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Telework has become a universal working style under the background of COVID-

19. With the increased time of working at home, problems, such as lack of physical

activities and prolonged sedentary behavior become more prominent. In this situation,

a self-managing working pattern regulation may be the most practical way to maintain

worker’s well-being. To this end, this paper validated the idea of using an Internet of

Things (IoT) system (a smartphone and the accompanying smartwatch) to monitor the

working status in real-time so as to record the working pattern and nudge the user

to have a behavior change. By using the accelerometer and gyroscope enclosed in

the smartwatch worn on the right wrist, nine-channel data streams of the two sensors

were sent to the paired smartphone for data preprocessing, and action recognition in

real time. By considering the cooperativity and orthogonality of the data streams, a

shallow convolutional neural network (CNN) model was constructed to recognize the

working status from a common working routine. As preliminary research, the results

of the CNN model show accurate performance [5-fold cross-validation: 0.97 recall and

0.98 precision; leave-one-out validation: 0.95 recall and 0.94 precision; (support vector

machine (SVM): 0.89 recall and 0.90 precision; random forest: 0.95 recall and 0.93

precision)] for the recognition of working status, suggesting the feasibility of this fully

online method. Although further validation in a more realistic working scenario should be

conducted for this method, this proof-of-concept study clarifies the prospect of a user-

friendly online working tracking system. With a tailored working pattern guidance, this

method is expected to contribute to the workers’ wellness not only during the COVID-19

pandemic but also take effect in the post-COVID-19 era.

Keywords: telework, nudge, wearable, realtime tracking, convolutional neural network

1. INTRODUCTION

A great leap of digital healthcare is expected under the background of COVID-19, which
has changed the style of socioeconomic organization. Now, telework has been being adopted
pervasively to decrease the transmission risk so as to contain the pandemic. On the other side
of the strengthened working efficiency by saving the commuting time, the side effects caused by
prolonged working hours become more visible.

Given that the adverse effect of prolonged working hours and the consequent stress have been
identified (1, 2), attempts that chopped up the working time with breaks have been tried and
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validated (3, 4). Additionally, the sit-stand working pattern has
been proposed recently as a new working fashion to reduce
the sitting time and has shown the potential effectiveness (5).
However, the change of posture may not be able to eliminate
the adverse effect of prolonged working hours. Given the
difficulty in keeping up to an intervention schedule by the
worker himself, a fully automatic intervention system, which
can recognize the working status in real-time and then generate
the behavior-change notification automatically, is valuable. To
meet the requirements in simultaneousness and interactiveness,
the system should (1) be able to recognize the motion by
extracting the information from video or time-series sensor
signal in real time, and (2) be able to feedback to the subject in
a convenient way.

The first requirement is widely studied in the topic of human
activity recognition (HAR) by using the camera, ambient sensor,
and wearable sensors (6, 7). The first two modalities are not
suitable for the recognition of working status due to the higher
computation cost and the rigid requirement in the system setup.
Numerous previous research utilizing wearable sensor fusion in
HAR show the clear prospect of accurate HAR recognition using
portable sensors (8–10). Nevertheless, the aforementioned two
requirements make it more difficult for most of the methods to
be applied.

The smartphones and the accompanying smartwatch
ecosystem, which is one of the major modalities of IoT devices,
provides an excellent platform to implement the HAR in
terms of performance and availability. The research of using a
smartphone as the hub of data-stream acquiring, processing,
and modeling have emerged in recent years. Cao et al. have
tried to conceptualize the smartphone-based implementation
by optimizing the number and types of features and validated
the algorithm by using an open dataset (11). Cvetkovic et al.
tried to fuse the accelerometer signal from a smartphone and
a wristband to recognize the daily activities, which are majorly
locomotions and achieved an 87% average accuracy (12). Bianchi
et al. proposed a system consists of sensing and data transmitting
via a wearable gadget and the accompanying HAR recognition in
the form of cloud service based on the deep learning model (13).
In the IoT context, the user’s loyalty is an unavoidable factor
in system design, which suggests that an established ecosystem,
such as the iOS and Android system, with a massive user base,
would be ideal. Moreover, it is natural for these commercial
systems to provide a direct interaction via smartphone or
smartwatch devices. With the new dedicated neural network
accelerator being added in, the recent smartphones are becoming
the appropriate hub for edge computing as research concerning
using the signals of IMU sensor of a smartwatch can be seen
lately (14, 15).

Although the monitoring of working status did not become a
practical need until last year when remote working become an
elementary style and few researchers contributed to the topic,
human activity recognition based on wearable devices, which
may be applicable, have been developed. Mannini et al. have
tried to use the wrist-worn and ankle-worn accelerometer to
identify the locomotions (walking, cycling, and resting) (16).
Specially, as it can be imaged for a real working situation, a few

relevant elementary actions, such as reading and typing, as well
as irrelevant interruptions are mixed in, a coarse information,
such as the record of screen time and sedentary time may
cause overestimate or underestimate of working time. Therefore,
Kwon and Choi have tried to construct a pipeline based on
smartwatch and artificial neural network model to recognize
the working relevant activities from other daily living activities
(17). In considering the requirement on the accuracy and the
restriction of privacy protection, the activity recognition based
on wearable sensors is considered to be an appropriate solution,
in comparison with the video-based, which may cause concern of
the privacy disclosure and the self-report-based methods, which
is prone to be coarse and data missing.

However, in the previous studies, the influence of individual
difference is unclear and the overall method including signal
source and the classification model can be optimized. In
view of the results of the previous researches above, in this
research, we extend the signal source by adding the signal of
gyroscope and comparing the convolutional neural network
(CNN) classification model with random forest (RF) and support
vector machine (SVM) in more rigorous off-line [5-fold and
leave-one-out (LOO)] and real-time experiments to evaluate
the feasibility of working recognition with standalone pair of
smartphone and smartwatch.

2. MATERIALS AND METHODS

2.1. Data Acquisition
The data used in this research were generated by the
accelerometer and gyroscopes enclosed in an Apple Watch
(series 5). The coreMotion of Apple provides the application
programing interface (APIs) for the developer to access the data
generated by the sensors in Apple watch and iPhone, which can
be extracted for off-line use or direct use in a dedicated app.
Both the raw data and the processed values can be extracted
by the APIs provided by coreMotion in a user-defined interval.
The sampling rate is 50 Hz in this research, which is higher
than 20 Hz, and it is often used in human activity recognition,
because most of the target activities requires a minimal of 30 Hz
to prevent aliasing (18, 19). In this study, the data streams being
used in this study are tabulated in Table 1.

The data streams will then be used by the coreML, which is
a framework for machine learning provided by Apple. In recent
models (iPhone11 and later), the computation performance is
greatly boosted by the dedicated hardware—the neural engine.
The machine learning model can be trained separately by python
and then converted back by the coremltools to the coreML format
to run on the iPhone. In this study, we extracted the data streams
to train the model first, and then put the converted model back
into the iPhone.

2.2. Experiments
In this study, we simulated the activity pattern at-home
by performing the combinations of locomotion and limbs
movements, which are described in Table 2. Two experiments
were carried out subsequently. The first offline experiment, which
also served the purpose of initial data collection, was conducted
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on 12 subjects (college students, 10 males, two females; ages:
[23–34] years old), whose willingness in participating in the
experiments was confirmed by written informed consent, with an
Apple watch worn on their right wrists. The subjects were guided
to conduct the prescribed locomotions and limb movements at
their own paces. The timing for each action was recorded by
an assistant to ensure the correctness of class labeling. In every
2 s, statistical features which is described in section 2.3 of the
nine-channel signals sensed by the watch simultaneously were
calculated on site and sent to the paired iPhone11 via Bluetooth.
In the experiment protocol, the working-while-standing style was
added to the conventional sitting style given that more and more
people use at least partially the standing position in working
time. The actions of reading, keyboard typing, and writing were
attributed as working status. Therefore, given the similarity
of the nine-channel signals, we combined limb movements of
reading, typing, and writing in both standing and sitting status,
which results in three classes of combinations for working
status. Consequently, there are seven classes of locomotion-
limbs-movements combinations to be recognized in this research
as shown in the [Label] row of Table 2.

TABLE 1 | The nine channels of data streams used in this research, which can be

accessed by the APIs of CoreMotion.

Data Description

Motionuseraccelerationx (G)

Motionuseraccelerationy (G)

Motionuseraccelerationz (G)

The acceleration that the user is

giving to the device along the

corresponding axis. The total

acceleration of the device is equal to

gravity plus the acceleration the user

impacts to the device

Motionyaw (rad) Angular rotation around an axis that

runs vertically through the device.

Motionroll (rad) Angular rotation around a longitudinal

axis that passes through the the

device from its top to Bottom

Motionpitch (rad) Angular rotation around a lateral axis

that passes through the device from

side to side

Motionrotationratex (rad/s)

Motionrotationratey (rad/s)

Motionrotationratez (rad/s)

Rotation rate along the corresponding

axis

Finally, a real-time validation, which used the the pre-trained
model to predict the simultaneous activity, was conducted. Two
subjects, who have participated in the off-line experiment, were
invited to repeat the experiment in order to test the repeatability
of the model; another three subjects who did not participate in
the offline experiment (males, 24–28 years old) were invited to
perform the actions of working status for 30 min, during which
time they could stop working or drinking water freely.

2.3. Features Extraction
Regarding the offline experiment, the nine-channel signals were
stored in the iPhone during the experiment. Whereafter, signals
were extracted from iPhone as CSV files with time stamps and
used to train the classification model offline. Although the model
can be trained directly in iPhone via Xcode, Python was used in
the training period given the higher flexibility and the abundance
of packages.

The preprocessing is closely related to the construction of the
CNN models. Although the deep ANN is adequate in automatic
feature generation, given the relatively small dataset and the
effectiveness of the engineered feature extraction in reducing the
input dimension and model complexity (19, 20), it is assumed
that noise in a short interval (2 s) is normally distributed so that
the lower order statistics features (mean and standard deviation)
are sufficient in describing the short segment without filtering
and the low order statistics. On the other hand, the mean and
standard deviation have been proved to be informative features
in activity recognition problems (19, 21). Therefore, the mean
and standard deviation of the nine-channel signals were extracted
from the right wrist and used as the input to the models.

During the experiment, it was noticed that the inter-subject
difference in performing the writing, reading, and typing mainly
resides in the pace. Therefore, a time length, which is set as 2
s, that can probably include one bout of the action is desired.
This size of the window yields highest accuracy in human activity
recognition, even though it includes fewer cycles of an action
(18). In this logic, the means and standard deviation of a short
interval (2 s) are the unit input to the CNN models.

Moreover, although it is used by default that the data are
fragmented into short intervals and input into machine learning
model for classification, the automatic segmentation may occur
in the same semantic event (the same action), which would then
worsen both the training and predicting period, especially for a

TABLE 2 | The protocol of the experiment (upper) and the samples number for each class (lower).

Episode 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Locomotion Walking Standing Standing Standing Standing Sitting Sitting Sitting Sitting Lying

Limb movements Neutral Neutral Reading Typing Writing Neutral Reading Typing Writing Neutral

Duration (min) 10 5 3 3 3 5 3 3 3 10

Label W_N St_N Re Ty Wr Si_N Re Ty Wr L_N

Class W_N St_N Re Ty Wr Si_N L_N

#Sample 892 429 541 539 546 444 900

Duration (min) 119 57 72 72 73 60 120
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relatively short 2-s window. In view of this concern, we tried to
mitigate this problem by using a longer time interval of the data
while keeping the basic interval as 2 s. The feature vector of each
basic interval is then arranged into a row and stacked up to a
feature matrixM ∈ ℜm×n, where m represents m × 2 s data and
n represents n features.

In addition to the mean and standard deviation, we assumed
that the cooperativity of the nine channels is informative in
describing the differences between the seven classes. Eventually,
the features of the nine channels can be extracted in the
following way:

• first, the pair-wise Pearson correlation of the nine-channel
signals were calculated, which resulted in a symmetrical 9× 9
matrix Ri, where the superscript represents the ith 2s;

• second, the maximum eigenvector ε
i(∈ ℜ1×9) of the Ri is then

calculated and extracted as the features of cooperativity;
• third, the means µ

i = µ
i
1,µ

i
2, · · · ,µ

i
9 and standard deviations

σ
i = σ

i
1, σ

i
2, · · · , σ

i
9 are calculated for each channel and

concatenated to ε
i to form the feature vector ν

i ∈ ℜ1×27;
• finally, the feature matrix for a longer interval is formed by

stacking the feature vectors row by row to form the matrix M
as the input of the CNN model.

The m and n are the hyperparameters, and the m is set as 8 s, an
interval that includes most of the underlying hand movements.
Regarding the n, the (ε, µ, σ ) combination and the (µ, σ )
combination were tried in the model building stage. The shape
of the input matrix is illustrated in Figure 1.

With regard to the real-time test, the nine-channels signals
were sampled at 50 Hz via the CoreMotion framework and then
were segmented into short episodes of 2-s length for further
features generation by using the vDSP module in the Accelerate
framework. On the other side, the iPhone used the Passive
Response Delegate Mechanism to receive and reorganize the
consecutive four 2-s feature vectors, f ∈ ℜn, into an 8-s feature
matrixM, which were then fed into the pre-trained model.

2.4. Classification Model
The classification model was built with a 2D CNN model with
one to three hidden layers (Figure 2) in light of the finding of
Münzner et al., which shows that a sallow CNN model with
2–3 CNN layers is better than the random forest model (22).
The simplicity of the model also benefits the edge computation
by using the iPhone at one’s disposal, where the computation
latency and the power consumption should be taken into account
seriously. Tominimize the negative influence of the deep learning
model on the general performance of the smartphone, developers
tend to restrict the complexity of the model (23, 24). A simpler
model may also be beneficial to its generalizability and robustness
when being applied to a new dataset. Figure 2 shows the
structure of the CNN model, where the feature matrix M was
provided as input.

As it is shown in Figure 2, in the first CNN layer, we paid
special attention to the kernel size and strides, because we
thought that a double length in unit interval (2 s) will be helpful
in extracting the latent features of each action. This consideration

FIGURE 1 | The features and the shape of model input, i represents the ith 2 s, and a sample of input consists of 8 s. The (ε, µ, σ ) and (µ, σ ) features combinations

are represented by the structure of 27 and 18, respectively.

FIGURE 2 | The structure of the convolutional neural network (CNN) models. The 8-s nine-channel data streams were transformed into a 4× 27 (or 4× 18, not

shown in the figure) 2D matrix to input into the network. There are three variants, where CNN(1) uses the first convolutional layer, CNN(2) uses the first two

convolutional layers, and CNN(3) uses all the three convolutional layers.
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also applied in the tuning of the second CNN layer, where the
whole time length of the input to the second CNN layer was
covered by the filters. The resultant feature map of the second
CNN layer is further abstracted by the third CNN layer, which
combines the features of three channels. Based on this structure,
three variants were tested in the 5-fold and LOO validations,
where CNN(1) corresponds to the model with the first CNN
layer, CNN(2) corresponds to the model with the first two CNN
layers, and CNN(3) corresponds to the model with all the three
CNN layers.

With the development in machine learning, a number of
classification models have been used for HAR, among which
the SVM and random forest were proven to be suitable in this
field (22, 25, 26). To confirm the performance of the CNN
models, the SVM classifier with radial basis function (RBF) kernel
(regularization parameter = 1.5) and the random forest classifier
(number of trees = 200, maximum tree depth = 10), which
are supported by CoreML, have been compared with the CNN
models in the 5-fold and LOO validations.

2.5. Evaluation
Three kinds of evaluations were conducted to examine the
performance of the overall pipeline. First, to examine the
performance of the overall method, 5-fold cross-validation was
used. The overall accuracy, F1 score and theMatthews correlation
coefficient (MCC) is used to evaluate the overall performance
of the model. The MCC metric is essentially a correlation
coefficient, which is more suitable in evaluating the imbalanced
dataset by taking the proportion of each class into consideration.
The definition of MCC for the binary situation is:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

, (1)

and the MCC calculation can be easily extended to the
multiclass situation. Moreover, the results for working status
classification are specifically analyzed with class-wise metrics
(recall, precision).

Second, because a portion of the samples from the same
subject would be used in the training stage in the 5-fold
validation, a validation that can evaluate the influence of the
individual difference on the model is beneficial. Since the
leave-one-out validation, which is more rigorous for the model
generalizability by excluding the whole dataset of a subject from
the training dataset and using it as the test dataset (18), it was
implemented for all the 12 subjects. From this validation, we
expected to determine the best model in terms of generalizability.

Finally, the real-time test, which is described in section
2.2, was finally conducted to validate the reproducibility and
generalizability of the model by installing the best model into the
prototype application. For the two subjects who have participated
in the off-line experiment, a confusion matrix is used to show
the results, whereas for the three subjects who were new to the
experiment, individual compositional bar chart is used to show
the detail of classification results.

3. RESULTS

By using the coreMotion API, the signals of the nine channels
can be extracted at a constant frequency (50 Hz). Although
slight fluctuation can be seen in the sampling interval from time
to time, the fluctuations were all <10 ms. Measurements were
successfully extracted from all the 12 subjects, and by separating
the samples for 8 s, the sample numbers of the seven classes can
be found in Table 2 (lower part).

By plotting the averaged 8-s matrices (Figure 3), the
differences of the seven classes can be visualized. From Figure 3,
the inter-classes difference can be confirmed. Specifically, the
three classes that belong to the working status are similar to
each other, while the walking is a distinct one being different
from the others. Moreover, it can be seen that the St_N is
similar to the Ty, which causes the occasional misclassification
between these two classes in the 5-fold cross-validation and the
leave-one-out validation.

3.1. Results of 5-Fold Cross-Validation
Models that used 27 features (ε, µ, σ ) combination and
18 features (µ, σ ) combination are summarized in Figure 4,
from which it can be confirmed that the model input with
27 features combination with three CNN layers has the best
performance for the working status recognition (recall: 0.965,
precision: 0.967), whose confusion matrix can be seen in the
right matrix of Figure 5, while the counterpart with 18 features
combination (left matrix of Figure 5) has similar results (recall:
0.964, precision: 0.965).

Looking closer into the confusion matrices of the CNN(3)
models with two combination of features (Figure 5), the
fluctuation in the predicting accuracy can be seen. Figure 5 shows
the averaged confusion matrices of the models, from which it can
be confirmed that the three actions of working status (Re, Ty, and
Wr) can be recognized accurately, whereas the St_N is somewhat
difficult to be separated from the L_N, which may be caused by
the similarity in free movements of torso and limbs in these two
actions.Within the three actions of working status, the Tymay be
recognized as St_N occasionally, which seems plausible because
the vibration of the torso while standing may also be reflected by
the sensors on the right wrist.

3.2. Results of Leave-One-Out Validation
Similar to the 5-fold validation, models with two feature
combinations were compared here. The results are summarized
in Figure 6. In this validation, the RF model is the best for the
overall classification, but not for the working status. The model
with two CNN layer inputs with 18 features combination has the
best performance (recall: 0.951, precision: 0.944), while the RF
model has a similar performance (recall: 0.947, precision: 0.926).
Please note that the recall and precision values in this paragraph
are the averaged values for the three working activities.

The effect of different feature combinations is compared
by examining 2-layers CNN model with 18 and 27 features
(Figure 7). The 27-feature model outperforms the counterpart
in identifying the L_N, but is inferior in identifying the Re and
Ty. For both models, the St_N cannot be classified accurately,
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FIGURE 3 | The averaged 8-s matrices for the seven classes. The matrices on the left column corresponds to W_N, St_N, Si_N, L_N, respectively, whereas those on

the right column corresponds to Re, Ty, and Wr, respectively. The horizontal axis corresponds the maximum eigenvector of the correlation matrix, the means,

standard deviation, and the of the nine channels.

FIGURE 4 | Models comparison of 5-fold cross-validation. CNN(1), CNN(2), and CNN(3) correspond to the model with 1, 2, and 3 convolutional layer(s), respectively.

for being misclassified as L_N and Si_N. This inaccuracy is
accountable; given that the subjects are free to move their hands
occasionally, there is no consistent pattern for these three classes.

Figure 8 further shows the distribution of the recall and
precision over the 12 validations. The long-tail distribution can
be seen in the 27-feature model for Re and the 18-feature model
for Ty. However, they are caused by only one case (subject)

with extremely low result, respectively. Therefore, no severe
overfitting is observed.

3.3. Results of Real-Time Validation
According to the results of the offline LOO validations, the
18-feature two-layers CNN model achieved the best results for
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FIGURE 5 | Confusion matrices of the CNN(3) model by using the two combination of features in the 5-fold cross-validation. The correspondence is indicated by the

title of the matrices.

FIGURE 6 | Models comparison of LOO validation. CNN(1), CNN(2), and CNN(3) corresponds to the model with 1, 2, and 3 convolutional layer(s), respectively.

working status recognition. Therefore, it is implemented to
the prototype application in iPhone and tested by real-time
experiments. The averaged confusion matrix of the two subjects
who have participated in the offline experiment is shown in
Figure 9A, whereas the Matrix in Figures 9B–D shows the
compositional bar chart of the three new subjects.

According to Figure 8 , the results of the two subjects who
have participated in the offline experiment are consistent with the
5-fold validation, having a generally accurate classification.

The results for the three new subjects vary mainly in the
recognition of writing, while the reading and typing activities
can be recognized accurately. The writing was recognized as
typing in Figure 9B and as lying in Figure 9C. This variance
may be caused by the unconstrained action of the hand, whereas
the reading and typing require the hand to interplay with the
book and keyboard. Noteworthily, the new subjects were free to
interrupt their activities and perform irrelevant actions, such as
drinking water, which made it more similar to the real working
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FIGURE 7 | Confusion matrices of the CNN(2) model by using the two combination of features in the LOO validation. The correspondence is indicated by the title of

the matrices.

FIGURE 8 | Violin plot for the recall (left) and precision (right) values of the working status. Each violin shows the distribution of the corresponding metric over the

LOO validation, whereas the dots in the middle of each pair of violins show their means.

situation. While the sitting can be recognized, the drinking is
mistakenly classified as reading, probably due to the similarity
in hand movement. Albeit the misclassification of these random
actions irrelevant to the working status, the majorities of the
three working activities have been recognized correctly. A simple
statistical threshold can output a correct judge whether the user
is working or not.

4. DISCUSSION

This proof-of-concept study focuses on the availability of
the overall method of combining wearable sensing and
edge computing based on the iOS ecosystem. Therefore, the
usefulness of the wrist-worn sensors, the selection of the
preprocessing scheme, and the performance of a complexity-
restricted machine-learning model are the three major factors.

First, the performance of the CNNmodel confirms the feasibility
of working status recognition by using the wrist-worn sensors in
the Apple Watch alone, where all the three actions that belong to
the working status can be recognized accurately. Although more
atomic actions, i.e., drinking water, can be added to the model,
judging from the results of the classification, it is plausible to
expect a similar outcome for the working status recognition.

4.1. Pre-processing
The selection of preprocessing can be reflected in the generation
of input vectors. From the comparison of the two combinations,
it can be seen that the cooperativity between channels expressed
by the channel-wise linear correlation is not as important as the
low-order statistical features (the mean and standard deviation).
This piece of insight is beneficial for the edge computing because
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FIGURE 9 | Results of the real-time validation. The confusion matrix of the 2 subjects who have participated in the off-line experiment is shown in (A); whereas (B–D)

show the compositional bar chart of each new subject. The values on top of each bar represent the ratio of correct recognition for each classes.

a major part of computation in the preprocessing is for the
calculation of cooperativity.

4.2. The CNN Model
Consistent with the results of Münzner et al. a shallow neural
network is sufficient in activities recognition, this research attains
the best results for LOO validation with a two-layer CNN
model, a similar result as that of Münzner et al.’s research
(22). By comparing the CNN models with different layers (1–3)
and adding the spontaneous gyroscope signal, further improves
the performance of a classification model in working status
recognition without using the GPS information, whichmay cause
misclassification of the activities that are irrelevant to the working
status (17).

Along with the model explanation by using SHAP values, the
importance of the features and their special patterns for each
class can be inspected closer. Figure 10 plots the SHAP values of
six randomly selected samples of different classes. The subfigures

from the second to the last columns represent the seven classes.
First, for these six samples, the cooperativity features in the first
nine columns of each subfigure have generally small SHAP values
compared with the statistical features, which goes along well
with the comparing results of the two different inputs. Second,
although the samples are of different classes, the patterns are
relatively constant for each class. For example, the subfigures
in the third column correspond to the Re action. Although the
classes of the samples vary, the patterns of the feature importance
(a large absolute SHAP value implies an important feature) are
very similar concentrating on the latter part of the feature vectors.

4.3. Limitations
We have to admit that the experiment setting is not as flexible
as the real scenario, where the continuity of each action cannot
be assured; by further summarizing these atomic actions into
semantic features, a more realistic working pattern could be
recognized using the current hardware setup. Furthermore, as
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FIGURE 10 | SHAP values of six samples of different classes. The subfigures in the first column are the inputs of the samples, and the subfigures from the second to

the last columns represent the seven classes in the order of L_N, Re, Si_N, St_N, Ty, W_N, Wr.

it can be seen in the real-time validation, new subjects may
deteriorate the model accuracy, further extension of the dataset,
and further training of the model with transfer learning could be
considered in future works.

4.4. Prospect
Coming back to the ultimate purpose of this research, the
usefulness and availability of the system are equally important.
This premise drives us to point at the established ecosystem,
where the APIs for data acquisition and modeling are expected
to be further improved. Not only this working status recognition
but detailed behavior pattern modeling for all-day routine and
lifestyle-physiological outcome association can also be expected
in the future research.

5. CONCLUSION

Aiming at providing a timely nudging to mitigate the minus
effect of long-time telework without an additional device, this
research examines the idea of using wrist-worn sensors in a
commercial smartwatch and a smartphone to capture the real-
time signals from sensors and conduct the recognition using a
pre-trained CNNmodel. In this manner, the whole workflow can
be implemented in real time with a ready hardware setup. On
the other hand, by taking the power consumption of smartphone
computing into account, shallow CNN structure with special

consideration on the properties of the signal is validated. By
rearranging the statistical features of an 8 s signal into a feature
matrix and input it into the classification model, the CNNmodel
show accurate performance [5-fold cross-validation: 0.97 recall
and 0.98 precision; leave-one-out validation: 0.95 recall and 0.94
precision (SVM: 0.89 recall and 0.90 precision; random forest:
0.95 recall and 0.93 precision)] for the recognition of working
status. This proof-of-concept study clarifies the prospect of a
user-friendly online working tracking system, which recognizes
the working status with standalone pair of smartphone and
smartwatch and will nudge the user to take a break after a long
working time. It is expected to contribute to the workers’ wellness
not only during the COVID-19 pandemic but also take effect in
the post-COVID-19 era.
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