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Abstract: Microarrays allow researchers to monitor the gene expression patterns for tens of thousands of genes across a wide 
range of cellular responses, phenotype and conditions. Selecting a small subset of discriminate genes from thousands of genes 
is important for accurate classifi cation of diseases and phenotypes. Many methods have been proposed to fi nd subsets of 
genes with maximum relevance and minimum redundancy, which can distinguish accurately between samples with different 
labels. To fi nd the minimum subset of relevant genes is often referred as biomarker discovery. Two main approaches, fi lter 
and wrapper techniques, have been applied to biomarker discovery. In this paper, we conducted a comparative study of dif-
ferent biomarker discovery methods, including six fi lter methods and three wrapper methods. We then proposed a hybrid 
approach, FR-Wrapper, for biomarker discovery. The aim of this approach is to fi nd an optimum balance between the preci-
sion of the biomarker discovery and the computation cost, by taking advantages of both fi lter method’s effi ciency and wrap-
per method’s high accuracy. Our hybrid approach applies Fisher’s ratio, a simple method easy to understand and implement, 
to fi lter out most of the irrelevant genes, then a wrapper method is employed to reduce the redundancy. The performance of 
FR-Wrapper approach is evaluated over four widely used microarray datasets. Analysis of experimental results reveals that 
the hybrid approach can achieve the goal of maximum relevance with minimum redundancy. 

Keywords: Biomarker discovery, Gene expression, Cancer classifi cation, Microarray, Gene selection. 

Introduction 
DNA microarrays, among the most rapidly growing tools for genome analysis, are introducing a 
paradigmatic change in biology by shifting experimental approaches from single gene studies to genome-
level analyses (Blaschke et al. 2001; Liu et al. 2005; Xu et al. 2003). Increasingly accessible microarray 
platforms allow the rapid generation of large expression data sets. Analysis of these high-throughput 
data poses both opportunities and challenges to the biologists, statisticians, and computer scientists. 
One of the most important characteristics in microarray data is the very high dimensionality (large 
number of features or genes) with a small number of samples. There are over thousands of genes and 
at most several hundreds of samples in the data set. Such characteristics, which have never existed in 
any other type of data, have made the traditional data mining and analysis methods not effective, and 
therefore attracted the focus of recent research. Among these methods, a crucial approach is to select a 
small portion of informative genes for further analysis, such as disease classifi cation and the discovery 
of structure of the genetic network (Li et al. 2006). Due to the drastic size difference of genes and 
samples, the step of gene selection is also the need of solving the well-known problem “curse of dimen-
sionality” in statistics, data mining and machine learning (Donoho, 2000). 

However, quite different from the traditional feature selection in other data sets such as text (Yang 
and Pedersen, 1997), the fi nal goal of gene selection is to discover “biomarkers,” a minimal subset of 
genes that not only are differentially expressed across different sample classes, but also contains most 
relevant genes without redundancy. These two characteristics distinguish the task of discovering 
“biomarker” from the common feature selection tasks. 

Recent gene selection methods fall into two categories: fi lter methods and wrapper methods (Inza 
et al. 2004). Filter methods select the features by evaluating the goodness of the features based on the 
intrinsic characteristics, which determines their relevance or discriminant powers with regards to the 
class labels (Ding and Peng, 2003; Inza et al. 2004; Yu and Liu, 2004). Most existing fi lter methods 
follow the methodologies of statistical tests (e.g. t-test, F-test) (Ding and Peng, 2003; Jaeger et al. 
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2003)and information theory (e.g. mutual informa-
tion or information gain) to rank the genes. The 
common way for gene selection is to choose the 
top-ranked genes, say top 50 (Golub et al. 1999) 
or 150 genes (Li et al. 2004). The number of the 
genes selected is subjectively determined with 
trial-and-error. Since the gene ranking is based on 
a univariate scoring metric, the ranking of a gene 
is computed in isolation from all other genes, or at 
most in combinations of pairs of genes (Diaz-
Uriarte and Alvarex de Andrez, 2006). As a result, 
the genes selected could be highly correlated 
among themselves, which raises the issue of 
“redundancy” of feature set (Diaz-Uriarte and 
Alvarex de Andrez, 2006; Ding and Peng, 2003). 
In fi lter methods, the gene selection is independent 
of any learning method (e.g. classifi er), and there-
fore, fi lter methods have better generalization 
property (Ding and Peng, 2003; Yu and Liu, 2004). 
In wrapper methods, gene selection is closely 
“embedded” in the classifi er. The goodness and 
usefulness of a gene subset is evaluated by the 
estimated accuracy of the classifi er, which was 
trained only with the subset of genes. Wrapper 
methods can derive a gene subset with a very small 
number of non-redundant genes (Ding and Peng, 
2003). Because the characteristics of the gene 
subset match that of the classifi er, wrapper methods 
often yield high classifi cation/prediction accuracy. 
However, wrapper methods are computationally 
expensive for data sets with large number of 
features. Therefore, wrapper methods, which are 
popular in machine learning applications, are not 
extensively used in microarray data analysis (Chu 
et al. 2005; Inza et al. 2002). Because of its compu-
tational effi ciency, fi lter methods are adopted by 
most of works in microarray data analysis, but with 
the cost of having lower prediction accuracy than 
wrapper methods. 

Comparative studies have been conducted to 
evaluate different feature selection methods for 
gene selection (Chai and Domeniconi, 2004; Li 
et al. 2004; Liu et al. 2002). However, there is no 
evaluation on various biomarker discovery 
methods. Therefore, in this paper, we fi rst compared 
and evaluated different gene selection, especially 
biomarker discovery methods, including filter 
methods and wrapper methods. Then we proposed 
a hybrid gene selection approach, FR-Wrapper, for 
biomarker discovery. The aim of this approach is 
to fi nd an optimum balance between the precision 
of the biomarker discovery and the computation 

cost, by taking advantages of both fi lter method’s 
effi ciency and wrapper method’s high accuracy. 
Xing et al. (2001) proposed a hybrid of fi lter and 
wrapper methods to gene selection, in which a 
complicated Markov Blanket fi lter was applied. 
Our hybrid approach applies Fisher’s ratio, a 
simple method easy to understand and implement, 
to fi lter out most of the irrelevant genes, then a 
wrapper method is employed to reduce the redun-
dancy. The performance of FR-Wrapper approach 
is evaluated over four widely used microarray 
datasets. Experimental results showed that the 
hybrid approach, a relatively simple and straight-
forward method, can dramatically reduce the 
wrapper method’s running time with little or no 
accuracy loss, and in some case achieve higher 
accuracies than those yielded by wrapper-selected 
sets-another example of applying Occam’s razor 
in machine learning, suggesting the simplest 
hypothesis is the best (Mitchell, 1997). Analysis 
of experimental results also reveals that the hybrid 
approach can achieve the goal of maximum rele-
vance with minimum redundancy. 

In this paper, we fi rst briefl y introduced different 
gene selection methods evaluated in our empirical 
study, then the hybrid gene selection approach for 
biomarker discovery was proposed. 

Gene selection methods 
This paper evaluates six fi lter methods and three 
wrapper methods. In this section, we briefl y intro-
duced these methods.

Filter methods 
Fisher's ratio (FR) Fisher’s ratio is a measure for 
(linear) discriminative power of some variable, and 
it is defi ned as: 
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where m1 and m2 are the means of the expression 
level of a particular gene in class 1 and class 2; v1 
and v2 are the corresponding variances. In our 
experiments, given a microarray dataset, we 
compute the FR value for each gene and rank them 
in descending order. Genes with higher ranking 
have more discriminative power for classifying 
samples into categories. 

Information gain (IG) Information gain is a 
measure of the effectiveness of an attribute in 
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classifying the training data. It is based on entropy, 
a measure commonly used in information theory 
(Mitchell, 1997). Information Gain IG(S,A) 
measures the number of bits saved (information 
obtained) when encoding the target value of an 
arbitrary member of S, by knowing the value of 
attribute A. In our case, given a microarray dataset, 
we compute the information gain for each gene 
and rank them in descending order by their infor-
mation gain value. The higher information value 
a gene has, the more effective the gene used to 
classify the training data. 

ReliefF While gene selection using measures 
such as Fisher’s ratio and Information gain assume 
the conditional independence of the attributes (in 
our case, genes), Relief algorithms (Relief, ReliefF 
and RReliefF) consider the dependencies between 
attributes (Robnik-Sikonja and Kononenko, 2003). 
The basic idea of Relief algorithm is to measure 
how well attributes distinguish between samples 
that are near to each other. Original Relief is limited 
to two-class classifi cation. ReliefF extends Relief 
to solve multi-class classifi cation problems. 

F-test Correlation Difference (FCD) FCD, a 
minimum redundancy-maximum relevance 
(MRMR) approach for gene selection, was 
proposed (Ding and Peng, 2003) to solve the defi -
ciency of simple ranking approaches, which ignore 
the correlated genes. One key goal of MRMR 
approach is to require that members in the selected 
gene sets are maximally dissimilar to each other. 
Several measures are proposed to achieve this goal, 
including maximizing features’ Euclidean distances, 
or minimizing their pairwise correlations. F-test 
correlation difference (FCD) is one of the proposed 
criterion functions to achieve minimum redun-
dancy-maximum relevance. F-statistic can be 
chosen to evaluate relevance between the gene and 
the class labels (Ding and Peng, 2003; Dudoit et al. 
2002). The minimum redundancy condition can be 
evaluated by Pearson correlation coeffi cient. If we 
use VF and WC to represent F-statistic and Pearson 
correlation coeffi cient respectively, FCD can be 
defi ned as max (VF –WC) (Ding and Peng, 2003). 
During the gene selection process, FCD serves as 
a criterion to choose genes with minimum redun-
dancy-maximum relevance. 

Generalized Matrix Approximations (GMA) 
Recently, we proposed a Generalized Matrix 
Approximation fi lter method to simultaneously 
rank the genes and samples to select top k genes 
for classifying cancer samples (Li et al. 2006). 

GMA method is based on a resonance model for 
approximating matrix. It comprehensively 
considers the global between-class data distribu-
tion and local within-class data distribution. By 
reordering the gene expression data matrix, the 
expression data distribution can be visually 
observed. Top ranked genes are differentially 
expressed across classes and top samples are 
important to the class (Li et al. 2006). 

Redundancy Based Filter (RBF) algorithm 
Redundancy based fi lter algorithm is another fi lter 
method aimed to select a minimum gene subset 
with optimum feature relevance and reduced 
redundancy (Yu and Liu, 2004). The RBF method 
does not require any threshold for gene relevance 
or redundancy determination, and outputs the 
appropriate set of genes which are relevant and not 
redundant. Furthermore, it reduces the number of 
feature pairs to be evaluated by combining sequen-
tial forward selection with elimination (Yu and Liu, 
2004). 

Wrapper methods 
In wrapper methods, a classifier is embedded 
(wrapped) in the feature selection methods. The 
typical wrapper algorithm searches for feature 
subsets, evaluates them with the embedded classi-
fi er and uses the resulted accuracy as its measure 
for gene selection (Blum and Langley, 1997). 
Different classifi er and search method combina-
tions can be used for wrapper algorithms. In our 
experiment, three popular classifi ers (briefl y intro-
duced below) are chosen, including Naïve Bayes, 
decision tree and Support Vector Machine. An 
exhaustive search of the feature space is intractable 
for such huge dataset as microarray gene expres-
sion data. With a cost of little accuracy loss, in this 
study, we chose a more practical greedy method 
called greedy stepwise forward search to traverse 
feature space. This method performs a greedy 
forward search through the feature subset space, 
starts with no feature and stops when the addition 
of any remaining features results in a decrease in 
evaluation. 

A hybrid approach 
Two main objectives in gene selections are: to 
identify relevant genes for subsequent research and 
to identify a small set of genes with minimum 
redundancy, which is to discover biomarkers (Diaz-
Uriarte and Alvarex de Andrez, 2006; Li et al. 2006). 
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In order to approach these two objectives, we 
propose a two-step hybrid gene selection for 
biomarker discovery, in which, we use the feature 
estimation from the fi lter step as the heuristic 
i n fo rma t ion  fo r  t he  wrappe r  s t ep .  In 
the fi rst step, a fi lter gene selection method is 
employed to eliminate the irrelevant genes and 
form a reduced set of genes, and then a wrapper 
method is applied to the reduced set of genes to 
fi nd a small set of genes with minimum redun-
dancy. This hybrid approach takes advantages of 
both filter methods’ efficiency and wrapper 
methods’ high accuracy. The aim is to fi nd an 
optimum balance between the precision of the 
analysis and the computational time. Our gene 
selection method comparative study showed that 
Fisher’s ratio, a relatively simple and straightfor-
ward method, can achieve similar or even better 
classifi cation accuracy than other fi lter methods 
(see Section 6.1, Results and Discussion). There-
fore, in this paper, the Fisher’s ratio is used in the 
first step to filter out most of the irrelevant 
features. 

Classifi ers 
After the gene selection, three state-of-the-art clas-
sifi ers, decision tree, naïve bayes, and support 
vector machine, were applied to evaluate the effec-
tiveness of the gene selection methods.

Decision tree: We used J4.8 decision tree, 
which is a Weka implementation of a C4.5 decision 
tree variant (Witten and Frank, 2005). C4.5 in turn 
is an extension of the basic ID3 algorithm to avoid 
overfi tting the data, reduce error pruning, handling 
continuous attributes, improving computational 
effi ciency and other problems.

Naïve Bayes: Naïve Bayes (NB) is a statistical 
learner based on Bayes rules. It is among the most 
practical approaches to certain types of learning 
problems (Liu, 2004). Naïve Bayes classifi ers 
assume that any two feature values on a given class 

label are independent of each other and thus 
considered to be ‘naïve’.

Support Vector Machine: Support vector 
machine (SVM) is a new generation learning 
system based on recent advances in statistical 
learning theory. An SVM classifi er creates a hyper-
plane that separates the data into two classes as 
widely as possible. If no linear separation is 
possible, a non-liner kernel can be employed to 
transform the data from linear feature space to a 
non-linear feature space (Li et al. 2004). The 
training of an SVM classifi er is slow compared to 
Naïve Bayes and Decision Trees and it is not 
always easy to select the optimal kernel parameters 
when there is no linear separation is possible. 

Datasets and Experimental setup 
Four widely used microarray gene expression data 
sets are chosen for our experiments: ALL-AML 
leukemia, lung cancer, breast cancer, and colon 
tumor. The data is taken from http://sdmc.lit.org.
sg/GEDatasets/Datasets.html. Table 1 summarizes 
these datasets. 

We conducted the experiments on these four 
data sets and compared six fi lter methods and three 
wrapper methods with NB, J4.8 and SVM being 
the embedded classifier respectively. We also 
evaluated the hybrid approach we proposed. We 
used Weka, a well known comprehensive toolset 
for machine learning and data mining (Witten and 
Frank, 2005), as our main experimental platform. 
For the fi lter methods, we used Weka implementa-
tion of Information Gain and ReliefF. RBF was 
implemented in the Weka environment by Yu’s 
team (Yu and Liu, 2004). Fisher’s Ratio, GMA and 
FCD methods were implemented with MATLAB, 
a high-performance language for technical 
computing. We evaluated the performance of 
different fi lter and wrapper methods in Weka envi-
ronment with three classifi ers, NB, J4.8 and SVM, 
using Leave-One-Out Cross Validation (LOOCV). 

Table 1. Four microarray datasets* we used in this paper.

Dataset  # of genes  # of positive # of negative

  samples samples 

Leukemia 7129 47 (ALL) 25 (AML) 
Lung Cancer 12533  331 (MPM)  150 (ADCA)
Breast Cancer   24481 46  51 
Colon Cancer  2000  22  40
*Data was obtained from http://sdmc.lit.org.sg/GEDatasets/Datasets.html 
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We performed LOOCV on both the feature selec-
tion process and the classification step. We 
conducted our experiments on a Pentium IV 
machine with 2G RAM. Weka (3.4.6) and 
MATLAB2006a software packages were used. 
Linear kernel was applied when SVM was used as 
the classifi er. 

Results and discussion 

Filter methods 
For each fi lter method, except RBF method, the 
genes were ranked based on the scores the feature 
selection methods assigned. Only the top-ranked 
genes were selected for classifi cation purpose. The 
number of top-ranked genes (k) tested were k = 2, 
4, 10, 20, 50, 100, 200, 500, 1000. An exception 
is RBF method, which outputs a fi xed number of 
genes for each data set. Therefore, no top k genes 
can be selected to test. For comparison, LOOCV 
percentage accuracy for the full gene set without 
selection was also evaluated for each dataset. 
LOOCV was applied to validate each classifi er on 
different gene sets selected by different filter 
methods. 

The LOOCV accuracies, achieved using 
different top-k-ranked genes selected from the four 
microarray data sets by FR, IG, ReliefF, FCD, and 
GMA, were shown in Figures 1–4, while the 
LOOCV accuracies, achieved using the genes 

selected by RBF were shown in Table 2, Table 3 
showed the LOOCV accuracies when all the genes 
in each microarray data sets were used without 
gene selection for classifi cation purpose. From the 
results on leukemia and lung cancer datasets 
(Figures 1 and 2, Table 2), we can see that all six 
fi lter methods have high LOOCV accuracies and 
perform almost equally well. Results on breast 
cancer and colon tumor datasets (Figures 3 and 4, 
Table 2) showed signifi cantly lower accuracy for 
all tested fi lter methods than leukemia and lung 
cancer datasets, indicating that these two datasets 
are noisier than lung cancer and leukemia data 
sets. RBF performs better when J4.8 is used as the 
classifi er, but has lower accuracy when SVM or 
NB was used as the classifi er, especially when it 
was tested on breast and colon cancer data sets. 
The results also showed that RBF method selected 
67 genes out of 24481 genes in breast cancer 
dataset while some other methods achieved higher 
accuracy by selecting less number of top-ranked 
genes. Yu and Liu (2004) claimed that RBF is an 
effi cient method to discover subset of genes with 
maximum relevance and minimum redundancy. 
The fact that RBF selected more genes (67 genes 
in Breast cancer dataset) than other methods while 
achieved lower accuracies showed that at least in 
breast cancer dataset, RBF is not so effective as 
other filter methods in biomarker discovery. 
Another interesting point is that information gain 
(IG) fi lter method performed signifi cantly worse 

Table 2. Classifi cation accuracies of different microarray datasets by RBF. 

Data sets classifi er # of genes  Accuracy 
  selected (%)

 NB 4 94.44
Leukemia J4.8 4 87.50
 SVM 4 93.06

  NB 6 98.90
Lung cancer J4.8 6 98.34
 SVM 6 96.13     

  NB 67 61.85
Breast cancer J4.8 67 79.38
 SVM 67 75.26     

  NB 4 77.42  
Colon cancer J4.8 4 93.55
 SVM 4 80.65
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than other methods when NB is applied as the 
classifi er and tested on the two noisy datasets, 
breast cancer and colon cancer. Other than these, 
there is no single filter method that performs 
universally better than others. It is diffi cult to select 
the best gene selection method because no clear 
winner seems to exist (Li et al. 2004). Not all 
machine learning methods are created equal. 
Knowing which method works the best for a given 
problem is not inherently obvious(Cruz and 
Wishart, 2006). However, the experimental results 
reveal that despite its simplicity, the Fisher’s ratio, 
a traditional statistical method, performed at least 
as well as or even better than some newly devel-
oped complicated gene selection methods in most 
of the cases (Figures 1–4, and Table 2). 

Wrapper methods 
Table 4 presents the summaries of the running time, 
LOOCV accuracy rate of wrapper methods using 
NB, J4.8 and SVM as the embedded classifi er 
respectively. The results showed that wrapper 
methods have signifi cantly higher accuracy than 
fi lter methods, especially for those “noisy” datasets 
(breast cancer and colon tumor datasets) (Table 4, 
Figures 3 and 4, and Table 2). Wrapper methods’ 
better accuracy comes with the cost of computa-
tional complexity. As the results showed, wrapper 
methods are more time consuming than the fi ltering 
methods. Among the three wrapper methods using 

different embedded classifi ers, the one with SVM 
embedded is the most time-consuming without 
signifi cantly better accuracy. 

Hybrid approach: FR-Wrapper 
In order to take advantage of both fi lter methods’ 
effi ciency and wrapper methods’ high accuracy, we 
propose a hybrid approach by running wrapper 
methods over a gene subset pre-selected by a fi lter 
method. In these experiments we selected Fisher’s 
ratio as the pre-selecting fi lter method. Fisher’s ratio 
was chosen to perform the pre-selection process 
due to its simplicity, computational effi ciency and 
performance consistence over the four tested gene 
expression datasets, as analyzed in section 6.1. In 
order to test if the hybrid approach can achieve 
improvement over “pure” fi lter and “pure” wrapper 
methods, we conducted the experiments on the four 
microarray datasets. Table 5 showed the experi-
mental results of our hybrid approach tested on the 
four datasets. The gene numbers in the second 
column of Table 5 are the numbers of genes pre-
selected by the fi lter method, Fisher’s ratio, before 
wrapper methods were applied. In our study, we 
pre selected 200, 100 and 50 top-ranked genes using 
Fisher’s ratio method. Then the wrapper methods 
were employed to select biomarker on the search 
space of 200, 100 and 50 genes. 

From the results we have the following observa-
tions: 

Table 3. Classifi cation accuracies of different microarray datasets without 
gene selection.

Data sets # of genes classifi er Accuracy (%)

  NB 100
Leukemia 7129 J4.8 73.61
  SVM 98.61
 
  NB 97.79
Lung cancer 12533 J4.8 96.13
  SVM 99.45
 
  NB 52.57
Breast cancer 24481 J4.8 52.58
  SVM 69.07
 
  NB 58.64
Colon cancer 2000 J4.8 80.65
  SVM 82.26
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Figure 1. The leave-one-out-cross-validation accuracies of leukemia 
dataset. The genes were ranked by different fi lter methods and top-
ranked k genes were selected for a classifi er to classify the samples. 
(A): Support Vector Machine (SVM); (B): Decision tree J4.8; (C): 
Naïve Bayes (NB).
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Figure 2. The leave-one-out-cross-validation accuracies of lung 
cancer dataset. The genes were ranked by different fi lter methods 
and top-ranked k genes were selected for a classifi er to classify the 
samples. (A): Support Vector Machine (SVM); (B): Decision tree J4.8; 
(C): Naïve Bayes (NB).
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Figure 3. The leave-one-out-cross-validation accuracies of breast 
cancer dataset. The genes were ranked by different fi lter methods 
and top-ranked k genes were selected for a classifi er to classify the 
samples. (A): Support Vector Machine (SVM); (B): Decision tree J4.8; 
(C): Naïve Bayes (NB).

Figure 4. The leave-one-out-cross-validation accuracies of colon 
cancer dataset. The genes were ranked by different fi lter methods 
and top-ranked k genes were selected for a classifi er to classify the 
samples. (A): Support Vector Machine (SVM); (B): Decision tree J4.8; 
(C): Naïve Bayes (NB).
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Table 4. Classifi cation accuracies of different microarray datasets by three wrapper methods 
(SVM-forward selection, NB-forward selection, and decision tree J4.8-forward selection).

Data sets classifi er time # of gene  Accuracy 
  (seconds)  selected (%) 

 NB 360 3 98.61
Leukemia J4.8 360 2 95.83
 SVM 55980 5 98.61
 
 NB 1080 3 100
Lung cancer J4.8 1560 2 99.45
 SVM 59760 4 100
 
 NB 5280 3 88.66
Breast J4.8 13920 2 93.81
cancer SVM 447060 4 89.69
 
 NB 300 8 93.55
Colon cancer J4.8 300 3 96.77
 SVM 12060 5 91.94

1. The hybrid approach achieved the same 
accuracies as or even higher accuracies than the 
wrapper methods when leukemia and lung cancer 
datasets were analyzed. When leukemia data was 
analyzed, the hybrid approach with NB wrapper 
method (accuracy of 100%) (Table 5) outperforms 
simple NB wrapper method (accuracy of 98.61%) 
(Table 4). The hybrid approach runs much faster 
than the simple wrapper methods (The running 
time reported here includes both the gene 
pre selection by Fisher’s ratio stage and the wrapper 
gene selection stage). When the hybrid approach 
was tested on the leukemia dataset, it took the 
hybrid approach with NB wrapper method about 
6 seconds to fi nish the test with 100% accuracy 
(Table 5), while it took the simple NB wrapper 
method about 240 seconds to fi nish the test with 
98.61% accuracy (Table 4). More signifi cantly 
running time reduction can be observed when SVM 
wrapper was tested with gene pre-selection by 
Fisher’s ratio (hybrid approach, 566 seconds with 
50 pre-selected genes) (Table 5) or without gene 
pre-selection (simple SVM wrapper method, 55980 
seconds) (Table 4). When the two “noisy” datasets, 
breast cancer and colon cancer datasets were tested, 
the hybrid approach is more computational effi -
cient with small accuracy lost. 

2. The hybrid approach signifi cantly outper-
forms the simple fi lter method with higher clas-
sifi cation accuracies. When breast cancer dataset 
was tested, the hybrid approach can achieve 

88.66% accuracy with SVM wrapper method and 
6 genes were selected as biomarker (Table 5), 
while Fisher’s ratio fi lter method alone achieved 
80.41% accuracy when 4 genes were selected, 
and 83.51% accuracy when 10 genes were 
selected (Fig. 3). Similar trends can be observed 
when other three microarray datasets were 
tested. 

3. There is almost no accuracy loss when the 
number of pre-selected genes was reduced from 200 
to 50. In some cases, even higher accuracies were 
achieved. Therefore, for the four microarray datasets 
tested in this paper, in order to achieve reasonable 
accuracy and computational effi ciency, a hybrid 
approach, which combines Fisher’s ratio filter 
method to pre-select 50 genes and a wrapper 
method, is a good candidate for classification 
purpose. 

4. The high accuracy of wrapper methods without 
pre-selection can be due to overfi tting (Das, 2001; 
Hall, 1999; Kohavi, 1995). In the wrapper method, 
a search for an optimal feature subset is made using 
the induction algorithm as a black box. One problem 
with wrapper method is that of overfi tting: the accu-
racy estimation (such as cross-validation) guides the 
search toward feature subset that will be good for 
the specifi c cross-validation folds, however, over-
using the estimate can lead to overfi tting (Das, 2001; 
Hall, 1999; Kohavi, 1995). The hybrid approach 
chooses more representative gene sets by first 
fi ltering out irrelevant genes (to achieve maximum 
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Table 5. Classifi cation accuracies of different microarray datasets by the hybrid approach.

Datasets Search Classifi er time # of gene Accuracy 
 space  (seconds) selected (%) 

 200 NB 13 4 100 
 200 J4.8 13 2 95.83 
 200 SVM 896 3 98.61 
 100 NB 7 4 100 
Leukemia 100 J4.8 7 2 95.83 
 100 SVM 566 4 98.61 
 50 NB 4 4 100 
 50 J4.8 4 2 95.83 
 50 SVM 273 4 98.61 

 200 NB 16 3 100 
 200 J4.8 30 2 99.45 
 200 SVM 652 3 100 
 100 NB 8 3 100 
Lung cancer 100 J4.8 16 2 99.45 
 100 SVM 327 3 100 
 50 NB 4 3 100 
 50 J4.8 8 2 99.45 
 50 SVM 157 3 100 

 200 NB 34 6 84.54 
 200 J4.8 84 4 86.60 
 200 SVM 1032 3 82.47 
 100 NB 13 5 86.60 
Breast cancer  100 J4.8 42 4 85.57 
 100 SVM 886 6 88.66 
 50 NB 7 5 86.60 
 50 J4.8 15 3 85.57 
 50 SVM 427 6 88.66 

 200 NB 12 5 91.94 
 200 J4.8 36 3 96.77 
 200 SVM 1079 5 90.32 
 100 NB 6 5 91.94 
Colon cancer  100 J4.8 16 3 90.32 
 100 SVM 539 5 90.32 
 50 NB 4 5 90.32 
 50 J4.8 8 3 90.32 
 50 SVM 246 4 87.09
 

relevance) and then running wrapper methods over 
the resulting subset (to achieve minimum redun-
dancy). With these advantages, the hybrid approach 
can effectively be applied in biomarker discovery, 
the search of a minimal subset of genes that is not 
only differentially expressed across different sample 
classes, but also contains most relevant genes 
without redundancy. 

Conclusions and Future Work 
In this work, we evaluated different gene selection 
methods for biomarker discovery, including

some traditional statistical methods and several 
newly developed methods aimed to obtain 
maximum relevance and minimum redundancy. 
Despite their simplicity, the traditional statistical 
methods such as fi sher’s ratio perform at least as 
well as some newly developed gene selection 
methods in most of the tested cases. Several 
wrapper methods are also evaluated. The wrappers 
methods achieved higher classifi cation accuracy 
than the fi lter methods. However, they are biased 
towards the specifi c classifi er they used to evaluate 
the alternative subsets, and the high accuracy of 
wrapper methods may be due to overfi tting. We 
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proposed a hybrid approach which combines fi lter 
and wrapper methods, in which we use the feature 
estimation from the fi lter step as the heuristic 
information for the wrapper step. In the fi rst step, 
a filter gene selection method is employed to 
eliminate the irrelevant genes and form a reduced 
set of genes, and then a wrapper method is applied 
to the reduced set of genes to fi nd a small set of 
genes with minimum redundancy. Our gene selec-
tion method comparative study showed that 
Fisher’s ratio, a relatively simple and straightfor-
ward method, can achieve similar or even better 
classifi cation accuracy than other fi lter methods. 
Therefore, in this paper, the Fisher’s ratio is used 
as the fi rst step to fi lter out most of the irrelevant 
features. Furthermore, the hybrid approach can 
reduce the effect of the overfi tting problem and 
achieve the goal of maximum relevance with 
minimum redundancy. With these advantages, the 
hybrid approach may be a good candidate for 
biomarker discovery from microarray datasets. 

One of the future research directions is to 
analyze the biological meaning of the discovered 
biomarkers. The consistency of the biomarkers 
discovered by different methods will also be 
analyzed. 

Acknowledgements 
We thank Dr. Lei Yu to share the RBF codes
with us. 

References 
Blaschke, C., Oliveros, J.C. and Valencia, A. 2001. Mining functional

information associated with expression arrays, Functional and Inte-
grative Genomics, 1:256–268. 

Blum, A.L. and Langley, P. 1997. Selection of relevant features and ex-
amples in machine learning, Artifi cial Intelligence, 245–271. 

Chai, H. and Domeniconi, C. 2004. An evaluation of gene selection meth-
ods for multi-class microarray data classifi cation. Proceedings of the 
Second European Workshop on Data Mining and Text Mining in 
Bioinformatics. Pisa, Italy. 

Chu, W., Ghahramani, Z., Falciani, F. and Wild, D.L. 2005. Biomarker 
discovery in microarray gene expression data with Gaussian pro-
cesses, Bioinformatics, 21:3385–3393. 

Cruz, J.A. and Wishart, D.S. 2006. Applciations of machine learning in 
cancer prediction and prognosis, Cancer Informatics, 2:59–78. 

Das, S. 2001. Filters, wrappers and a boosting-based hybrid for feature 
selection, Proceedings of the International Conference on Machine 
Learning, 74–81.

Diaz-Uriarte, R. and Alvarex de Andrez, S. 2006. Gene selection and clas-
sifi cation of microarray data using random forest, BMC Bioinformat-
ics, 7:3.

Ding, C. and Peng, H. 2003. Minimum redundancy feaure selection from 
microarray gene expression data. Proceedings of Computational Sys-
tems Bioinformatics. Stanford Unviersity, Stanford CA, 523–529. 

Donoho, D.L. 2000. High-Dimensional Data Analysis: The Curses and 
Blessings of Dimensionality. Math Challenges of the 21st Century. 
Los Angeles CA, August 6 11, 2000.

Dudoit, S., Fridlyand, J. and Speed, T. 2002. Comparison of discrimination 
methods for the classifi cation of tumors using gene expression, J. 
Am. Stat. Assoc, 97:77–87.

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M. and 
Mesirov, J.P. et al. 1999. Molecular classifi cation of cancer: class 
discovery and class prediction by gene expression monitoring, Sci-
ence, 286:531–537. 

Hall, M.A. 1999. Correlation based feature selection for machine learning. 
Doctoral dissertation. Department of Computer Science. University 
of Waikato.

Inza, I., Larranaga, P., Blanco, R. and Cerrolaza, A.J. 2004. Filter versus 
wrapper gene selection approaches in DNA microarray domains, 
Artifi cial Intelligence in Medicine, 31:91–103.

Inza, I., Sierra, B., Blanco, R. and Larranaga, P. 2002. Gene selection by 
sequential search wrapper approaches in microarray cancer class 
prediction, J. Intell. Fuzzy Syst., 12:25–33. 

Jaeger, J., Sengupta, R. and Ruzzo, W.L. 2003. Improved gene selection for 
classifi cation of microarrays. Proceedings of Pacifi c Symposium on 
Biocomputing (PSB 2003). Kauai, HI. 

Kohavi, R.S. D. 1995. Feature Subset Selection Using the Wrapper Method: 
Overfi tting and Dynamic Search Space Topology, Proceeding of The 
First International Conference on Knowledge Discovery and Data 
Mining.

Li, T., Zhang, C., and Ogihara, M. 2004. A comparative study of feature 
selection and multiclass classifi cation methods for tissue classifi cation 
based on gene expression, Bioinformatics, 20:2429–2437. 

Li, W., Peng, Y., Hang, H.-C. and Liu, Y. 2006. Effi cient generalized matrix 
approximations for biomarker discovery and visualization in gene 
expression data., LSS Computational System Bioinformatics (CSB). 
Stanford University, Stanford, CA. 

Liu, H., Li, J. and Wong, L. 2002. A comparative study of feature selection 
and classifi cation methods using gene expression profi les and pro-
teomic patterns, Genome Informatics, 13:51–60. 

Liu, Y. 2004. A Comparative Study on Feature Selection Methods for Drug 
Discovery, J. Chem. Inf. Comput. Sci., 44:1823–1828. 

Liu, Y., Navathe, S.B., Civera, J., Dasigi, V., Ram, A. and Ciliax, B.J. et al. 
2005. Text mining biomedical literature for discovering gene-to-gene 
relationships" a comparative study of algorithms, IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, 2:62–76. 

Mitchell, T. 1997. Machine Learning. McGraw Hill, New York. 
Robnik-Sikonja, M. and Kononenko, I. 2003. Theoretical and empirical 

analysis of ReliefF and RRelieffF, Machine Learning, 53:23–69. 
Witten, I.H. and Frank, E. 2005. Data Mining: Practical machine learning 

tools and technique. Morgan Kauffman, San Francisco. 
Xing, E.P., Jordan, M.I. and Karp, R.M. 2001. Feature selection for high-

dimensional genomics microarray data. International Conference on 
Machine Learning.

Xu, Y., Olman, V. and Xu, D. 2003. EXCAVATOR: A Computer Program 
for Effi ciently Mining Gene Expression Data, Nucleic Acids Research, 
31:5582–5589. 

Yang, Y. and Pedersen, J.P. 1997. A comparative study on feature selection 
in text categorization. Proceeding of ICML 

Yu, L. and Liu, H. 2004. Redundancy based feature selection for microarray 
data. KDD 2004. Seattle, WA, 737–742. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <>
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


