affected by correlation between predictor variables and the num-
ber of categories for categorical predictors (Nicodemus, 2011). While 
agreement has not been reached for which of the two is more effi-
cient (e.g. Calle & Urrea, 2011; Nicodemus, 2011), new variable im-
portance measures have been developed (e.g. conditional importance 
by Strobl et al., 2007 and split importance [SI] by Elith et al., 2008), 
promoting the need for a comprehensive comparison among them. 

functional relationships than ALE, but its reliability declines sharply in the pres-
ence of spurious variables. Visualization and interpretation of the interactive ef-
fects of predictors and the response variable can be enhanced using surrogate 
models, including three-dimensional visualizations and use of loess planes to rep-
resent independent variable effects and interactions.

4.	 Machine learning analysts should be aware that including correlated independent 
variables in ML models with no clear causal relationship to response variables can 
interfere with ecological inference. When ecological inference is important, ML 
models should be constructed with independent variables that have clear causal 
effects on response variables. While interpreting ML models for ecological infer-
ence remains challenging, we show that careful choice of interpretation methods, 
exclusion of spurious variables and adequate sample size can provide more and 
better opportunities to ‘learn from machine learning’.

K E Y W O R D S

bivariate functional relationship, boosted regression tree (BRT), ecological inference, 
interpretation of machine learning models, random forest (RF), variable importance

‘In the right light, study becomes insight’—Take the Power Back, by 
Rage Against the Machine (lyrics by Commerford, Morello, De La 

Rocha, Wilk; © Wixen Music Publishing)  
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Meanwhile, compared to variable importance, assessment for meth-
ods to extract bivariate relationships has received much less atten-
tion, although it is critical for ecological interpretation.

The need for sufficient training data (sample size) has long 
been a major concern for accurate ML model predictions (Perry & 
Dickson, 2018; Raudys & Jain, 1991; Stockwell & Peterson, 2002). 
However, it is less well-known how sample size impacts model in-
terpretation, including variable importance and functional rela-
tionships. This is particularly important in ecology, where relatively 
small-scale experiments lead to ML models with small sample sizes. 
Assessment of variable importance measures (Gini and permutation 
importance) showed that both of them are sensitive to sample size 
(e.g. Strobl & Zeileis, 2008; Wang et al., 2016). Similarly, while the 
presence of spurious variables may have little negative impact on 
ML predictions, the covariance among true and spurious predictors 
may reduce our ability to effectively rank predictor importance. 
More particularly, the inclusion of spurious predictor variables will 
likely obscure our ability to retrieve ‘true’ functional relationships 
for influential predictors, as spurious variables alias a portion of the 
underlying correlations with true predictors and thus obscure the 
true relationships.

In this paper, we evaluate how ML interpretation approaches are 
impacted by sample size and the presence of spurious variables. We 
review interpretive tools that can shed new light on the ML black 
box, and provide opportunities for new and improved ecological and 
functional insights. We use a simulation dataset to illustrate key in-
terpretation strategies, and demonstrate their abilities for reliable 
ecological interpretation and inference. In so doing, we provide 
some recommendations for efficient ecological interpretation.

2  | MATERIAL S AND METHODS

We conducted a simulation, with known underlying relationships 
between response and predictor variables, to assess retrieval of 
ecological insights from ML models. We examine four algorithms to 
evaluate variable importance and two for visualization of bivariate 
functional relationships between each predictor and the response 
variable. We then introduce surrogate models to visualize the in-
teractive (i.e. multivariate) effects of predictor variables on the re-
sponse variable. We provide brief theoretical background for the 
interpretation approaches, compare their performance and analyse 
their sensitivity to sample size and spurious variables.

2.1 | Simulation design

We generated a pseudo dataset representing hypothetical variability 
in global species richness in response to three environmental pre-
dictors, with known underlying functional relationships (Figure 1a). 
To fulfil the goal of examining effectiveness of ML interpretation 
approaches, our simulation simplified and generalized the abiotic 
mechanisms of species richness by focusing on three primary factors: 

temperature (MAT, K; Antão et  al.,  2020; Fuhrman et  al.,  2008; 
Stegen et al., 2012), rainfall (MAP, mm; Frank et al., 2014; Gelfand 
et  al.,  2005) and disturbance (here we only used fire frequency, 
year−1; He et al., 2019; Peterson & Reich, 2008). In this hypothetical 
example, we modelled species richness (SN) as a linear combination 
of the three environmental (predictor) variables:

where x represents each of the three predictors (MAT, MAP and fire), 
and f is the associated deterministic function. SNnormx (each scaled 
0–1) are the normalized species richness values determined by envi-
ronmental predictors x. The three SNnormx (Figure 1a) were generated 
with parabolic, sigmoid and negative sigmoid relationships (f) for MAT, 
MAP and fire frequency, respectively, with added Gaussian error (ε). 
Weights (w) for MAT, MAP and fire frequency were set as w1 = 0.6, 
w2 = 0.3 and w3 = 0.1, respectively, representing the relative impor-
tance of the three predictors in determining eventual SN. We con-
strained the range of SN to 0–100 by removing points (166 samples) 
out of the 0–100 range.

In addition, we simulated two environmental variables, ‘V1’ and 
‘V2’, which in our simulation have varying degree of correlation with 
the three (‘true’) predictor variables, but no direct impact on spe-
cies richness. These ‘spurious variables’ were included in the ML 
analysis to mimic common practice of including numerous variables 
when constructing ML models, many of which are mechanistically 
uninfluential in determining the response, but may nevertheless be 
correlated with it due to environmental covariance. The combination 
of correlation among predictor variables and noise obscures the un-
derlying bivariate relationships (Figure 1).

Simulation of the five environmental variables incorporated hy-
pothetical spatial gradients in a domain representing a hypothetical 
terrestrial world, with partial covariance among environmental vari-
ables, as typically found in real systems (Figure 2). Thus among the 
three ‘true’ predictor variables, MAT follows a latitudinal gradient 
peaking near the equator (Figure 2a); MAP peaks in the centre of the 
domain and declines outwards (Figure 2b); while fire frequency in-
teracts with MAP and MAT, peaking in mesic systems with moderate 
rainfall and higher temperature (Figure 2c). Among the two ‘spurious 
variables’, V1 (Figure 2d) increases from west to east with no direct 
dependence on other predictors, while V2 (Figure 2e) is partially cor-
related with the other predictor variables.

Weight terms (w) in Equation 2 provide the underlying variable 
importance, ranked MAT  >  MAP  >  fire frequency. The determin-
istic relationships in Figure 1a represent the underlying functional 
relationships between species richness and the three deterministic 
predictors, while the spatial interactions among predictors (Figure 2) 
simulate covariance among predictors that tends to confound the 
ability of statistical modelling approaches to derive accurate func-
tional relationships, particularly when examined using bivariate 
methods (Figure  1b,c). As is common in real-world situations, the 

(1)SNnormx = f (x) + �,

(2)

SN = 100 ×
(

w1 × SNnormMAT + w2 × SNnormMAP + w3 × SNnormFire

)

,
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spatial interactions between predictor variables distort our ability 
to visualize bivariate relationships (Figure 1b,c), particularly for vari-
ables with lower influence such as mean annual precipitation and fire 
frequency (w = 0.3 and 0.1 respectively). Our goal, therefore, is to be 
able to work with complex, correlated and noisy data, such as sim-
ulated here, and discern which predictor variables are ecologically 
important, and then gain insights into the functional relationships 
with the response variable.

2.2 | Interpretation methods

We investigated interpretation approaches for extracting (a) vari-
able importance, (b) bivariate functional relationships and (c) multi-
variate functional relationships and predictor interactions. For each 
interpretation approach, we examined how they are affected by 
sample size and spurious variables.

We used random forest (RF) and boosted regression tree (BRT) 
models as our primary ML examples, although many of the insights 
and recommendations apply to other common ML approaches. 
RF and BRT are used extensively in ecology and environmental 
sciences, in large part due to their ability to deal with nonlinear 
interactions and remarkable predictive capabilities (e.g. Anchang 
et al., 2020; Brieuc et al., 2018; Cutler et al., 2007; De'Ath, 2007; 
Jevšenak & Skudnik, 2021; Molnar, 2019; Prasad et al., 2006; Ross 
et al., 2020; 2021). The hyperparameters used for ML models were 
consistent among sample size and bootstraps. We used 100 trees for 
RF, while the number of predictors (mtry) was determined using the 
tuneFR function. For BRT, the tree complexity was three, learning 
rate equalled 0.01 and bag fraction was 0.8. The predicted species 
richness by RF and BRT and associated predictor errors are shown in 
Figure S1. The pseudo dataset comprised 64,620 (359 × 180) sam-
ples, representing species richness across the hypothetical domain 
(Figure 2f). Since real-world studies can be severely data limited, we 

F I G U R E  1   Simulated relationships between species richness for a hypothetical taxon and five environmental predictor variables. The 
upper row (a) shows the deterministic bivariate relationships (dark line) used to simulate species richness (Equation 1), with additional 
Gaussian noise (grey points). Row (b) shows the final species richness (SN, Equation 2) along the five predictors under ‘data-rich’ scenario 
(N = 64,454). Row (c) illustrates the additional challenge inherent in modelling data-poor situations, showing 500 samples randomly selected 
from row (b)
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also sampled the full dataset (sample sizes: 100, and from 500 to 
5,500 with an interval of 500) to examine how dataset size affects 
ML interpretation. To avoid spurious findings with random sample 
fluctuations, the random selection of samples was bootstrapped 
with 100 repetitions (the distribution of bootstrap samples with 
respect to predictor variables was checked for similarity with the 
overall dataset using Kolmogorov–Smirnov test).

2.2.1 | Variable importance

Variable importance (or feature importance) approaches are 
designed to rank the relative contribution of multiple predictor vari-
ables to response variables in ML models (Friedman, 2001). There 
is little consensus in the ML literature on how to calculate the rela-
tive importance of different independent variables in a fitted model. 
We tested four frequently used methods to rank predictor variables: 
Gini importance (GI; Breiman,  2001), permutation importance (PI; 
Cutler et al., 2012), conditional permutation importance (CPI; Strobl 
et al., 2007) and (SI; Elith et al., 2008). We estimated their accuracy 
in ranking predictor variables relative to simulated weights (w), and 
examined their sensitivity to sample size and spurious variables.

The first three importance measurements are associated with RF 
model, while the last one (SI) is commonly used with BRT models. GI 

quantifies the decreased variation of samples through all the nodes 
split by a predictor variable in a RF. PI estimates variable importance 
as the decrease in prediction accuracy (increase in error) when the 
target variable is randomized (permuted) and input to a previously 
trained model (Strobl et al., ,2007, 2008). GI and PI are implemented in 
the R package randomForest. R package party modifies the PI approach 
as the CPI, which computes the decrease in prediction accuracy fol-
lowing the permutation of portions of the range of a predictor variable 
(Strobl et al., 2008). SI considers how many times a predictor variable 
is used in splits across all trees in a boosted regression tree, and has 
been adopted by many packages such as LightGBM (Ke et al., 2017), 
XGBoost (Chen & Guestrin, 2016) and brt (Elith et al., 2008; Friedman 
& Meulman, 2003). See Table S1 for common R resources for ML.

2.2.2 | Bivariate functional relationships

We explored two methods, partial dependence plots (PDPs) 
and accumulated local effects (ALEs), for retrieval of underlying 
bivariate functional relationships. PDP has been a mainstay for 
ecological and environmental inference (e.g. Cutler et  al.,  2007; 
Friedman & Meulman,  2003; Galkin et  al.,  2018; Moya-Laraño 
& Corcobado,  2008; Sankaran et  al.,  2008), while the use of ALE 
method has been less frequently adopted (Apley & Zhu, 2016). These 

F I G U R E  2   Spatial distribution of three influential environmental variables: (a) temperature, (b) precipitation and (c) fire, and two non-
influential variables: (d) V1 and (e) V2 used to model (f) species richness generated using Equation 1
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two approaches are available in most ML programming packages 
(Table S1). Both PDP and ALE are designed to retrieve the functional 
relationships between response variables and predictive variables, 
somewhat analogous to a bivariate linear or nonlinear regression. 
PDP estimates the marginal effects of predictors by averaging the 
predicted outcomes from an ML model (Casalicchio et  al.,  2018; 
Friedman, 2001; Molnar et al., 2018; Zhao & Hastie, 2021). By con-
trast, ALE calculates the difference of local predictions across small 
intervals of the predictor variable range (Apley & Zhu, 2016). PDP 
and ALE can be applied to both RF and BRT.

2.2.3 | Multi-variate functional relationships and 
predictor interactions

While PDP and ALE are intended to show the bivariate relationship 
between the response variable and predictor variables, the multivari-
ate effects of predictor variables are not readily apparent using bivari-
ate visualizations. A less common approach for visualization of these 
underlying relationships in the environmental and ecological literature 
uses interpretable or ‘surrogate’ models (Molnar,  2019). A surrogate 
model uses predictions from an ML model that are re-analysed using a 
more easily interpretable (visualizable) model approach. Although any 

interpretable model (e.g. a simple decision tree, generalized linear or 
additive models) can be used as a surrogate model (Molnar et al., 2018), 
here we highlight the use of three-dimensional (3D) plane fitting (loess 
models) as a straightforward approach to visualization of multi-variate 
functional relationships and predictor interactions (Aho, 2013).

The surrogate model was generated from the fitted ML model (e.g. 
using the predict function in R) for all points in the calibration set, poten-
tially enhanced with additional random points in data-poor situations. 
In this way, a surrogate model can represent the relationships embodied 
in the ML model, free of the noise associated with the original data. To 
explore surrogate model visualizations for ecological interpretation of 
fitted ML models, we examined the multivariate effect of the more in-
fluential variables on species richness using 3D loess planes to show the 
interactive effect of predictor pairs on the response variable.

3  | RESULTS

3.1 | Variable importance

We compared the estimated variable importance and the rank of 
the predictor variables with the simulated importance weights 
(Figures 3 and 4). In the presence of spurious variables (Figure 3), 

F I G U R E  3   Estimation of feature importance (%) using four interpretation methods as a function of sample size (100, then from 500 to 
5,500 with an interval of 500). Points represent mean value of 100 bootstraps, and error bars indicate variation
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GI, SI and CPI were able to retrieve the correct rank order among 
influential variables (MAT > MAP > Fire), and SI showed slightly bet-
ter result than the others. However, GI and SI assigned considerable 
importance to the spurious variables (V1, V2) and no method was 
able to consistently retrieve the applied weightings for the true pre-
dictors (w = 60%, 30% and 10% respectively) when spurious vari-
ables (V1, V2) were present in the models. PI was unable to correctly 
rank predictor variables (Figure 3), indicating particular sensitivity of 
this index to covariance and aliasing among true and spurious vari-
ables. Notably, CPI tends to exaggerate the importance of the more 
important variable (MAT), while assigning relatively low importance 
to less influential (but true) variables (MAP, fire) and spurious vari-
ables. CPI importance rankings were also much more variable than 
other importance methods. Larger sample size decreases the varia-
tion in importance estimates, but did not consistently improve ac-
curacy indicating that, in the presence of spurious predictors, larger 
sample sizes will not necessarily improve predictor importance 
assessments.

Removal of spurious variables considerably improved the ability 
of GI, PI and SI to accurately rank and quantify predictor importance 
(Figure 4). However, CPI still tends to exaggerate importance of the 
more influential variable (MAT) while underestimating the less influ-
ential variables (MAP and fire). Larger sample sizes, in the absence 
of spurious variables, improved the ability of GI and PI to retrieve 
the importance of the three predictors. However, SI and CPI were 

insensitive to larger sample sizes. In the absence of spurious vari-
ables, GI and SI were the most reliable importance indices.

3.2 | Bivariate functional relationships

The accuracy assessment for retrieved bivariate functional rela-
tionships was conducted using a similarity measure (Kendall's Tau; 
Sen, 1968) between the retrieved curve and the simulated function 
for deterministic predictors. A high similarity value indicates that the 
retrieved functional relationship is similar to the deterministic func-
tion (Figure 1a).

Partial dependence plots were generally more accurate than ALE 
in retrieving the functional form of deterministic variables (Figure 1a), 
when computed using either the RF or BRT model (Figures S2 and S3). 
With the existence of spurious variables, increasing sample size has 
limited effect on the accuracy of either PDP or ALE to retrieve bivar-
iate functions of the three deterministic variables (Figures 5 and 6). 
Retrieval of functional forms for the three deterministic variables is 
greatly improved following removal of spurious variables from the 
models (Figure 6). Figure S3 shows an example of largely improved 
retrieved curves for the three deterministic variables (either by PDP 
or ALE) with the spurious variables omitted. The similarity between 
the retrieved function (by PDP) and the simulated function increased 
from 0.5 to 0.8 for MAT, from 0.7 to 0.9 for MAP and from 0 to 0.8 

F I G U R E  4   Estimated feature 
importance (%) for the three ‘true’ 
predictor variables using four 
interpretation methods with the two 
spurious variables omitted in the machine 
learning models
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F I G U R E  5   Similarity (Kendall's Tau 
between retrieved functional curve 
and the simulated function for the 
deterministic variables: MAT, MAP and 
fire frequency) assessment as a function 
of sample size. At each sample size, the 
distribution of similarity was generated 
by the 100 bootstraps. Points represent 
mean value of similarity among the 
100 bootstraps, and error bars indicate 
variation

F I G U R E  6   Error/similarity assessment 
of retrieved functional relationships 
compared to simulated functional 
relationships for the three ‘true’ predictor 
variables, with spurious variables removed
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for fire frequency, indicating the strong impact of spurious variables 
on retrieval of bivariate functions. Increasing sample size also tends 
to improve the accuracy of PDP and ALE, when the spurious vari-
ables are excluded, up to a threshold of ~2,000 points beyond which 
accuracy reaches an asymptote in these simulations.

3.3 | Multi-variate functional relationships and 
predictor interactions

We used 3D loess planes to show how the response variable in our 
simulations varies with interacting pairs of the three influential vari-
ables (MAT, MAP and fire frequency). The simulated data are shown 
as points and the predictions from the fitted RF model (i.e. the sur-
rogate model) are the planes. As might often occur in real-world 
data, the full representation of a predictor variable's functional 
range does not always occur, leading to concentration of data in 
parts of the feature space, and less well-supported loess predictions 
in under-sampled regions of feature space. However, the separate 
and interactive effects of the predictor variables begin to emerge in 
the shape of the surrogate models. For example, in Figure 7a, which 

shows simulated species richness response to the two most influ-
ential variables (MAT and MAP), the underlying effects of MAT are 
seen as a bell-shape distribution, with the asymptotic relationship 
between species richness and MAP. In our simulated dataset, the fire 
effect leads to a reduction in species richness but the relationship 
is complex reflecting realistic correlations between fire frequency 
and climate that were incorporated into the pseudo-data simulations 
(Kahiu & Hanan, 2018).

The surrogate model predictions for data-poor models 
(Figure 7d–f) are broadly similar to data-rich models but with less 
reliable predictions of separate and interactive effects, particu-
larly in the already data-limited extremes of feature space. With 
limited data samples (1,000 in this case), the interactive effects 
emerging for the three influential variables are less clear. For 
example, the effect of fire frequency on species richness at low 
MAT shifted from the original nearly no effect (Figure  7b) to a 
conspicuous linear increasing curve (Figure  7e). Meanwhile, fire 
frequency, simulated with limited effect on specie richness under 
heavy rainfall due to high moisture (Figure 7c), presented signif-
icant negative impact on species richness with small sample size 
(Figure 7f).

F I G U R E  7   3D loess planes showing how a response variable (species richness) varies with the three deterministic predictor variables 
(MAT, MAP and fire frequency) with prediction from random forest for a data-rich scenario (a–c with 5,500 samples) and a data-poor 
scenario (d–f with 1,000 samples). Shaded blue planes are the surrogate models. Points are the original stochastically simulated data with 
known underlying functional relationships (Figure 1a)
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4  | DISCUSSION: TOWARDS EFFICIENT ML 
MODEL INTERPRETATION

Machine learning models have been used extensively in ecological 
and environmental studies due to their simplicity in implementation 
and remarkable predictive ability. However, the ‘black box’ nature 
of most ML models limits ecological inference, process under-
standing and interpretation of the dynamics underlying the system 
being studied. In this paper, we reviewed several ML interpretation 
methods (four variable importance measurements, two functional 
relationship methods and a surrogate model) and examined their re-
sponse to sample size and spurious variables, in an effort to improve 
ecological/process inferences, and make recommendations for use 
of ML models. We found that the performance of interpretation ap-
proaches used to identify which variables are most influential, and 
retrieve underlying functional relationships from ML models, is sen-
sitive to methods selected and the presence of spurious variables. 
Increasing sample size improves interpretation when spurious vari-
ables are omitted from ML model fits. However, increasing sample 
size does not, on its own, overcome model confusion caused by spu-
rious variables.

The inclusion of spurious variables (i.e. variables that are cor-
related with, but do not have a causal relationship with the target 
variable) severely impacts variable importance ranking and retrieval 
of functional curves. In particular, removing spurious variables can 
largely improve variable ranking using GI and SI, likely due to their 
sensitivity to within-predictor correlation (Nicodemus, 2011). In our 
simulations, the PDP approach was considerably more successful 
than ALE in retrieving underlying functional relationship. However, 
both methods were highly sensitive to the presence of spurious vari-
ables. As found for variable importance ranking, increasing sample 
size provided little benefit in the ability of PDP and ALE when the 
spurious variables were present, but increasing sample size did result 
in improved functional relationship retrieval when spurious variables 
were excluded.

Our results confirm previous research that careful selection of 
independent variables is essential for successful ML (e.g. Alizadeh 
et al., 2018; Seyedzadeh et al., 2019; Vellido et al., 2012). Although 
inclusion of numerous independent variables in ML models can yield 
improvements in predictive ability, this approach is not helpful when 
ecological interpretation is the goal. We also showed that the use of 
surrogate models (i.e. analysis of predictions from fitted ML models) 
can provide additional insights into multi-variate relationships and 
predictor interactions using, in this study, 3D loess planes. However, 
the surrogate model predictions were also very sensitive to dataset 
size, requiring larger datasets (>1,000 in this case) to characterize 
the interactive effects of predictor variables.

This study compared different interpretation methods for esti-
mating variable importance and functional relationships and anal-
ysed the factors that may influence the interpretation of ML models. 
ML analysts should be aware that including correlated indepen-
dent variables in ML models with no clear causal relationship to 
response variables can interfere with ecological inference. When 

ecological inference is important, ML models should be constructed 
with independent variables that have clear causal effects on re-
sponse variables. While interpretation of ML models for ecological 
inference remains challenging, careful choice of interpretation meth-
ods, exclusion of spurious variables and sufficient sample size can 
provide ML users with more and better opportunities to ‘learn from 
machine learning’.
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