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eMethods 

Multiple imputation model 

We used the PROC MI procedure in SAS v9.4 with a fully conditional specification model for 
imputation of missing data. This process creates K datasets with plausible values for missing 
variables. We created K=50 datasets, which is cautiously higher than the generally recommended 
20 to 30 datasets required to produce valid estimates in subsequent analyses 1, 2. A higher number 
of datasets is now computationally feasible and likely to produce better characterization of 
variability introduced by the imputation process 3. We chose the fully conditional specification 
approach because it does not rely on assumptions of multivariate normality, since most of the 
variables included in the model were categorical or binomial 4. It uses an iterative approach by 
estimating a variable-by-variable conditional distribution with observed cases 5. The model then 
randomly imputes a plausible value in each of the K datasets according to the association with 
other available variables. The fully conditional specification method can be used with monotone 
missing patterns, or with arbitrary missing data patterns as in our case 6.  

We included all variables likely to be used in subsequent analyses, patients’ characteristics 
associated with the missing variable observed values and variables associated with the probability 
of the variable to be missing in the model 6, 7. We included information on the type of corrective 
surgery, the age at correction, the preoperative and postoperative severity of pulmonary stenosis, 
the postoperative severity of pulmonary regurgitation, a history of previous palliative procedure, 
the surgical era and the presence of a genetic syndrome in the model because they were the only 
variables respecting these criteria. Finally, to validate the imputation process, we visually 
compared the distribution of the genetic condition categories between the imputed and original 
datasets. 

Validation of Missing Completely at Random (MCAR) assumption 

The use of multiple imputation relies on an assumption that variables are missing completely at 
random (MCAR) which means that no association is present between observed and missing data. 
Since categorical variables were imputed, we opted for a multiple correspondence analysis 
approach to explore the presence of pattern between missing and observed data, where missing 
values were considered as a new category for the analysis.  No relevant association were found 
between observed and missing data, which suggest that the MCAR assumption was respected. 
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Propensity score model  

We compared two propensity score computation methods: the first one is the standard binomial 
model including surgical era as a categorical variable and the second tested a spline function with 
year of surgery as a continuous variable. 

In both cases, the propensity score represents the probability of undergoing a valve-sparing (VS) 
procedure based on perioperative variables. We used a binomial regression model. The “outcome” 
was to undergo: (1) valve-sparing procedure or (0) transannular patch (TAP). The variables were 
included in the model using an ascending hierarchical approach, i.e., they were included one-by-
one in the final multivariable propensity score model in a decremental order according to their 
effect size in a univariable analysis. Variables were kept in the model if there was a clinically or 
statistically significant association with the probability of undergoing a VS correction compared 
to TAP. The results from the standard binomial model are presented as odds ratios (OR) with their 
95% confidence intervals (CI) in supplemental Table S1, below.  

The second propensity score method used a cubic spline function to characterize the influence of 
surgical era. For this method, the surgical year was included as a continuous variable.  Cubic spline 
functions are used to find inflexion points (knots) in the non-linear risk attributable to an 
independent variable without subjectively assuming categories.  We tested multiple approaches: 
(1) knots manually placed at 5 years intervals, (2) Knots manually placed at 10 years intervals and 
(3) default function automatically attributing three equally-spaced knots to define inflexion points. 
The latter was used for the spline model because of lower post-matching R2 and balancing of 
preoperative characteristics between groups. Three knots were placed at 1989, 1998 and 2007. The 
results from the binomial model including the spline function are presented as odds ratios (OR) 
with their 95% confidence intervals (CI) in supplemental Table S2, below.  

Results From Final Propensity Score Model 

Variable Odds ratio (OR) 95% CI p-value 
Severity of preoperative pulmonary stenosis 

Mild or trivial (Ref.) (Ref.) (Ref.) 
Moderate 0.85 0.67 – 1.09 0.189 
Severe 0.73 0.56 – 0.96 0.024 

Atrial septal defect* 0.85 0.72 – 1.02 0.075 
Genetic condition* 0.87 0.70 – 1.09 0.236 
History of palliative procedure* 0.67 0.54 – 0.83 <0.001 
Age at correction (in years) 1.21 1.03 – 1.42 0.022 
Surgical era 

1980–1989 (Ref.) (Ref.) (Ref.) 
1990–1999 0.72 0.55 – 0.94 0.017 
2000–2009 1.36 1.03 – 1.82 0.032 
2010–2015 1.38 0.98 – 1.95 0.069 
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Results From Propensity Score Model Including Spline Function 

Variable Odds ratio 
(OR) 95% CI p-value 

Severity of preoperative pulmonary stenosis 
Mild or trivial (Ref.) (Ref.) (Ref.) 
Moderate 0.85 0.68 – 1.08 0.190 
Severe 0.74 0.57 – 0.97 0.028 

Atrial septal defect* 0.84 0.71 – 1.00 0.054 
Genetic condition* 0.89 0.71 – 1.12 0.319 
History of palliative procedure* 0.69 0.55 – 0.86 <0.001 
Age at correction (in years) 1.13 0.97 – 1.31 0.122 
Year of correction (continuous variable with spline function)± 

Spline 1 0.9610 0.9130 – 1.0116 0.129 
Spline 2 (cubic) 1.0043 1.0011 – 1.0074 0.007 

*The odds ratio represents the presence compared to the absence of the condition.  
±The inflexion knots were placed at years 1989, 1998 and 2007. 
Legend: CI=confidence interval 
 

Mitigation of the surgical era bias 

In this study, surgical groups were not evenly distributed across eras. Subjects born after the year 
2000 had a 1.4-fold increased risk of undergoing VS rather than TAP compared to the 1980-1990 
decades (supplemental Table S1). Concurrently, outcomes have improved significantly when 
comparing recent eras to earlier eras, which is likely partly attributable to improvements in surgical 
techniques, cardiopulmonary bypass and cardiovascular critical care. This leads to a potential bias 
when comparing surgical groups. The era bias is not thoroughly described in the current literature, 
probably because long-term multi-decade observational studies are scarce 8, 9, but we suggest 
treating it as a confounding variable in analyses.  
 
The surgical era was included in the computation of the propensity score and was also adjusted in 
all models by including a covariable based on the subjects’ year of birth. In preliminary analyses, 
we used a categorical variable because we highly suspected a non-linearity of the risk attributable 
to surgical era. We initially divided surgical era by 5-year intervals but ended up joining adjacent 
categories because risks were similar both for propensity score and for outcomes. Surgical era is 
thus expressed as decades of year of birth. 

We also tested spline functions to include year of surgery as a continuous variable to correct for 
era, as described in the “propensity score” section. However, it did not change final results and 
provided worse adjustment of preoperative baseline characteristics after propensity score matching 
compared to the use of categories. 

In the final analyses, we used only two eras (1980–1999 and 2000–2015) because their effect size 
for every outcome was comparable to those obtained with the four-category variable. The effect 
size, hazard ratios and mean ratios of surgical era for survival and interventions final models are 
presented in supplemental Table S3. Subjects born after 2000 had a 3-fold lower mortality risk 
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compared to subjects born between 1980 and 1999, and a 1.8-fold higher risk of cardiovascular re-
intervention, suggesting that re-operations are more frequently performed in recent surgical eras. 

 

Association of Surgical Era With Outcomes 

Survival Hazard ratio (HR) 95% CI p-value 
1980–1999 (Ref.) (Ref.) (Ref.) 
2000–2015 0.31 0.08 – 1.12 0.068 

Interventions Mean ratio (MR) 95% CI p-value 
1980–1999 (Ref.) (Ref.) (Ref.) 
2000–2015 1.77 1.32 – 2.37 <0.001 

 

Furthermore, stratified models for surgical era were used to explore the potential of a modifying 
effect of era on the associations between surgical groups and outcomes. Results from these 
sensitivity analyses are presented in supplemental Tables S4 and S5.  

In the stratified survival analysis, there was significant heterogeneity in the effect of surgical 
groups between eras. Patients undergoing VS had a lower risk of mortality, independently of 
surgical era, but that trend was less marked and not statistically significant for subjects born after 
the year 2000 (supplemental Table S4). There were only 3 deaths in subjects born after the year 
2000 which prevents us from concluding that there was a significant difference in survival between 
VS and TAP in the more recent decades. We can conclude that the observed difference in mortality 
between the VS and TAP groups is mainly attributable to their occurrence during earlier surgical 
eras (1980–1999).  

In the stratified intervention analysis, we did not detect significant heterogeneity in the effect on 
surgical groups between eras (supplemental Table S5). Mean ratios were similar and led to the 
same conclusions when compared to the final model presented in the manuscript. 

Risk of Mortality by Surgical Group in Stratified Model for Surgical Era 

Surgical groups Hazard ratio (95% CI) 
1980–1989 2000–2015 

TAP (Ref.) (Ref.) 
VS 0.08 (0.01 – 0.59) 0.44 (0.04 – 5.03) 
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Risk of Cardiovascular Reinterventions in Stratified Model for Surgical Era 

Surgical groups Mean ratio (95% CI) 
1980–1989 2000–2015 

TAP (Ref.) (Ref.) 
VS with no residual stenosis 0.41 (0.26 – 0.68) 0.25 (0.13 – 0.45) 
VS with moderate to severe 
residual stenosis 0.78 (0.49 – 1.25) 0.45 (0.24 – 0.85) 

 
 

Post-hoc sensitivity analyses: comparison of valve-sparing and transannular patch 

techniques 

As described in the manuscript, patients in the transannular patch (TAP) groups proportionally 
have a more severe cardiovascular condition than patients in the valve-sparing (VS) groups which 
could bias conclusions when comparing study groups. The use of propensity scores to adjust 
analyses to reduce the potential of bias by indication was popularized by Austin, Rosenbaum and 
Rubin, but the best approach is still being debated 9-149-14. Some authors have suggested that direct 
adjustment by confounding variables produced similar results compared with the use of propensity 
score adjustment 13, 15, 16. It has been suggested that reproducing analyses using various methods 
and interpreting the results from each method would lead to more robust conclusions 17, 18.  

As explained earlier, we compared two approaches to compute propensity scores: surgical era 
treated as a categorical variable or as a continuous variable with spline functions. We also chose 
to use four different post-hoc adjustment strategies to compare study groups using propensity score 
adjustment methods: propensity score matching with and without subsequent covariable 
adjustment, inverse-probability weighting and the inclusion of the propensity score as a covariable. 
This results in 8 different models (including the final model) depending on the combination of 
adjustment strategy and propensity score method. We also tested direct covariable adjustment 
without the use of propensity score as mentioned above. The description of each model is available 
in Table S6. The results from each model are presented in Tables S11 to S14. 
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eTable 1. Description of Post Hoc Models 

 
Dataset 

Propensity 
score 

method 

Covariable 
adjustment* Description 

Model 1 Imputed unmatched 
dataset N/A Yes Direct adjustment of the 

confounding variables 

Model 2 Imputed unmatched 
dataset Standard No Propensity scores included as 

a covariable in the model 

Model 3 Imputed unmatched 
dataset Standard No Inverse probability weighting 

with propensity scores  

Model 4 
Imputed  
Propensity scores -
matched dataset 

Standard Yes 

Same as final model with 
additional adjustment of 
confounding variables in the 
model 

Model 5 Imputed unmatched 
dataset N/A Yes 

Direct adjustment of the 
confounding variables with 
year as spline 

Model 6 Imputed unmatched 
dataset 

With spline 
function No 

Propensity scores with year as 
spline included as a covariable 
in the model 

Model 7 Imputed unmatched 
dataset 

With spline 
function No 

Inverse probability weighting 
with propensity scores with 
year as spline 

Model 8 
Imputed  
Propensity scores -
matched dataset 

With spline 
function No 

PS-matched (year as spline) 
dataset without additional 
covariable adjustment 

Model 9 
Imputed  
Propensity scores -
matched dataset 

With spline 
function Yes 

Same as model 8 with 
additional adjustment of 
confounding variables in the 
model 

FINAL 
MODEL 

Imputed  
Propensity scores -
matched dataset 

Standard No 
PS matched dataset without 
additional covariable 
adjustment  

* The confounding covariables included in the models are: The age at surgical correction, the 
severity of preoperative pulmonary stenosis, the presence of a concomitant genetic condition, the 
presence of an auricular septal defect, a history of previous palliative procedure and surgical era 
(or year of correction defined by a cubic spline function). 
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SUPPLEMENTAL RESULTS 

Detailed estimates of outcomes according to the final model  

We present the detailed computed estimates for each surgical group and outcome from the final 
model presented in the article. Results are visually represented in Figure 3 of the manuscript. 

eTable 2. Estimated Survival From Corrective Surgical Treatment  in Final Model 

Study group Estimated survival proportion (95% CI) 
5 years 10 years 20 years 30 years 

TAP 93.9%  
(90.4 – 97.5) 

93.3% 
(89.4 – 97.1) 

92.6% 
(88.4 – 96.7) 

90.4% 
(n/a) 

VS 99.4%  
(98.5 – 100) 

99.3% 
(98.4 – 100) 

99.3% 
(98.3 – 100) 

99.1% 
(n/a) 
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eTable 3. Estimated Cumulative Mean Number Cardiovascular Interventions in Final Model 

Study group Estimated cumulative mean number (95% CI) 
5 years 10 years 20 years 30 years 

TAP 0.38 
(0.28 – 0.50) 

0.55 
(0.42 – 0.73) 

1.20 
(0.92 – 1.56) 

2.03 
(1.52 – 2.71) 

VS0 0.13 
(0.09 – 0.20) 

0.20 
(0.14 – 0.29) 

0.42 
(0.29 – 0.62) 

0.72 
(0.47 – 1.09) 

VSS 0.24 
(0.16 – 0.37) 

0.36 
(0.24 – 0.53) 

0.77 
(0.52 – 1.13) 

1.30 
(0.88 – 1.93) 
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eTable 4. Estimated Cumulative Mean Number Pulmonary Valve Replacements in Final Model 

Study group Estimated cumulative mean number (95% CI) 
5 years 10 years 20 years 30 years 

TAP 0.02 
(0.00 – 0.07) 

0.04 
(0.02 – 0.10) 

0.57 
(0.32 – 1.03) 

1.36 
(0.75 – 2.51) 

VS0 0.00 
(0.00 – 0.02) 

0.01 
(0.00 – 0.03) 

0.13 
(0.06 – 0.27) 

0.30 
(0.14 – 0.67) 

VSS 0.01 
(0.00 – 0.03) 

0.02 
(0.01 – 0.05) 

0.25 
(0.11 – 0.59) 

0.60 
(0.24 – 1.47) 
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eTable 5. Estimated Cumulative Mean Number Unplanned Hospitalizations for Adverse 
Cardiovascular Events in Final Model 

Study group Estimated cumulative mean number (95% CI) 
5 years 10 years 20 years 30 years 

TAP 0.06 
(0.03 – 0.13) 

0.08 
(0.04 – 0.15) 

0.16 
(0.08 – 0.28) 

0.33 
(0.18 – 0.61) 

VS0 0.05 
(0.02 – 0.10) 

0.06 
(0.03 – 0.11) 

0.11 
(0.05 – 0.23) 

0.24 
(0.11 – 0.52) 

VSS 0.05 
(0.02 – 0.017) 

0.06 
(0.02 – 0.18) 

0.12 
(0.05 – 0.32) 

0.26 
(0.10 – 0.66) 

 

Post-hoc sensitivity analyses: comparison of valve-sparing and transannular patch 

techniques 

The choice of the propensity score method was based on the method that would yield the best 
balancing of preoperative baseline characteristics between the two surgical groups (TAP and VS). 
The use of spline functions was inferior to categorizing surgical era into decades for balancing era 
in the matched cohort (higher SMD and post-matching R2). However, the impact on final results 
is marginal and compares to results presented in the article. Overall, each method yielded similar 
results which increases the robustness of our conclusions.  

The effect sizes of VS groups compared to TAP with their associated 95% confidence interval and 
p-values from the post-hoc analyses are presented in Tables S11 to S14 for survival, interventions, 
pulmonary valve replacements (PVR) and unplanned hospitalizations, respectively. We also 
reported the percentage of variation between the post-hoc models effect size and the final models’ 
effect size (e.g., Variation % = [Model 1 HR – Final model HR]/Final model HR). 
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eTable 6. Mortality Hazard Ratios of Valve-Sparing Procedures vs Transannular Patch in Cox 
Proportional Hazard Models 

 HR 95% CI p-value Percentage of variation 
from final model HR 

Model 1 0.100 (0.024 – 0.419) 0.002 6.4% 
Model 2 0.103 (0.024 – 0.431) 0.002 9.6% 
Model 3 0.117 (0.030 – 0.461) 0.002 24.5% 
Model 4 0.091 (0.021 – 0.395) 0.001 3.2% 
Model 5 0.098 (0.023 – 0.410) 0.002 4.3% 
Model 6 0.099 (0.024 – 0.417) 0.002 5.3% 
Model 7 0.113 (0.028 – 0.455) 0.002 20.2% 
Model 8 0.104 (0.024 – 0.456) 0.003 10.6% 
Model 9 0.106 (0.024 – 0.468) 0.003 12.8% 
Final model 0.094 (0.022 – 0.408) 0.002 - 
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eTable 7. Mean Ratios of Cumulative Cardiovascular Interventions for Valve-Sparing vs 
Transannular Patch  Groups in Marginal Means/Rates Models 

 Study 
group MR 95% CI p-value 

Percentage of 
variation from final 

model MR 

Model 1 VS0 0.335 (0.244 – 0.461) <0.001 5.9% 
VSS 0.607 (0.435 – 0.846) 0.003 6.5% 

Model 2 VS0 0.347 (0.252 – 0.478) <0.001 2.5% 
VSS 0.619 (0.443 – 0.865) 0.005 4.6% 

Model 3 VS0 0.357 (0.251 – 0.509) <0.001 0.3% 
VSS 0.627 0.442 – 0.889) 0.009 3.4% 

Model 4 VS0 0.345 (0.253 – 0.499) <0.001 3.1% 
VSS 0.608 (0.423 – 0.875) 0.007 6.3% 

Model 5 VS0 0.340 (0.247 – 0.468) <0.001 4.5% 
VSS 0.618 (0.444 – 0.863) 0.005 4.8% 

Model 6 VS0 0.354 (0.257 – 0.489) <0.001 0.6% 
VSS 0.627 0.448 – 0.877) 0.007 3.4% 

Model 7 VS0 0.364 (0.256 – 0.520) <0.001 2.2% 
VSS 0.652 (0.459 – 0.928) 0.017 0.5% 

Model 8 VS0 0.364 (0.255 – 0.520) <0.001 2.2% 
VSS 0.656 (0.453 – 0.949) 0.025 1.1% 

Model 9 VS0 0.366 (0.258 – 0.520) <0.001 2.8% 
VSS 0.621 (0.427 – 0.904) 0.013 4.3% 

Final model VS0 0.356 (0.253 – 0.503) <0.001 - 
VSS 0.649 (0.452 – 0.930) 0.019 - 
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eTable 8. Mean Ratios of Cumulative Pulmonary Valve Replacements for Valve-Sparing Groups 
vs Transannular Patch Groups in Marginal Means/Rates Models 

 Study 
group MR 95% CI p-value 

Percentage of 
variation from final 

model MR 

Model 1 VS0 0.194 (0.103 – 0.366) <0.001 13.4% 
VSS 0.379 (0.182 – 0.791) 0.010 13.5% 

Model 2 VS0 0.200 (0.106 – 0.377) <0.001 10.7% 
VSS 0.378 (0.183 – 0.781) 0.009 13.7% 

Model 3 VS0 0.223 (0.118 – 0.421) <0.001 0.4% 
VSS 0.387 (0.193 – 0.773) 0.007 11.6% 

Model 4 VS0 0.218 (0.113 – 0.421) <0.001 2.7% 
VSS 0.405 (0.186 – 0.880) 0.022 7.5% 

Model 5 VS0 0.202 (0.107 – 0.382) <0.001 9.8% 
VSS 0.406 (0.193 – 0.853) 0.017 7.3% 

Model 6 VS0 0.205 (0.109 – 0.388) <0.001 8.5% 
VSS 0.407 (0.196 – 0.849) 0.017 7.1% 

Model 7 VS0 0.230 (0.122 – 0.436) <0.001 2.7% 
VSS 0.394 (0.190 – 0.816) 0.012 10.0% 

Model 8 VS0 0.224 (0.112 – 0.448) <0.001 0.0% 
VSS 0.425 (0.187 – 0.968) 0.042 3.0% 

Model 9 VS0 0.220 (0.111 – 0.439) <0.001 1.8% 
VSS 0.401 (0.173 – 0.929) 0.033 8.4% 

Final model VS0 0.224 (0.116 – 0.433) <0.001 - 
VSS 0.438 0.207 – 0.931) 0.032 - 
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eTable 9. Mean Ratios Cumulative No. Hospitalizations for Valve-Sparing vs Transannular 
Patch Groups in Marginal Means/Rates Models 

 Study 
group MR 95% CI p-value 

Percentage of 
variation from final 

model MR 

Model 1 VS0 0.686 (0.390 – 1.208) 0.191 8.2% 
VSS 0.864 (0.415 – 1.804) 0.699 4.9% 

Model 2 VS0 0.726 (0.412 – 1.278) 0.267 2.8% 
VSS 0.799 (0.374 – 1.707) 0.563 3.0% 

Model 3 VS0 0.714 (0.407 – 1.253) 0.241 4.4% 
VSS 0.817 (0.392 – 1.704) 0.590 0.8% 

Model 4 VS0 0.707 (0.367 – 1.365) 0.302 5.4% 
VSS 0.860 (0.371 – 1.990) 0.724 4.4% 

Model 5 VS0 0.683 (0.386 – 1.210) 0.192 8.6% 
VSS 0.861 (0.405 -1.829) 0.697 4.5% 

Model 6 VS0 0.722 (0.408 – 1.279) 0.264 3.3% 
VSS 0.794 (0.364 – 1.734) 0.563 3.6% 

Model 7 VS0 0.702 (0.395 – 1.248) 0.228 6.0% 
VSS 0.899 (0.429 – 1.884) 0.779 9.1% 

Model 8 VS0 0.715 (0.373 – 1.371) 0.312 4.3% 
VSS 0.693 (0.278 – 1.729) 0.432 15.9% 

Model 9 VS0 0.687 (0.362 – 1.304) 0.251 8.0% 
VSS 0.731 (0.299 – 1.784) 0.491 11.3% 

Final model VS0 0.747 (0.386 – 1.448) 0.388 - 
VSS 0.824 (0.347 – 1.962) 0.662 - 
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