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A ferroptosis-related gene signature for graft loss prediction following renal 
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ABSTRACT
Allogeneic kidney transplantation (renal allograft) is the most effective treatment for advanced kidney 
disease. Previous studies have indicated that ferroptosis participates in the progression of acute kidney 
injury and renal transplant failure. However, few studies have evaluated the prognostic value of 
ferroptosis on renal transplantation outcomes. In this study, a total of 22 differentially expressed 
ferroptosis-related genes (DFGs) were identified, which were mainly enriched in infection-related path-
ways. Next, a ferroptosis-related gene signature, including GA-binding protein transcription factor 
subunit beta 1 (GABPB1), cyclin-dependent kinase inhibitor 1A (CDKN1A), Toll-like receptor 4 (TLR4), 
C-X-C motif chemokine ligand 2 (CXCL2), caveolin 1 (CAV1), and ribonucleotide reductase subunit M2 
(RRM2), was constructed to predict graft loss following renal allograft. Moreover, receiver operating 
characteristic (ROC) curves (area under the ROC curve [AUC] > 0.8) demonstrated the accuracy of the 
gene signature and univariate Cox analysis suggested that the gene signature could play an indepen-
dent role in graft loss (p < 0.05). Furthermore, the nomogram and calibration plots also indicated the 
good prognostic capability of the gene signature. Finally, immune-related and cytokine signaling path-
ways were mostly enriched in renal allograft patients with poor outcomes. Considered together, 
a ferroptosis-related gene signature and nomogram based on DFGs were created to predict the 1-, 2- 
and 3- year graft loss probability of renal allograft patients.The gene signature could serve as a valuable 
biomarker for predicting graft loss, contributing to improving the outcome of allogeneic kidney 
transplantation.
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Introduction

Allogeneic kidney transplantation (renal allograft) 
is the treatment for patients with end-stage renal 
disease and severe chronic kidney disease [1]. It 
has been estimated that approximately 120,000 
new organ transplantations are carried out 
annually worldwide [2]. However, the success 
rate of renal allografts remains low, with only 
one million individuals obtaining functioning 
solid-organ transplants [2]. Moreover, approxi-
mately 5% of primary graft non-function occurs 
in the first year following kidney transplantation 
[3]. Hence, identifying graft loss-associated bio-
markers might contribute to the treatment of 
graft loss and improve the efficiency of renal 
allografts.

It has been suggested that antibody-mediated 
immune rejection following renal allograft is asso-
ciated with graft loss and the death of patients 
[3,4]. In addition, antibody-mediated immune 
rejection has long-term negative effects on renal 
allografts [5], and is a major cause of renal fibrosis 
[6,7]. More importantly, native kidney disease 
recurrence following immune rejection is 
the second most predominant cause of graft loss 
[4]. Thus, the genes involved in the rejection pro-
cess might affectgraft loss after renal allografts.

Ferroptosis, a newly discovered form of cell 
death, is characterized by lethal accumulation of 
lipid peroxidation [8,9]. Recent studies have 
revealed that ferroptosis is associated with the 
occurrence and progression of many diseases, 
including cancer, myocardial infarction, and neu-
rological diseases [10–13]. To date, many genes 
that are involved in the process of ferroptosis by 
changing the cellular levels of lipid peroxidation 
and iron have been discovered [14]. For example, 
glutathione peroxidases 4 (GPX4) can inhibit fer-
roptosis by regulating the level of lipid peroxida-
tion [15]. Moreover, it has been found that p53 
also participates in ferroptosis [16]. Ferroptosis 
has been suggested to play a key regulatory role 
in acute kidney injury [17,18]. Furthermore, inhi-
bition of ferroptosis protected the the cells from 
injury in a vitro model of acute injury in renal 
tubular cells [19]. On the other hand, it has been 
demonstrated that ferroptosis can also affect renal 

ischemia/reperfusion (I/R) injury [20]. 
Nevertheless, the role of ferroptosis in antibody- 
mediated immune rejection following renal allo-
graft remains unknown. Furthermore, the the 
potential use of ferroptosis-related genes as bio-
markers for graft loss prediction needs to be 
investigated.

In the present study, we hypothesized that fer-
roptosis-related genes could play a role in anti-
body-mediated immune rejection following renal 
allograft and that they could act as biomarkers for 
graft loss prediction. The aim of this study was to 
establish a ferroptosis-related gene signature for 
predicting graft loss using comprehensive bioin-
formatic analyses. Furthermore, our goal was to 
increase the understanding of the roles of ferrop-
tosis in antibody-mediated immune rejection and 
contribute to developing a new strategy for graft 
loss prediction following renal allograft.

Methods
Data collection

The GSE21374, GSE36059, and GSE48581 data-
sets, including clinical and RNA expression profil-
ing datasets of human renal allografts, were 
downloaded from the Gene Expression Omnibus 
(GEO) database (https://www.ncbi.nlm.nih.gov/ 
geo/query/acc.cgi) [21]. All tissue samples in these 
three datasets were from graft rejection and non- 
rejection patients who were identified using biopsy 
after renal allograft. Moreover, GSE21374 also 
included failed (graft loss) and non-failed informa-
tion, and samples were obtained from two patient 
batches. One batch including 105 patients who 
survived over one year after surgery, collected at 
UIUC or University of Alberta from 
September 2004 to October 2007, was defined as 
the training set. The second batch, including 48 
patients living for more than one year after sur-
gery, collected from September 2006 to 
September 2007 at the University of Minnesota, 
was considered as the validation set. In addition, 
we obtained 259 ferroptosis genes from the FerrDb 
database (http://www.zhounan.org/ferrdb/). These 
genes were classified into driver, suppressor, and 
marker gene groups in the database.
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Identification of differentially expressed 
ferroptosis genes (DFGs)

Firstly, we selected ferroptosis-related genes from 
the three expression matrices. Then, the R package 
‘limma’ was used to screen the differentially 
expressed genes between the rejection and non- 
rejection groups in each dataset [22]. It was then 
used to select the differentially expressed genes 
between the group in which the graft loss time 
was less than the median survival time and the 
group without graft loss and more than the med-
ian survival time in the GSE21374 dataset (adj.P. 
Val ≤ 0.05 was set as a criteria). The volcano plots 
of the DFGs were plotted using the R package 
‘ggplot2’ [23]. Finally, we identified the common 
DFGs based on the overlapping differentially 
expressed genes using the R package ‘Venn dia-
gram’ [24].

Functional enrichment analysis

To explore the biological function of the DFGs in 
renal allografts, the Gene Ontology (GO) function 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment for the DFGs were 
analyzed using the R package ‘clusterprofiler’ 
R package [25]. A P -value < 0.05 was considered 
as statistically significant. In addition, the top 10 
GO terms and KEGG pathways were visualized 
with a bubble diagram by using the R package 
‘ggplot2’ [23].

Protein-protein interaction (PPI)

To identify the functionally significant genes, we 
uploaded all DFGs to the STRING database 
(https://string-db.org/cgi/network.pl) to generate 
a PPI network. Genes that were highly intercon-
nected with nodes and interaction scores > 0.4, 
were considered as hub genes. Then, we used 
Cytoscape to visualize the network [26].

Screening graft loss related DFGs

Kaplan-Meier survival analysis was employed to 
screen graft loss-related DFGs based on their 
expression levels in renal allograft patients [27]. 
The log-rank test was used to determine the 

p value using the R package ‘survminer’ [28]. A p - 
value of < 0.05 was considered as statistically 
significant.

Construction of the prognostic gene signature

A gene signature was generated to predict graft 
loss in renal allograft patients in the training set 
and then verified in the validation set. Firstly, 
a univariate Cox proportional hazards regression 
model was performed to identify candidate graft 
loss-related DFGs by using the R package ‘survival’ 
[29], and genes with a p value of < 0.05 were 
further confirmed using LASSO COX regression. 
In the LASSO analysis, the combination of inde-
pendent variables can be screened and a better fit 
can be obtained by adding a constraint condition 
to the sum of the absolute values of the coefficients 
to reduce the dimensionality of high-dimensional 
data [30]. During the analysis, the R package 
‘glmnet’ was used for LASSO COX analysis [31]. 
‘Cox’ was set as the family parameter, and the ten- 
fold cross validation was used to realize the Lasso 
logistic regression. Moreover, genes identified in 
the LASSO analysis were set as covariates and 
included in the multivariate Cox regression analy-
sis. Finally, the gene signature was established 
based on the expression values and regression 
coefficients.

Evaluation of the predictive capability of the 
gene signature

We calculated the risk score of all samples from 
renal allograft patients by using the predict.coxph 
function [32], as follows: risk score = esum (each 
gene’s expression levels × corresponding coeffi-
cient)/ esum (each gene’s mean expression levels 
× corresponding coefficient). Patients with a risk 
score greater than the median value were assigned 
to the high-risk group, otherwise, they were 
assigned to the low-risk group. Then, the 
R package ‘survivalROC’ was used to generate 1-, 
2-, 3-, 4-, 5-year receiver operating characteristic 
(ROC) curves to evaluate the accuracy of the gene 
signature in predicting graft loss in renal allograft 
patients [33 34]. Moreover, Kaplan-Meier analysis 
was performed to observe the difference in graft 
loss time by using the log-rank test (p < 0.05) 

BIOENGINEERED 4219

https://string-db.org/cgi/network.pl


[27,28]. Finally, scatter plots were used to evaluate 
the distance between the two groups using princi-
pal component analysis (PCA).

Identification of independent prognostic factors 
of graft loss

We firstly evaluated the relationship between the 
risk score and graft loss. Then, the risk score and 
graft reaction were analyzed using univariate Cox 
regression to confirm the risk factors for overall 
survival (OS) [29].

Construction of the predictive nomogram

We integrated the independently predictive factors 
and constructed a nomogram using the R package 
‘rms’ to inspect the probability of 1- and 3- year 
graft loss in renal allograft patients in the 
GSE21374 dataset [34]. A calibration curve was 
plotted to observe the nomogram prediction prob-
abilities against the observed graft loss rate.

Gene set enrichment analysis (GSEA)

To explore the potential mechanisms differentiat-
ing the high- and low-risk groups, we firstly com-
pared the differentially expressed genes between 
the high risk group to low risk groups in the 
GSE21374 dataset by using the R package ‘limma’ 
[22], with the screening thresholds of p < 0.0.5 and 
|log2FC | > 1. Next, all genes were ranked accord-
ing to the log2FC value, and GSEA was conducted 
to search for GO and KEGG pathway terms for the 
two groups [25].

Quantitative Real-Time-PCR Validation

To further analyze the roles of genes in ferropto-
sis-related gene signature, we firstly compared the 
expression levels of genes in ferroptosis-related 
gene signature in GEO database. Next, we col-
lected 5 rejection peripheral blood samples and 5 
non-rejection peripheral blood samples from the 
First Affiliated Hospital of Kunming Medical 
University. The informed consent was obtained 
from all participating individuals; the study was 
approved by the Ethics Committee at the first 

Affiliated Hospital of Kunming Medical 
University.

Peripheral blood mononuclear cells (PBMCs) 
were separated within 4 h of blood withdrawal 
using Lympholyte Cell Separation Media 
(CEDARLAN, Canada). Total RNAs were 
extracted from rejection and non-rejection 
PBMCs by the TRNzol-A+ Reagent (TIANGEN) 
based on the manufacturer’ s guidance. Next, pur-
ified RNA was reverse transcribed complementary 
DNA (cDNA) using the FastQuant RT Kit 
(TIANGEN) according to the manufacturer’s pro-
cedure. Real-time PCR was performed by upeReal 
PerMix Plus (SYBRGreen) (TIANGEN) and the 
Applied Biosystems 7500 Real-time PCR System 
(Applied Biosystems, Inc., Carlsbad, CA, United 
States). Through the 2–11ΔΔCt method, the rela-
tive expressions of genes were calculated. Internal 
references were GAPDH. The primers of genes 
were summarized in Table S1.

Statistical analysis

Statistical analyses were performed using R v.4.0.3. 
Multiple groups of continuous variables were ana-
lyzed using the chi-square test. Univariate, multivari-
ate Cox regression and LASSO regression analyses 
were performed to evaluate survival. A p value of < 
0.05 was considered statistically significant.

Results

In the present study, we first hypothesized that 
ferroptosis-related genes could play a role in 
antibody-mediated immune rejection following 
renal allograft and that they could act as bio-
markers for graft loss prediction. Next, we iden-
tified 22 DFGs between the graft rejection and 
non-rejection groups or between the graft failure 
and non-failure groups. Moreover, the results of 
Kaplan-Meier survival analysis suggested that all 
of them were closely related to graft loss in renal 
allograft patients. Finally, a prognostic ferropto-
sis-related gene signature based on six ferropto-
sis-related genes was constructed to predict graft 
loss following renal allograft using univariate 
Cox and Lasso Cox analyses. Furthermore, we 
investigated the independent predictive value of 
the gene signature and its related functions. 
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Therefore, the present study might contribute to 
establishing a new strategy for the prediction of 
graft loss following renal allograft, increasing the 
understanding of the roles of ferroptosis in renal 
allografts.

Screening of DFGs and functional annotation

The three datasets included 244 ferroptosis genes. 
With the cutoff of adj.P.Val ≤ 0.05, we identified 37, 
72, and 54 up-regulated, and 8, 64, and 22 down- 
regulated ferroptosis genes between the graft rejec-
tion and non-rejection groups in GSE21374 
(Figure 1(a)), GSE36059 (Figure 1(b)) and 
GSE48581 (Figure 1(c)), respectively. We then 
acquired a total of 101 differentially expressed fer-
roptosis-related genes (DFGs) between the graft 
failed and non-failure groups in GSE21374 
(Figure 1(d)). Finally, 22 DFGs were obtained 
using the R package ‘Venn diagram’ (Figure 1(e)). 
Moreover, the functional annotation of 22 DFGs 
showed that GO terms including negative regulation 
of protein phosphorylation, regulation of the apop-
totic signaling pathway, negative regulation of trans-
ferase activity, and the intrinsic apoptotic signaling 
pathway, were activated (Figure 2(a)). KEGG terms, 
such as Kaposi sarcoma-associated herpesvirus 
infection, Epstein-Barr virus infection, the HIF-1 
signaling pathway, the NOD-like receptor signaling 
pathway, autophagy, proteoglycans in cancer, and 
the p53 signaling pathway, were significant enriched 
(Figure 2(b). These results suggest that these signal-
ing pathways may play key roles in renal allografts.

Establishment of the PPI network

To explore the interactions of 22 DFGs at the 
protein level, we constructed a PPI network. 
After removing some loosely connected nodes 
and isolated nodes, an interaction network con-
taining 19 genes and 44 interaction relationships 
was generated. The Cytoscape results showed that 
Tumor Protein (TP53) and Toll-like receptor 4 
(TLR4) had the most nodes in the network 
(degrees > 10) (Figure 2(c)), suggesting that TP53 
and TLR4 are the most important genes in the PPI 
network, and they may play an important role in 
renal allograft outcomes.

Identification of graft loss-related DFGs

We performed Kaplan-Meier survival analysis based 
on the expression values of DFGs and graft loss 
information. After filtering for significant differences 
(p ≤ 0.05) (Figure 3(a)), we found that phosphatidy-
lethanolamine binding protein 1 (PEBP1), activin 
a receptor type 1B (ACVR1B), GA-binding protein 
transcription factor subunit beta 1 (GABPB), ZFP36 
ring finger protein (ZFP36), ATP binding cassette 
subfamily C member 1 (ABCC1), cyclin-dependent 
kinase inhibitor 1A (CDKN1A), X-Box binding pro-
tein 1 (XBP1), TP53, BH3 interacting domain death 
agonist (BID), suppressor of cytokine signaling 1 
(SOCS1), solute carrier family 2 member 3 
(SLC2A3), toll-like receptor 4 (TLR4), small nucleolar 
RNA, H/ACA Box 16A (SNORA16A), CD44 
Molecule (CD44), C-X-C motif chemokine ligand 2 
(CXCL2), activating transcription factor 3 (ATF3), 
caveolin 1 (CAV1), TNF alpha induced protein 3 
(TNFAIP3), ribonucleotide reductase subunit M2 
(RRM2), neutrophil cytosolic factor 2 (NCF2), ara-
chidonate 5-lipoxygenase (ALOX5), and cytochrome 
B-245 beta chain (CYBB) were closely related to graft 
loss in renal allograft patients (Table 1).

Construction of the gene signature

As we confirmed that some DFGs were related to 
graft loss, we attempted to construct a gene signature 
to predict the outcomes for renal allograft patients. 
Firstly, the results of univariate Cox analysis showed 
that all DFGs were mostly related to graft loss 
(p < 0.05) (Figure 3(b)). Notably, among these 
genes, only PEBP1and ACVR1B could act as protec-
tive genes. Next, genes with a p value of < 0.05 were 
included in the Lasso Cox analysis. With the change 
in the penalty coefficient lambda, the coefficients of 
the variables were compressed to 0. When lambda 
was 0.0520857 (Figure 3(c, d)), GABPB1, CDKN1A, 
TLR4, CXCL2, CAV1, and RRM2 were selected to 
construct the gene signature using multivariate Cox 
regression analysis (Figure 3(e)).

Assessment of the predictive value of the gene 
signature

We assessed the predictive graft loss capability of 
the gene signature. We calculated the risk score for 
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each patient based on the expression values and 
coefficients (Figure 4(a,b)). Then 1-, 2-, 3-, 4-, 
5-year ROC curves were plotted and all areas 
under the ROC curves (AUCs) were greater than 

0.8. The results indicated that the gene signature 
was an effective model for predicting graft loss 
(Figure 4(c)). Moreover, the time of graft loss 
between the high- and low-risk groups was 

Figure 1. Identification of the DFGs related to rejection and graft loss. (a-c) The DFGs between rejection and non-rejection group in 
GSE21374 (a) GSE36059 (b) and GSE48581 (c), respectively. (d) The DFGs between the group which graft loss time less than survival 
medium time and the group which without graft loss and survival more than survival medium time in GSE21374 dataset. (e) The 
Venn diagram showed the overlapping genes of these DFGs.
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significantly different (Figure 4(d)). Furthermore, 
the PCA results also showed a significant differ-
ence between the two groups (Figure 4(e)).

The validation set, which included 48 samples 
from the University of Minnesota in the GSE21374 
dataset, was used to verify the applicability of the gene 

Figure 2. GO annotation and KEGG pathway enrichment analysis and PPI network construction. (a) The enriched top 10 biological 
processes by 22 DFGs. (b) The top 10 KEGG pathways enriched in by 22 DFGs. (c) The PPI network of the 22 DFGs.
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signature. Consistent with the results of the training 
set, the AUC value of the 3-year graft loss was 0.79, 
indicating the good performance of the gene signa-
ture (Figure 4(f)). Moreover, the high- and low-risk 
groups also presented a significant difference in sur-
vival probability and distribution (Figure 4(g,h)). 
Therefore, these results suggest that the gene signa-
ture had a good graft loss predictive value.

Investigation of the independent predictive value 
of the gene signature

To better utilize the gene signature, we first per-
formed the univariate Cox regression analysis to 
determine whether the risk score and clinical features 
were independent prognostic predictors of graft loss. 
Surprisingly, we found that only the risk score was 
significantly correlated with graft loss in renal allo-
graft patients (p < 0.05) (Figure 5(a)). Next, a nomo-
gram was built to predict 1-, 2- and 3- year survival 

probability of renal allograft patients based on the 
risk signature genes using Cox regression analysis. In 
this nomogram, the total score was the sum of the 
expression values of each gene. The higher the score, 
the lower the median survival time and probability of 
graft loss (Figure 5(b)). In addition, the calibration 
plots showed that the nomogram had a better accu-
racy (Figure 5(c)). Furthermore, decision curve ana-
lysis (DCA) also showed that the clinical factor could 
not affect the benefits-decision of risk score (Figure 5 
(d)). Hence, these results indicate that we obtained 
a credible risk signature.

GSEA

To explore the potential mechanisms underlying the 
gene signature in renal transplant patients, we 
screened differentially expressed genes in the high- 
and low-risk groups and found that a total of 108 
genes (63 up-regulated and 45 down-regulated) were 

Figure 3. Construction of a ferroptosis related gene signature for predicting the graft loss of renal allograft. (a) K-M survival analysis 
showed that 22 DFGs were related to the graft loss. (b) univariate Cox regression analysis also showed 22 DFGs were related to the 
graft loss. (c) Lambda value of the 22 DFGs in LASSO model. (d) The optimal lambda value in Lasso analysis. (e) The optimal DFGs 
selected by multivariate Cox regression analysis.
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differentially expressed (Supplementary Figure S1). 
We then investigated the potential mechanism differ-
entiating these two groups using GSEA. As shown in 
the Figure 6, GO biological process terms (Figure 6 
(a)), such as cell morphogenesis, DNA metabolic 
process, embryo development, and the enzyme- 
linked receptor protein signaling pathway, GO cellu-
lar component terms (Figure 6(b)) including the 
chromosomal part, endosome, Golgi apparatus, 
nucleolus, and secretory vesicle, as well as GO mole-
cular function terms including double-stranded DNA 
binding, enzyme regulator activity, hydrolase activity 
acting on acid anhydrides, regulatory region nucleic 
acid binding, and transcription regulatory region 
DNA binding, were activated in the high-risk group 
(Figure 6(c)). Moreover, KEGG pathways, such as 
cytokine-cytokine receptor interaction, herpes sim-
plex virus 1 infection, human papillomavirus infec-
tion, pathways in cancer, and the PI3K-Akt signaling 
pathway, were enriched in the high-risk group 
(Figure 6(d)).

Quantitative Real-Time-PCR Validation

For further investigating the expression levels of 
GABPB1, CDKN1A, TLR4, CXCL2, CAV1, and 
RRM2 between graft rejection and non-rejection, 
we performed Quantitative Real-Time-PCR valida-
tion. Notably, all the expression levels of GABPB1, 
CDKN1A, TLR4, CXCL2, CAV1, and RRM2 were 
up-regulated in rejection samples compared to 
non-rejection samples in three GEO database 
(Figure 7(a-c)). Consistent with the result of 
GEO database, we also found that the expression 
levels of GABPB1, CDKN1A, TLR4, CXCL2, 
CAV1, and RRM2 were up-regulated in rejection 
PBMCs compared to non-rejection PBMCs 
(Figure 8). Thus, GABPB1, CDKN1A, TLR4, 
CXCL2, CAV1, and RRM2 may play key roles in 
renal allograft.

Discussion

Renal allograft is the most effective renal replace-
ment therapy for patients with end-stage renal 
disease [1]. However, acute and chronic graft 
rejection greatly limits the efficiency of renal allo-
grafts [35,36]. Unfortunately, current diagnosis of 
graft rejections mainly relies on the pathology 
biopsy reports, which might lead to misdiagnosis 
due to considerable inter-observer disagreements 
[37,38]. Moreover, the molecular mechanism 
underlying graft rejection and loss is still not 
fully understood. Therefore, we hypothesized that 
rejection-related genes might act as biomarkers for 
predicting renal allograft loss. Emerging evidence 
indicates that ferroptosis is related to acute kidney 
injury and I/R injury [17,18,20]. However, the role 
of ferroptosis in renal allografts remains unclear. 
Hence, the present study aimed to investigate the 
role of ferroptosis in graft rejection and loss after 
renal allograft.

We first identified 22 DFGs between the rejec-
tion samples and non-rejection samples in three 
datasets from the GEO database. Next, the results 
of GO annotation suggested that 22 DFGs were 
mainly involved in the negative regulation of pro-
tein phosphorylation, regulation of the apoptotic 
signaling pathway, and the negative regulation of 
transferase activity (Figure 2(a)). Moreover, the 
results of the KEGG pathway analysis suggested 

Table 1. The results of Kaplan-Meier survival analysis for 22 
DFGs.

GENE p value

AKR1C2 0.006096682
PEBP1 2.46E-05
ACVR1B 0.004833763
ATG3 0.518437442
ATG7 0.004347859
GABPB1 0.01726694
SLC40A1 0.716295856
ZFP36 0.000662971
SLC2A14 0.014497685
ABCC1 4.32E-05
CDKN1A 0.002822297
GCH1 0.500954384
XBP1 0.004991953
SLC2A6 0.088557098
TP53 0.016762405
MYB 0.192710539
BID 0.000128318
DDIT4 0.262393648
SOCS1 0.024709333
SLC2A3 0.000573896
TLR4 1.61E-05
SNORA16A 1.45E-05
IFNG 0.22360569
CD44 0.004294914
CXCL2 1.07E-05
ATF3 0.002380468
CAV1 0.00155036
TNFAIP3 0.03710298
RRM2 1.71E-05
NCF2 0.000518481
ALOX5 3.88E-05
CYBB 0.000196954
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that 22 DFGs were mainly related to Kaposi sar-
coma-associated herpesvirus infection, Epstein- 
Barr virus infection, the HIF-1 signaling pathway, 
the NOD-like receptor signaling pathway, autop-
hagy, proteoglycans in cancer, and the p53 signal-
ing pathway (Figure 2(b)). Furthermore, 22 DFGs 

were associated with graft loss (Table 1). Finally, 
a ferroptosis-related gene signature including 
GABPB1, CDKN1A, TLR4, CXCL2, CAV1, and 
RRM2 was constructed to predict the graft loss 
following the renal allograft, which showed good 
performance in predicting graft loss. On the other 

Figure 4. Evaluating the performance of ferroptosis related gene signature in the training set and validation set. (a) The distribution 
of risk scores and graft status in the training set. (b)The gene expression profiles of six genes in gene signature. (c, f) ROC curves 
presented the efficiency of the risk signature for predicting the graft loss in the training set (c) and the validation set (f). (d, g) The 
Kaplan-Meier survival curves showed the prognostic value of the gene signature in the training set (d) and validation set (g). (e, h) 
PCA analysis of the patients in high- and low-risk group in the training set (e) and validation set (h).
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Figure 5. Construction of a nomogram for predicting the 1-, 2- and 3-year graft loss. (a) Univariate Cox regression analysis showed 
the contribution of each variable to the graft loss. (b) A nomogram for predicting 1-,2-and 3- graft loss. (c) The calibration plot 
presented the probability for predicting the 1-, 2- and 3- graft loss.
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hand, we also analyzed the GO functions and 
KEGG pathways associated with the gene signa-
ture and found that cytokine-cytokine receptor 
interaction, herpes simplex virus 1 infection, 
human papillomavirus infection, pathways in can-
cer, and the PI3K-Akt signaling pathway were 
mainly enriched in the high-risk group. Notably, 
we found that graft rejection was not associated 
with graft loss (Figure 5(a)), which might indicate 
that rejection is not an independent prognostic 
factor. Thus, we speculated that graft loss may 
rely on other factors. However, the results might 
be influenced by the number of samples. Hence, 
further studies are necessary to elucidate the asso-
ciation between graft rejection and loss.

GABPB1, has been associated with ferroptosis 
and can be used as a therapeutic target in 

hepatocellular carcinoma [39]. Moreover, GABPA 
regulates the expression of CDKN1A and serves as 
a tumor suppressor in bladder cancer [40]. 
However, the association between GABPA and 
renal allografts has not been reported. Thus, we 
speculated that GABPA might be related to graft 
loss by regulating ferroptosis. However, additional 
studies are needed to elucidate the role of GABPA 
in graft loss. CDKN1A, also known as p21, has 
been regarded as a key mediator of p53-dependent 
cell cycle arrest after DNA damage [41]. In addi-
tion, it has been suggested that CDKN1A can 
inhibit ferroptosis by inducing the TP53 signaling 
pathway [42]. Notably, we also found that TP53 
was associated with patient survival (Figure 3(b)). 
Moreover, a recent study reported that CDKN1A 
participates in the pathogenesis of diabetic 

Figure 6. Identification of gene signature related function annotation. (a-d) The GO biological process terms (a), GO cellular 
components terms (b), GO molecular functions terms (c) and KEGG pathways (d) enriched by differentially expressed genes between 
high- and low-risk group.
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glomerular hypertrophy [43]. CDKN1A was also 
found to prevent renal interstitial fibrosis in dia-
betic nephropathy by inhibiting the expression of 
miR-93-5p [44]. Interestingly, another study also 
suggested that knocking out the CDKN1A gene 
can clearly improve chronic kidney disease [45]. 
Furthermore, CDKN1A affects ischemia-induced 
acute renal failure [46]. Thus, CDKN1A might 
play an important role in graft loss following 
renal allograft.

TLR4 has been suggested to act as mediators 
inflammatory mediators in the kidney. It has been 
shown that TLR4 was involved in renal fibrosis by 
mediating pro-inflammatory and pro-fibrotic path-
ways [47]. Similarly, TLR4 is also associated with 
inflammation in renal I/R injury [48]. Importantly, 
TLR4 is involved in the activation of immune and 
inflammatory responses [49]. Thus, we speculated 
that TLR4 may affect graft loss. CXCL2, an ELR- 
CXC chemokines, has been suggested to be related to 
uric acid nephropathy [50]. In addition, CXCL2 is 

also involved in renal I/R injury [51] and sepsis- 
associated acute kidney injury [52]. Therefore, our 
study further revealed that CXCL2 is also related to 
graft loss in renal allografts.

Regarding the remaining two genes, it has been 
suggested that CAV1 plays an important role in 
diabetic nephropathy [53,54]. More importantly, 
the genotype of CAV1 can affect the renal trans-
plant outcome, which is consistent with our results 
[55]. On the other hand, Hence, a recent study 
suggested that CAV1 can be used as a biomarker 
to distinguish renal allograft tolerance from 
chronic antibody-mediated rejection [56]. Thus, 
our study further revealed that CAV1 was related 
to rejection and graft loss following the renal allo-
grafts. To our knowledge, there has been no report 
on the role of RRM2 in several kidney diseases, 
except in renal carcinoma [57,58]. Therefore, it is 
urgent to further explore the roles of RRM2 in 
renal allograft and other non-cancerous kidney 
diseases.

Figure 7. The expression levels of GABPB1, CDKN1A, TLR4, CXCL2, CAV1, and RRM2 between between graft rejection and non- 
rejection samples from the GEO database. (a) GSE48581. (b) GSE21374. (c) GSE36059.
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In summary, ferroptosis-related genes, includ-
ing GABPB1, CDKN1A, TLR4, CXCL2, CAV1, 
and RRM2, might be used to predict graft loss 
following renal allograft. However, the mechan-
isms of action and the correlation between graft 
rejection and loss remain unclear.

Conclusion

In conclusion, we established a ferroptosis-related 
gene signature, including GABPB1, CDKN1A, 
TLR4, CXCL2, CAV1, and RRM2, to predict 
graft loss following allogeneic kidney transplanta-
tion (renal allograft) based on graft rejection- 
related genes. In addition, we developed 
a nomogram for better prediction of graft loss in 
renal allografts. Thus, GABPB1, CDKN1A, TLR4, 
CXCL2, CAV1, and RRM2 may act as biomarkers 
of graft loss after renal allograft. Therefore, these 
findings may contribute to increasing the under-
standing of the role of ferroptosis in renal allo-
grafts and improve the prediction of graft loss 
following renal allografts. However, the mechan-
isms underlying the roles of GABPB1, CDKN1A, 
TLR4, CXCL2, CAV1, and RRM2 in renal allo-
grafts remain unclear. Thus, additional research is 
needed to elucidate these mechanisms and further 

explore the correlation between graft rejection and 
loss.

Highlights

(1) A ferroptosis related gene signature for pre-
dicting the graft loss after renal allograft was 
established

(2) The gene signature could act as a an inde-
pendent factor

(3) The immune-related pathways and cytokine 
signaling pathways were mostly enriched in 
the high-risk group
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