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Zhi-Bin Niu,1,2,3,* Si-Yuan Jia,1 and Hong-He Xu2,*
SUMMARY

Graptolites, fossils significant for evolutionary studies and shale gas exploration, are traditionally identi-
fied visually by taxonomists due to their intricate morphologies and preservation challenges. Artificial in-
telligence (AI) holds great promise for transforming such meticulous tasks. In this paper, we demonstrate
that graptolites can be identifiedwith taxonomist accuracy using a deep learningmodel. We construct the
most sophisticated and largest professional single organisms image dataset to date, which is composed of
>34,000 images of 113 graptolite species annotated at pixel-level resolution to train the model, develop,
and evaluate deep learning networks to classify graptolites. The model’s performance surpassed taxon-
omists in accuracy, time, and generalization, achieving 86% and 81% accuracy in identifying graptolite
genus and species, respectively. This AI-based method, capable of recognizing minute morphological de-
tails better than taxonomists, can be integrated into web and mobile apps, extending graptolite identifi-
cation beyond research institutes and enhancing shale gas exploration efficiency.

Accurate and efficient species identification of graptolite, an extinct group of globally distributed and rapidly evolved macrofossil,1–5 is indis-

pensable in research on evolution and biostratigraphy and assisting global shale gas exploration.4 There were 102 Ordovician and Silurian

graptolite species selected as biozones for determining global rock age and regional correlation, and contributing to understanding the

evolutionary pattern of ancient life,2 and 16 graptolite species as ‘‘gold calipers’’ to locate shale gas favorable exploration beds (FEBs) in

China4(Figure S2). Graptolite identification has to date been an exclusively human task in paleontology. We developed a computational

approach that decreases paleontologist workloads and enables shale gas specialists to accurately identify graptolite species and find shale

gas FEBs in seconds. By creating a unique dataset of authoritative, taxonomical, and pixel-level annotated graptolite images, we are able to

train the world’s first deep neural-network-based taxonomist-level, macrofossil identification model.

Although, computer-aided fossil identification (CAFI) software was introduced as early as 1980s.6 To our knowledge, no CAFI assistance

tool has been used for practical usage due to the lack of generalization capabilities, primarily caused by insufficient labeled fossil images

followed by limited performance of the shallow machine learning algorithms. During this formative stage, a plethora of methodologies

emerged that amalgamatedmanual feature extraction with shallow learning approaches such as neural networks and support vectormachine

algorithms, among others, gaining significant attention.7–11 Zhang et al.7 utilized image analysis of texture and shape characteristics for the

classification of five taxa of New Zealand pollen types. Despite these developments, fossil identification systems necessitated manual inter-

vention for the precise selection of sample parts for analysis. Ranaweera et al.9 engineered a computer-aided system for foraminifera iden-

tification, tested on a dataset of 244 specimens from five genera. The images of these specimens were normalized for position, rotation, and

scale and categorized based on their similarity in a canonical space. Rodriguez-Damian et al.10 designed an automatic classification system for

three prevalent species from the Urticaceae family. The system utilized Hough transform for pollen position detection, applied ‘‘snakes’’ for

pollen contour extraction, computed the shape and texture features of the pollen, and subsequently classified them. France et al.11 amassed

image sets from three types of pollen slides, and with the aid of artificial neural networks, they devised a system for the classification and

identification of pollen fossils. At this stage, the limited generalizability of machine learning within a narrow category range further impeded

the practical implementation in paleontology.

It was until recent years, the deep learning methodology reformed the prediction framework, showed promising results in medical diag-

noses12–15 andmany other fields,6,10,14,16–25 and illuminated a possibility of industrial-level CAFI. Initially, identification of microfossils, such as

foraminifer,16 pollen grains,17–19 and micro-objects from thin sections,6,20,21 saw a sprout of interdisciplinary trend of paleontology and arti-

ficial intelligence.26,27 Among them, Hsiang et al.16 designed a supervised species-level classifier for a 34-species planktonic foraminifer iden-

tification task using the VGG16 basemodel. Kong et al.18 employed the VGG19model as a foundational network to propose a framework for
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Figure 1. The deep learning approach workflow

(A) The process of creating the dataset. To generate the dataset, we meticulously curated and reviewed graptolite specimens, specifically selecting species with

biostratigraphy and application significance. Each specimen was macro-photographed using a single-lens reflex camera and microscope and then pixel-level

annotated based on the graptolite body’s contours. Following professional revision and cleaning of the annotated images, the entire dataset was then

uploaded and securely stored in our cloud server for future reference.

(B) The process of the supervised deep-neural-network-based automated classification. After thorough evaluation of 12 state-of-the-art deep neural network

models for our dataset (see Figure S4; Table 1), we selected the squeeze-and-excitation network built on Resnet-50,24 and it delivered superior performance.

Our offline trained model can be conveniently deployed on the cloud server, enabling remote classification via a web interface or mobile device. However, it

is important to note that for more precise classification, end-users must annotate the contours of the fossil body.
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fossil pollen grain identification. This framework, which incorporated a spatially aware exemplar-based coding approach, was used for species

classification, specifically distinguishing between 3 types of fossil spruce pollen. Liu et al.21 evaluated and compared the performance of four

deep convolutional neural network architectures on a microfacies image dataset comprised of 22 groups of fossil and abiotic grains. Wang

et al.28 developed a temporal convolutional neural network for a dataset of five distinct species, emphasizing the importance of high accuracy

in brachiopod fossil identification. Pires et al.29 introduced a transfer learning technique for the classification of a dataset comprising eight

distinct fusulinid genera. Liu et al.30 evaluated the results of three typical deep CNN (convolutional neural network) architectures on a

large-scale fossil dataset of more than 50 clades including invertebrates, vertebrates, plants, microfossils, and fossil traces from five hyper-

clades. Hou et al.31 proposed a multi-perspective framework that uses original, gray, and skeleton images of each fossil for training. The final

decision is made via soft voting. This was tested on a dataset of 2,400 fusulinids from 16 genera within 6 families for genus recognition. The

multi-view ensemble framework enhanced performance across various base models.

The existingbodyof thesework is eithermainly conductedon small-scale dataset or focusonmicrofossils,7,16,17,19,32 thus not generalizingwell

to large-scale macrofossils, the more challenging direct evidence of evolution. Microfossils, before photographing, are primarily treated by dis-

solving the impurities and surrounding rocks, so they are relatively intact, isolated, uniform textured, and rarely overlay, and can be massively

photographed cost-effectively using automated slide scanners, providing ample data to feed deep learning models. However, the automated

identification of general macrofossils, e.g., animal bone and plant leaf fossils, is much more challenging. This is because they are often with

incomplete preservation, clutter and occlusion ofmulti-fossil remains, a lack of contracts between the fossil remains and surrounding rocks, color

confusion caused by mineralization, and varying developmental states. Besides, their specimens and images are more difficult to obtain. Thus,

compared with microfossils, obtaining large quantities of high-quality macrofossil images is more difficult and challenging.

This issue is particularly apparent in the study and identification of graptolite species, which has historically relied on human visual inspec-

tions of specimens, rather than more modern techniques involving chemistry, spectrum, molecular biology, genomics, or histology. Grapto-

lite organisms have lost their soft tissues during fossilization andmost are found flattened and carbonized. Paleontology taxonomists identify

graptolite based on examinations using a hand lens in the fieldwork; they also determine accurate species after removing the coverings and

applying diagnostic measurements aided with microscope in the laboratory. The identification requires lengthy specific training based on

mass observations of limited specimens that are mainly housed in academic institutes, and consequently, the number of qualified graptolite

taxonomists cannot meet the massive and urgent demand required for geologic survey and shale gas exploration.3,4 Shale gas companies

have had to deliver the specimens to research institutes for accurate identification, which is a time-consuming and costly procedure.

We fill the gap by creating a unique large dataset of annotatedmacrofossil graptolite images and training a state-of-the-art deep learning

model (Figure 1). The limited automated macrofossil identification has usually required formatted traits6 with landmarks and even manual

measurements; by contrast, our system requires no hand-crafted features, only pixels. We demonstrate generalizable classification ability

with the first macrofossil dataset of 34,620 pixel-level annotated graptolite images. We highlight the development of the deep-learning-

based approach and its ability to outperform graptolite taxonomists in image-based identification in terms of accuracy, time cost, and gener-

alization capability.

Creating a taxonomist-annotated, multi-modal dataset for graptolite fossils

Our dataset comprises a meticulous collection of 1,565 specimen pieces, obtained from 154 representative geological sections distributed

throughout China (Figure 2).4,33 These specimens were carefully curated and belong taxonomically to 113 graptolite species or subspecies of
2 iScience 27, 108549, January 19, 2024



Figure 2. Geological significance and example graptolite images of the dataset

(A) Our dataset includes information regarding the geographic distribution and statistical results of the graptolite specimens. Each locality is denoted by a pie

chart where each color represents a graptolite family of the order Graptoloidea. The size of the pie sector reflects the number of specimens for each family, with

the radius of the pie chart directly proportional to the total number of specimens from the same locality. Notably, main areas of shale gas production are circled

by dashed lines for ease of reference.

(B and C) We present a set of example graptolite images, with each row displaying graptolites of the same genus but different species. Our images illustrate the

high intra-class and low inter-class variance characteristics of graptolites. (C) It is worth noting that these graptolite species span from the Middle Ordovician to

the Wenlock of the Silurian (black line section), representing all shale-gas-yielding beds from southern China (yellow bar).
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41 genera and 16 families of the order Graptoloidea. This comprehensive dataset includes 22 graptolite biozones from theDapingian stage of

the Ordovician to the Homerian stage of the Silurian and 16 00gold calipers" of shale gas FEBs in cases of 20 to 80 m thick graptolite shale in

China, which are frequently used for geological age determination and shale gas FEB indication (Figures 2 and S2). Ground-truth labels for the

supervised training were generated by incorporating revision suggestions from distinguished paleontologists, adding to the taxonomical au-

thority of the dataset.

A total of 40,597 images were captured for every specimen at different focusing angles and scales. Following professional revision, unclear

and questionable taxonomical status images were removed. Every image was annotated at the pixel level according to the contours of the

graptolite’s body (Figure 1A). Ultimately, our deposit contains 37,588 pixel-level annotated images, segregated for training, validation, and

testing (Figure S3). We employ the COCOAnnotator tool34 for pixel-level annotation to produce a binary mask for each image. This mask, in

conjunction with the original image, is subsequently input into themodel. The application of pixel-level annotations serves to augment image

quality and temper background noise to a certain degree, thereby facilitating a more robust feature extraction process.
Deep-neural-network-based automated taxonomical classification

We chose to use deep neural network as the supervised learning classifier for the deep-learning-based automated taxonomical classification.

We conducted experiments and compared the performance of 10 state-of-the-art deep neural network models including CNN-based

ones,24,35–44 the popular ViT,45 and Swin Transformer46 on the graptolite image dataset (Table 1; Figure 3) and selected to use the

squeeze-and-excitation networks35,47 built on Resnet-50 (SE-Resnet50) as the base model for its optimal performance on our dataset. The

SE-Resnet5024 introduces excitation and squeezing mechanisms. The squeeze and excitation block, a computational unit in this framework,

condenses global spatial information into the channel descriptor via a squeezing operation. Conversely, the excitation operation aims to

accurately capture channel dependencies. SE-Resnet utilizes a gating mechanism with a sigmoid activation function, encouraging non-linear

channel interactions and enabling the emphasis of multiple channels.

The architecture also uses a transfer learning manner to train the model (see Figure 1B). The using of pre-trained weights leveraging the

natural image features learned by ImageNet48,49 accelerated convergence, especially in the early stages of training. We then fine-tuned the

parameters across all layers of our dataset. During the training, we used the stochastic gradient descent optimizer, with a momentum of 0.9

and weight decay of 53 10�4. The initial learning rate was set to 0.001 and decreased following a cosine annealing schedule. It slowly reduced

to approximately 2.7 3 10�8 in the last epoch. We used the cross-entropy loss function to calculate the model error. As in Figure 1, the gra-

dients were computed using backpropagation of the error algorithm and the parameters updated using the stochastic gradient descent
iScience 27, 108549, January 19, 2024 3



Table 1. Performance evaluation results

Experiments

Cross-validation results

Gold-standard testValid 1 Valid 2 Valid 3 Average

VGG16_bn39 63.684% 67.690% 68.281% 66.552% 70%

Resnet5035 67.781% 71.872% 71.896% 70.516% 78%

Inceptionv340 67.748% 71.602% 71.965% 70.438% 77%

SE-Resnet5024 67.847% 72.040% 71.726% 70.538% 81%

DFL (vgg16_bn)38 67.519% 69.511% 71.180% 69.403% 75%

NTS (resnet50)41 66.077% 70.152% 69.679% 68.969% 75%

PC (resnet50)44 67.060% 71.096% 70.020% 69.392% 78%

MC-loss (resnet50)42 65.045% 68.916% 68.405% 67.455% 81%

B-CNN (vgg16)36 61.422% 62.226% 61.903% 61.850% 71%

ViT-Base45 65.475% 69.723% 70.985% 68.728% 75%

EfficientNet-b543 67.650% 71.747% 71.518% 70.305% 80%

Swin Transformer46 60.441% 61.245% 63.179% 61.625% 68%

Three-fold cross-validation and test set accuracy using 12 methods. In the 3-fold cross-validation, we have 34,620 images, with the 3-fold training, and validation

image numbers are (31569, 3051), (31655, 2965), and (31688, 2932). We observe the SE-Resnet50 gives the best performance. We also give golden standard test

on the ‘‘testset-99’’ in the table.

ll
OPEN ACCESS

iScience
Article
optimization algorithm. After training each epoch, we fed all test images into the model, performed forward propagation to calculate accu-

racy, and saved the model parameters with the highest accuracy as our final training model.

Cross-validation for evaluating generalizability in genus- and species-level graptolite identification

We first conducted a cross-validation to evaluate the hyperparameters and generalizability. As the number of specimens of each species

ranged from 4 to 20, we chose to use 3-fold cross-validation to evaluate the generalizability performance, so that the cross-validation could

cover all species. The validation image set was carefully chosen so that every specimen-related image was completely removed from the

training set, and thus there was no intersection between the training and validation test sets. The validation set included 15 to 80 randomly

chosen images of each species. In total, there were 34,620 images for training and validation; each iteration had a different number in the

validation set (Table 1). We conducted two cross-validations on different taxonomical levels. On the genus and species levels, the deep-

learning-based approach achieved 81.8% and 70.538% overall accuracy, respectively (Table 2). These results indicate that the deep learning

approach is a feasible means of learning the ultra-fine-grained features of graptolites.

Comparison of the deep learning approach and graptolite taxonomists

The cross-validation results were promising but still inconclusive, as the results depended on a particular random choice for the pairing

of training and validation sample sets. To test the generalization ability of the model and conclusively evaluate our deep learning

approach, we further compared the performances of our model with graptolite taxonomists on a carefully chosen ‘‘golden standard’’

test set.

We chose 100 images of 35 graptolite species to conduct the golden standard test. These species are directly related to dating sediments

and locating shale gas FEBs during themining. They consist of all 22 graptolite biozone species from theMiddleOrdovician to theWenlock of

Silurian and 16 indicator species widely used in shale gas exploration in China (Figure S2). Thirty-five species of the golden standard test set

are from 99 pieces of specimens, which are dubbed as ‘‘collection-99’’ specimen dataset. There are totally 2,968 photographs taken from the

collection-99; 100 images selected into the golden standard test set are well focused and friendly, showingmorphological characters of grap-

tolite for identification. The rest of the images taken from the collection-99, 2,868 images, are removed from the training set. Finally, we use

31,652 images to train the deep-learning-based model.

We have invited 21 graptolite taxonomists to provide a baseline of human performance. All experts are working on graptolite-related ed-

ucation, research, and engineering applications at universities, institutes, or oil/gas companies around the world. They have 5 to 30 years of

fossil (especially graptolite) identification experience. During the golden standard test, experts were asked to identify the graptolite and re-

cord the genus and species names, time cost, and comments. They could view and refer any literatures, even internet searching, freely.

We use identification accuracy, time cost, and micro-average sensitivity-specificity curves (i.e., receiver operating characteristics curves,

ROC) to evaluate the performances of the deep learning approach and human’s classification ability (Figure 3). The ROC is a widely used

method in machine learning to compare the strengths and weaknesses of different models. The x axis is defined as false-positive rate or

1-specificity, and the y axis is defined as true positive rate or sensitivity. The deep learning approach achieves 86% and 81% levels of accuracy

for genus and species identification, respectively, in seconds, whereas those of the graptolite taxonomists are only 59.5% (95% confidence
4 iScience 27, 108549, January 19, 2024



Figure 3. Performances of deep learning approach and experts on gold-standard graptolite classification test

(A) Time cost—genus and species classification accuracy plot. It shows that the deep learning approach (SE-Resnet50) significantly outperforms the experts in

genus and species graptolite classification accuracies and the efficiency. The average accuracy of academic experts is higher than that of industry experts at both

two levels, indicating that the academic experts can make more reliable predictions, but they usually take longer time.
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Figure 3. Continued

(B) Comparison of themicro-average ROC curve of SE-Resnet50 with themicro-average experts at genus level. The average point of SE-Resnet50 is located at the

upper than that of all experts, indicating that the classification performance of themodel is evidently better than that of all experts. The average point of academic

experts is located at the upper right of that of industry experts, which means that academic experts have better classification ability.

(C) The comparison of the micro-average ROC curve of SE-Resnet50 with the micro-average experts at species level. The average point of SE-Resnet50 is located

at the upper right of all experts, which indicates that the classification performance of the model is obviously better than that of all experts. The average point of

academic experts is located at the upper right of that of industry experts, which means that academic experts have better classification ability.
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interval [CI] 52.6%, 66.5%) and 45.2% (95%CI 38.9%, 51.5%), taking on average 4.8 min (95%CI 4.2 min, 5.4 min) (Table 3). For further details, in

genus identification, the academic experts achieve 68.0% (95%CI 60.0%, 73.5%) and industry experts achieve 45.3% (95CI 33.0%, 57.6%);

whereas in species, the numbers are 50.8% (95CI 44.7%, 56.8%) and 35.8% (95CI 21.0%, 50.6%), respectively (Figure 3A).

We also provide micro-average sensitivity-specificity curves to quantitatively measure the classification performances of the deep-

learning-based model and experts (Figures 3B and 3C, STAR methods). In genus identification, the experts achieve on average sensi-

tivities of 43.67% (95%CI 35.7%,51.7%) and specificity of 98.8% (95%CI 98.6%, 98.9%) and in species level, 19.7% (95%CI 11.9%, 27.5%)

and 99.4% (95%CI 99.3%, 99.5%), respectively. The deep learning model has 86% sensitivity and 99.7% specificity (genus level) and 80%

sensitivity and 99.8% specificity (species level). Overall, the deep learning model outperforms the experts in genus 0.89% (95CI 0.68%,

1.1%) specificity and 42.3% (95%CI 34.4%, 50.3%) sensitivity and in species 0.40% (95CI 0.34%, 0.47%) specificity and 60.3% (95%CI

52.5%, 68.1%) sensitivity.

TheAUC (area under the ROC curve) illustrates howmuch themodel is capable of distinguishing between classes. Themicro-average AUC

value is near 1.0 (99.4%), indicating that the deep learning model is generally able to precisely identify the graptolite taxonomy. The human

machine contest suggests that our deep learning approach is significantly superior to academic graptolite taxonomists and industry special-

ists with over 5 years experience; thus, therefore, the relative expensive and time-consuming graptolite identification in the fieldwork would

benefit more from the potential CAFI software.
Interpretation through visualization of the deep learning graptolite classification internals

Weexamined the features learned by the deep neural network through uniformmanifold approximation and projection (UMAP)50 (Figure 4A).

Each thumbnail image in the two-dimensional space represents a graptolite projected from the 100,352 dimensional output of the CNN’s last

hidden layer.51 The proximity in low-dimensional UMAP space reveals nine major graptolite morphotype clusters52 (Figure 4A, line drawings

showing themajormorphotypes of the clusters). In themiddle of themap is the dominant cluster, namely the scandentmorphotype, including

almost all biserial diplograptids. The upper left portion of the map is the V-shaped graptolite morphotype, including all graptolites with

typical U- or V-shaped tubarium. We also found that several outliers on the right part of the embedding had distinctive morphology, such

as graptolite with spiral or helical shapes (Figures 4A; Table 4).

We further utilized gradient-weighted class activation mapping (Grad-CAM)27,53 to visualize and interpret the prediction decisions made

by the deep neural network (Figure 4C). The attention map indicates the diagnostic (semantic) image regions by projecting back the weights

of the output layer on to the convolutional feature maps, localizing class-discriminative regions that influence the deep-learning-based

approach and showing the differences between expert and the deep learning model dealing with graptolite images. The morphology of

proximal end (sicula and one or two thecae, the area in the dashed line box in Figure 4B) is critical to identify graptolite genus and superior

genus taxa, andmeasurements are necessary to identify some graptolite species, especially within the genus.1 Actually, proximal ends are not

either readily preserved in every specimen or fully given in our test set images, to which, as a consequence, identification is impossible to

experts, except graptolite of specialized type, as shown in the third line of Figure 4B. Additionally, the deep learning model recognizes visual

patterns of images as important class-discriminative information better than experts. For example, graptolite with only regular thecae is also

identifiable to the deep learning model but not to experts. The attention map demonstrates that the superhuman performance of the deep

learning approach is able to recognizemorphological nuances of graptolite species without requiringmeasurements, comprehensively incor-

porating ultra-fine-grained details, including ‘‘traits agnostic’’ of graptolite.
Table 2. Evaluation results at genus and species levels

SE-resnet5024 Valid 1 Valid 2 Valid 3

Training image number 31569 31655 31688

Validation image number 3051 2965 2932

Genus accuracy (41) 79.49% 82.43% 84.60%

Genus average accuracy 81.8%

Species accuracy (113) 67.847% 72.040% 71.726%

Species average accuracy 70.538%

Cross-validation for genus and species classification accuracy using SE-resnet50.

6 iScience 27, 108549, January 19, 2024



Table 3. Expert performance on golden standard test set

Genus accuracy Species accuracy Average time cost (min)

Academic experts (14) 66.5% (95%CI 60.5%, 70.8%) 50.4% (95%CI 44.7%, 56.0%) 5.4 (95%CI 4.9, 5.8)

Industry experts (7) 45.29% (95%CI 33.0%, 57.6%) 34.9% (95%CI 22.7%, 47%) 4.1 (95%CI 3.0, 5.2)
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DISCUSSION

Our study effectively demonstrates the powerful application of deep learning in macrofossil graptolite identification. This deep-learning-

based approach opens up new possibilities for species-level graptolite identification, exhibiting a performance level that surpasses that of

taxonomists, sufficient generalization, and interpretable semantics. Graptolite shale forms over 9% of the hydrocarbon rocks globally (Fig-

ure S1) and provides over 61.4% of natural gas for China. This deep learning approach holds the potential to revolutionize macrofossil iden-

tification and, when combinedwith smart mobile devices, can significantly improve the efficiencies of geological surveys and shale gas explo-

ration. Our research paves the way for a transdisciplinary future integrating paleontology, artificial intelligence, and the oil/gas industry.

Although our method is currently constrained by limited data sources in China, we are exploring avenues to overcome this limitation.

At this juncture, certain challenges remain. A primary difficulty lies in the scarcity of certain graptolite species that are especially chal-

lenging to identify, a scenario that extends to many other fossil types within the field of paleontology. However, we believe that these hurdles

can be overcome with strategic improvements in our data collection and model training methods. One promising avenue to explore is the

introduction of multimodal data into our deep learning model training. Information such as geographic location and geological age, which

often show strong correlations with graptolite species differentiation, could significantly enhance themodel’s identification accuracy. In addi-

tion, we are researching ways to expand our data sources beyond China, potentially incorporating a global range of fossil data. This could

greatly enhance the diversity of our dataset, thus improving our model’s ability to generalize and accurately identify a broader spectrum of

graptolite species. Furthermore, future research endeavorsmay focus on integrating the expertise and knowledge of paleontologists into our

deep-learning-based approach. This melding of human expertise with artificial intelligence could lead to an even more robust and reliable

identification system. We are actively working on these improvements and look forward to presenting our progress in the near future.
Figure 4. Visualization of our graptolite image dataset structure and attention map of example graptolite images

(A) UMAP embeddings of the last hidden layer representations of our dataset. Every image is projected to a thumbnail on the two-dimensional scatterplot,

visually revealing at least nine graptolite morphotype clusters (Table 4).

(B) Three example images from the gold-standard test set, clearly showing graptolite thecae (short or long prominence structures, arrowed, T) and proximal ends

(dashed box) of three species, providing good and sufficient morphological information for expert’s classification. No scale bar is given in every image, and it is

impossible to measure fossil remains, such might affect the species classification of some graptolite. The proximal end is now visible in the lowermost graptolite

specimen image, making classification impossible to experts but feasible to the deep learning model.

(C) Three images with highlighted discriminative visual regions generated through CAM.We use a rainbow color map to reweight and render the saliency regions

used for image classification. Red regions correspond to high score for class; the next are yellow and green. The high-score regions of the deep learning model

coincide with critical areas of expert’s classification, e.g., the proximal end, whereas to the graptolite without showing the proximal end, the deep learningmodel

recognizes regular thecae as visual pattern and better identify the graptolite than experts.

iScience 27, 108549, January 19, 2024 7



Table 4. Nine graptolite morphotypes, clustered from our dataset using UMAP

ID Graptolite morphotypes Description

1 V-shaped Graptolite tubarium with typical V or U structure, including species of Didymograptus and

Dicranograptus, some species of Dicellograptus and Jiangxigraptus, and most species of

Appendispinograptus.

2 Thin-shaped Graptolite tubarium with extremely large ratio of length/width, such asNormalograptus angustus and

Coronograptus cyphus.

3 Flat-shaped Graptolite tubarium with much smaller ratio of length/width (relative to the type 2), such as

Cardiograptus amplus, Phyllograptus anna, and Peseudotrigonograptus ensiformis.

4 Spiral-shaped Spiral morphotype, as typical as Spirograptus turriculatus.

5 Multi-ramose-shaped Multiramous graptolites, such as species of Tangyagraptus and Pterograptus.

6 Dorsal-curvature-shaped Graptolites with proximally accentuated dorsal curvature and isolated thecae, including only

Demirastrites.

7 Open-spiral-shaped Graptolites with an open spiral torsion form and isolated thecae, including only Rastrites.

8 Scandent-shaped Scandent morphotype, including almost all biserial diplograptids.

9 Double-helix-shaped Graptolites with spars double helix shape (as ‘‘8’’), such as Jiangxigraptus spirabilis.
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This research signifies an important step forward, but there is still much to be done as we continue to push the boundaries of what is possible

in combining deep learning with paleontological research.

Limitations of the study

The identification process may be impeded by the constraints of limited data sources and incomplete or fragmented samples. Besides, the

scarcity of certain graptolite species presents the problem of category imbalance, which could potentially influence the outcomes. We are

proactively addressing these issues to ensure the robustness and reliability of our methodologies.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Graptolite image dataset Nanjing Institute of Geology and

Palaeontology (NIGP), Chinese Academy of

Sciences (CAS)

https://zenodo.org/record/5205216

Software and algorithms

PyTorch FAIR https://www.pytorch.org/

UMAP Algorithm McInnes et al.49 https://github.com/YaleDHLab/pix-plot

Python version 3.7 Python Software Foundation https://www.python.org

COCO Annotator Lin et al.34 https://github.com/jsbroks/coco-annotator
RESOURCE AVAILABITILY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Zhi-Bin Niu

(zniu@tju.edu.cn).
Material availability

This study did not generate new unique materials.
Data and code availability

� The graptolite images dataset is open accessed at http://fossil-explorer.com/ (https://doi.org/10.1101/2022.06.12.495851), and

https://zenodo.org/record/5205216 which are publicly available as of the date of publication. For early testing evaluation, visit our

model deployed on cloud servers at http://ai.fossil-explorer.com and are publicly available as of the date of publication.
� The COCOannotator code can be downloaded from https://github.com/jsbroks/coco-annotator. This annotation tool comes with ob-

ject labeling and polygon annotation capabilities and provides the annotation data in COCO format. As for UMAP Visualization, one

may access it from https://github.com/YaleDHLab/pix-plot. This tool projects the learned image features of the model onto a 2D

space, making it possible to cluster similar images based on their features. The PyTorch deep learning framework can be accessed

from https://www.pytorch.org/. It is a python-based machine learning library based on Torch, which facilitates powerful GPU-acceler-

ated tensor calculation and deep neural network with automatic derivation.
� Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The research used the PyTorch(PyTorch, RRID:SCR_018536) deep learning framework.
METHOD DETAILS

Dataset

Our graptolite images came from 1,565 pieces of specimens housed at theNanjing Institute of Geology and Palaeontology (NIGP),54 Chinese

Academy of Sciences (CAS). The NIGP is the world’s largest palaeontological research center and one of the top three specimen collection

centers. With approximately 180 palaeontological researchers and laboratory technicians, and collecting over pieces of fossil specimens,53 all

specimens underwent professional curation and photography. Single-lens reflex digital Nikon D800E cameras with Nikkor 60 mmmacro-lens

and Leica M125 and M205C microscopes equipped with Leica cameras were used for capturing the images.

To generate our dataset, we hired 7 data entry clerks and 3 engineers specializing in specimen photography, pixel-level annotation, and

data cleaning. The creation of the dataset took over 2 years, during which we took 40,597 images. This included 20,644 camera photos (each

with a resolution of 4,9123 7,360) and 19,953 microscope photos (each with a resolution of 2,7203 2,048). After thorough examination of all

photos, we removed 5,977 unclear or questionable taxonomical status images, and kept 34,620 valid images for validation, training, and

testing.
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Our dataset underwent a 3-fold validation process, where each iteration used between 2,932 and 3,051 images for validation while the rest

were used for training. We subsequently separated the dataset into a train set comprising 31,652 images and a golden standard test set con-

sisting of 100 images. The golden standard test set, representing specimens photographed using camera andmicroscope, was selected from

99 pieces of specimens.
Data preparation

Our data cleaning was overseen by graptolite palaeontologists from the NIGP at the CAS. During the data cleaning process, we removed

graptolite images that were: 1) incorrect or poorly focused with very low contrast, 2) of poorly preserved specimens and substantially

deformed, 3) incorrectly labeled and impossible to identify, or 4) showing graptolite bodies with confusing textural information that hindered

the ability to see the morphological characteristics. In our study, we maintained a strict segregation between the training, validation, and test

sets, ensuring that no image appeared in more than one set. This stringent approach was adopted to guarantee the integrity and reliability of

our results. By ensuring non-overlap between the datasets, we eliminate any potential bias that could arise from themodel having prior expo-

sure to an image during the training phase, and subsequently encountering the same image in the validation or test set. This approach thus

ensures that our model’s performance evaluation is based exclusively on novel data, thereby enhancing the validity and reliability of our re-

sults. Images that were not in sharp focus or partially corrupted were solely included in the training set. This strategywas employed to improve

the model’s robustness to variations in image quality, without compromising the accuracy of our validation and testing procedures. Our data

entry teamannotated the graptolite bodies at a pixel-level usingCOCOannotator,34 a web-based image annotation tool. All the images were

stored and backed up in our cloud server for future use.
Training procedure and settings

To prepare the training images, we initially processed them through an augmentation and normalization operation. The pixel-level annotated

graptolite images were resized to 4803 480 pixels using interpolation and padded with zero background around each graptolite body. We

kept the graptolite body aspect ratio constant as much as possible. Subsequently, we randomly cropped the images to 448 3 448 pixels, as

this was an empirical trade-off between learning accuracy and information redundancy in fine-grained image classification.34,36–38,47 We also

augmented the images by flipping, rotating, and color jittering operations to enhance the model’s ability to generalize and adapt to various

test images. The images were then normalized with the Z score algorithm on each image channel, accelerating the optimization convergence

speed. We followed a similar procedure for centre-cropping and normalizing test graptolite images.

To conduct the deep learning automated taxonomical classification, we opted to use Convolutional Neural Network (CNN) as the super-

vised learning classifiers.We experimentedwith and compared the performance of twelve state-of-the-art deep learningmodels on the grap-

tolite imagedataset (see Table 1; Figure 3). Ultimately, we selected the squeeze-and-excitation networks35,47 built on Resnet-50 (SE-Resnet50)

for its best performance as a representative deep learning approach. Our SE-Resnet50 architecture involved pre-training the deep neural

network on approximately 1.3 million images from the ImageNet dataset.48,49 The pre-trained model was expected to extract sufficient gen-

eral image information for feature extraction.14,44 In practice, we copied the parameters of the pre-trainedmodel and fine-tuned them based

on our target dataset, obtaining better results than from random initialization. The use of pre-trained weights may accelerate convergence,

particularly in the early stages of training. We subsequently fine-tuned the parameters across all layers using our dataset.

We trained our model for 300 epochs with amini-batch size of 32. In each epoch, we first shuffled all the images in the training set and then

iteratively fed the 32 mini-batch images into the model until all the training images were loaded. The convolutional and pooling layers were

used to obtain a 323 20483 13 1 feature map, which was then flattened to a 323 2048 matrix and mapped to the label space through the

fully connected layer. Lastly, we employed a softmax layer to obtain the probability distributionmatrix of 323 113, which gave the probability

of each image belonging to any of the 113 taxonomies.

For training, we used a stochastic gradient descent optimizer with a momentum of 0.9 and weight decay of 5 3 10�4. The initial learning

rate was set at 0.001 and decreased following a cosine annealing schedule. As such, the learning rate initially reduced slowly, then acceler-

ated, and then slowly reduced again to about 2.73 10�8 in the last epoch. This decay strategy was well-combined with the stochastic gradient

descent algorithm to optimize the objective function. During early stages of training, the learning rate was higher to accelerate the network’s

convergence while gradually reducing it to ensure that the network better converged to the optimal solution.

In general, learning in neural networks involves an optimization procedure. We utilized the cross-entropy loss function to calculate the

model error, which cast the learning problem as a search optimization problem. To compute the gradients, we employed the backpropaga-

tion of the error algorithm and updated the parameters using the stochastic gradient descent optimization algorithm. After training each

epoch, we fed all test images into themodel and performed forward propagation to calculate accuracy.We saved themodel with the highest

accuracy parameters as our final training model.
Sensitivity-specificity curve

In our task, we utilized the sensitivity-specificity curve, which is a probability curve generated by varying threshold settings. It is commonly

referred to as the receiver operating characteristic (ROC) curve. The area under the curve, known as the AUC, represents the degree of sepa-

rability. Since our task constituted a multiclass classification problem, we compared our results based on macro-average and micro-average

sensitivity and specificity.
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Sensitivityi =
true positivei

positivei
Specificityi =
true negativei

negativei
Sensitivitymacro =
Sensitivity1+Sensitivity2+/+Sensitivityk

k

Specificitymacro =
Spectivity1+Spectivity2+/+Spectivityk

k

Sensitivitymicro =
true positive1+true positive2+/+true positivek

positive1+positive2+/positivek
Specificitymicro =
true negative1+true negative2+/+true negativek

negative1+negative2+/negativek

where true positivei is the number of correctly predicted fossils, positivei is the number of the type i fossil shown, true negativei is the number

of correctly predicted fossils i, and negative is the number of fossils of type i shown.When a test set is fed through the deep network, it outputs

a probability, P, of fossil types by image. In macro-averaging, all classes are equally weighted when contributing their portion of the value to

the total, while in micro-averaging, each observation receives equal weight. This gives greater power to the classes with the most observa-

tions. We computed both averaged sensitivity-specificity values by adjusting the threshold of the deep neural network classifier. The sensi-

tivity-specificity curve is a probability curve at various threshold settings and its area under the curve (AUC) represents the degree or measure

of separability.

We chose to use micro-instead of macro-averaging because the former computes the metric for each class independently and then

averages them, whereas the latter treats all classes equally, and thus therefore, micro-averaging is preferable in multi-class classification tasks

with imbalanced classes.
Confusion matrix

In evaluating classification accuracy, we utilized the confusion matrix, which provides a metric for classification evaluation. Each row of the

matrix represents the instances in a predicted class, while each column represents the instances in the actual class (or vice versa). As for

our deep learning approach using the test set, the confusion matrix is provided in the Figures S5 and S6.
Uniform manifold approximation and projection

To validate the feature extraction ability of our deep learning model and visualize the distribution of all images, we employed the uniform

manifold approximation and projection (UMAP) algorithm,50 a dimension reduction and visualization technique. In doing so, we reshaped

the last convolutional block of the deep learning model, generating feature maps (2,048 3 7 3 7) into 1 3 100,352 dimensional features.

We then fed these features into the open-source tool "pix-plot" to build the UMAP layout. The "min_distance" parameter of the embedding

was set to 0.001, and the trade-off between local and global clusters ("n_neighbors") was set to 6.We employed "correlation" as the "metric"

parameter.
QUANTIFICATION AND STATISTICAL ANALYSIS

We only involved statistical analyses in the calculation of recognition accuracy, time cost, and micro-averaged sensitivity-specificity curves

(i.e., receiver operating characteristic curves, ROCs) for evaluating deep learning methods. The identification accuracy in Figure 3 and

Figures S4–S6 is calculated as ‘‘Identification accuracy = number of test samples recognized accurately/number of all test samples’’. For

the sensitivity-specificity curves, we give the definition in the main text of the manuscript, and the definition and calculation method of the

sensitivity-specificity curves are given in detail in the ‘‘method details’’ section.
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