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Abstract

Background: Epithelial-stromal crosstalk plays a critical role in invasive breast cancer pathogenesis; however, little is
known on a systems level about how epithelial-stromal interactions evolve during carcinogenesis.

Results: We develop a framework for building genome-wide epithelial-stromal co-expression networks composed
of pairwise co-expression relationships between mRNA levels of genes expressed in the epithelium and stroma
across a population of patients. We apply this method to laser capture micro-dissection expression profiling datasets
in the setting of breast carcinogenesis. Our analysis shows that epithelial-stromal co-expression networks undergo
extensive rewiring during carcinogenesis, with the emergence of distinct network hubs in normal breast, and estrogen
receptor-positive and estrogen receptor-negative invasive breast cancer, and the emergence of distinct patterns of
functional network enrichment. In contrast to normal breast, the strongest epithelial-stromal co-expression relationships
in invasive breast cancer mostly represent self-loops, in which the same gene is co-expressed in epithelial and stromal
regions. We validate this observation using an independent laser capture micro-dissection dataset and confirm that
self-loop interactions are significantly increased in cancer by performing computational image analysis of epithelial and

epithelial-stromal interactions in cancer.

stromal protein expression using images from the Human Protein Atlas.

Conclusions: Epithelial-stromal co-expression network analysis represents a new approach for systems-level
analyses of spatially localized transcriptomic data. The analysis provides new biological insights into the rewiring of
epithelial-stromal co-expression networks and the emergence of epithelial-stromal co-expression self-loops in
breast cancer. The approach may facilitate the development of new diagnostics and therapeutics targeting

Background

Carcinomas are composed of malignant epithelial cells and
a complex milieu of stromal cells in the tumor microenvir-
onment (including endothelial cells, fibroblasts, myofibro-
blasts, smooth muscle cells, adipocytes, and inflammatory
cells) [1, 2]. Stromal expression patterns and morphologic
phenotypes are correlated with disease outcome [3-12],
and the tumor microenvironment plays essential roles in
supporting the initiation, progression, and metastatic
spread, as well as drug resistance, in cancer [1, 2, 13-25].
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Communication between the epithelium and stroma is
mediated through physical interactions between epithelial
and stromal cells, through physical interactions of epithe-
lial and stromal cells with the intermediating extracellular
matrix, and through the expression of signaling molecules
that are relayed between the epithelium and stroma in
a process known as epithelial-stromal crosstalk [15, 24].
Well-characterized classes of molecules involved in
epithelial-stromal crosstalk include cytokines, adipo-
kines, proteases, angiogenic factors, and growth factors
[13, 16].

Despite an increasing appreciation of the critical role
of epithelial-stromal crosstalk in carcinogenesis, little is
known on a systems level about the evolution of
epithelial-stromal crosstalk network connectivity during
the process of carcinogenesis. The increasing availability
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of tissue region- and cell type-specific tissue sampling
methods [26-30] and the recent development of
methods for spatially resolved transcriptomics [31-34]
and highly multiplexed in situ assessment of protein ex-
pression [35-37] have created new opportunities for
comprehensively characterizing tissue region- and cell
type-specific molecular features of the cancer epithelium
and stroma. Several cell type- or tissue region type-
specific transcriptional profiling studies have been com-
pleted in the setting of breast carcinogenesis [38—43]. In
each of these analyses, the investigators isolated RNA
from stromal and epithelial cell populations [38] or stro-
mal and epithelial tissue regions [39-43] at various
stages of breast carcinogenesis, and subsequently per-
formed statistical analyses to identify genes and bio-
logical pathways within each tissue compartment
associated with breast cancer progression and/or clinical
outcome. A limitation of this differential expression ana-
lytic approach is that it does not allow direct evaluation
of epithelial-stromal co-expression relationships, e.g., in-
creased expression of gene X in the stroma is associated
with decreased expression of gene Y in the epithelium
in breast cancer. A further limitation of differential
expression-based analytic approaches is they do not per-
mit a systems-based analysis of global patterns of net-
work connectivity and rewiring in disease progression.
Network models offer important new opportunities for
identifying prognostic and predictive network features
driving disease [44—46]. For example, a recent network-
based analysis of factors associated with late-onset Alz-
heimer’s disease identified an overlap of only 6 % be-
tween standard differential gene expression-based
signatures and network connectivity-based signatures of
disease progression [47]. We expect that systems-based
approaches will be particularly well-suited to the study
of epithelial-stromal interactions in carcinogenesis, be-
cause the process of epithelial-stromal crosstalk pos-
sesses the core characteristics that fuel the emergence of
complex adaptive systems, defined as systems compris-
ing interdependent, diverse, connected entities, that
adapt to local and global environmental forces [48].
Thus, we developed a computational approach for
evaluating genome-wide epithelial-stromal co-expression
networks from high-dimensional molecular measure-
ments obtained from paired epithelial and stromal sam-
ples. While co-expression networks have been previously
used to identify prognostic pathways [49] and to infer
cellular phenotypes from bulk expression profiling sam-
ples in cancer [50], no prior studies have modeled
epithelial-stromal interactions genome-wide using an
epithelial-stromal co-expression network-based approach.
Here, we apply our method to laser capture microdissec-
tion (LCM)-derived gene expression data obtained
from histologically normal breast, estrogen receptor
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(ER)-positive invasive breast cancer (IBC), and ER-negative
IBC. To construct epithelial-stromal co-expression net-
works, we computed all pairwise co-expression interactions
between epithelial and stromal mRNA levels, generating
an epithelial-stromal co-expression network, where each
node in the network is a gene and each edge represents an
epithelial-stromal co-expression relationship. We then ap-
plied network analytics to identify network hubs, to deter-
mine network functional enrichment, and to assess global
differences in network connectivity in normal breast, ER-
positive IBC, and ER-negative IBC. Lastly, we used an in-
dependent LCM dataset and a large collection of breast
cancer immunohistochemistry images provided by the
Human Protein Atlas [51, 52] to validate predictions made
by the epithelial-stromal co-expression network analyses.

Results

A systems approach to the analysis of epithelial-stromal
co-expression in breast cancer

Our approach has four basic stages (Fig. 1):

i. Data preparation: Obtain tissue region-specific
transcriptional profiling data from epithelial and
stromal tissue compartments from samples at
various stages of carcinogenesis.

il. Co-expression analysis: Perform comprehensive

computation of co-expression relationships between

epithelial and stromal mRNA levels from
patient-matched epithelial and stromal samples.

Network analysis: Perform network analyses to

identify network hubs, differential network features,

and differential functional enrichment between
normal breast, ER-positive IBC, and ER-negative

IBC.

iv. Validation: Validate predicted epithelial-stromal
co-expression relationships by additional approaches,
including independent LCM data and i# situ analyses
of protein expression by immunohistochemistry.

iil.

=

Assembly of an LCM dataset of paired epithelial and
stromal samples in normal breast, ER-negative invasive
breast cancer, and ER-positive invasive breast cancer

We searched the NCBI Gene Expression Omnibus
(GEO) [53] to identify breast cancer LCM datasets. The
search keywords used to identify the studies were “breast
cancer,” “epithelium and stroma,” and “laser capture micro-
dissection.” We identified five datasets containing at least
five epithelial-stromal pairs of LCM samples captured from
histologically normal breast and/or IBC [GEO:GSE4823,
GEO:GSE5847, GEO:GSE10797, GEO:GSE14548, and
GEO:GSE35019]. These datasets come from previously
published studies [39-41, 43, 54]. Together, these data-
sets contain 82 epithelial-stromal pairs from IBC and 41
pairs from histologically normal breast tissue. The five
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Fig. 1 Overview of the epithelial-stromal co-expression network approach. Using laser capture microdissection gene expression profiling data
from paired epithelial and stromal samples from cases of normal breast, ER-negative -IBC, and ER-positive -IBC (top panel), we constructed
genome-wide epithelial-stromal co-expression networks (second panel), performed network visualization and functional enrichment analyses
(third panel), and validated network predictions by several approaches, including measurement of protein expression by computational image
analysis in the epithelium and stroma (bottom panel). In the top and second panels, red indicates epithelial tissue and data (respectively) and

ER-Positive
Breast Cancer
SN Sy o]

LCM datasets were generated by one of four expression
profiling platforms, namely Affymetrix U133A2.0, Affy-
metrix U133X3P, Agilent Whole Human Genome Oligo
Microarray G4112A, and Illumina Whole Genome
DASL. To identify common gene symbols measured
across the four platforms, we used the Array Informa-
tion Library Universe Navigator (AILUN) platform
comparison tool [55]. We restricted our analyses to
gene symbols measured across all four platforms, result-
ing in a total of 11,700 genes. For gene symbols with
multiple probe sets, we selected the probe with the
greatest variance within each dataset. We centered and
scaled gene expression values in each dataset within
each tissue compartment by subtracting out the popula-
tion mean expression and dividing by the population
standard deviation, with the population defined as sam-
ples with the same pathological diagnosis (normal or
IBC) from the same dataset. We stratified the IBC cases
into ER-positive (n = 54) and ER-negative (n = 28)
groups based on the estrogen receptor 1 (ESRI) gene
expression levels in the epithelium, using univariate

Gaussian mixture model-based clustering via the mclust
package in R.

Assessment of batch effect prior to data integration

To assess for the presence of batch effects across data-
sets, we used the procedure recommended by [56]. First,
using the merged dataset we visually inspected the epi-
thelial expression of ESRI in breast cancer (Additional
file 1); the results of unsupervised hierarchical clustering
of samples using all genes (Additional file 2); and a scat-
terplot of samples along the first two principal compo-
nents of the gene expression data (Additional file 3). In
each of these analyses, we did not see a strong associ-
ation of dataset with sample cluster, providing no strong
evidence of overall batch effects. However, these analyses
represent exploratory methods to visualize batch effect
and do not directly address the impact of batch on
epithelial-stromal co-expression relationships. To dir-
ectly and statistically assess the influence of dataset on
epithelial-stromal co-expression relationships in normal
breast, ER-positive IBC, and ER-negative IBC, we again
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followed an analysis strategy suggested by [56]. We se-
lected the two largest datasets from each diagnostic cat-
egory and performed the epithelial-stromal co-expression
analyses separately within each dataset. For each of nor-
mal breast, ER-positive IBC, and ER-negative IBC, we
then assessed the overall agreement in direction of associ-
ations for co-expression relationships identified as signifi-
cant using a raw p-value threshold of 0.001. After
computing agreement with the true dataset labels, we then
shuffled the “dataset” label and repeated this procedure
for 100 iterations and assessed whether the agreement
tended to be significantly higher with the dataset labels
shuffled as compared with the agreement obtained with
the true dataset labels (Additional file 4). This analysis
demonstrated significant evidence of batch effect across
the two normal breast datasets, but no significant batch
effect across the ER-positive and ER-negative IBC datasets
(Additional file 4).

The significant batch effect in the normal datasets
could be due to a variety of different pre-analytic factors,
which may have an especially large impact on studies of
normal breast, including the significant heterogeneity in
the proportions of normal cell types (e.g., epithelial, fat,
stroma, immune) encountered in the normal breast
across a population of patients, and the relative lack of
standardized methods for sampling and handling normal
breast tissue. This latter point is in contrast to IBC spec-
imens, which are much more frequently profiled using
transcriptional profiling approaches. Given the extent of
the batch effect in the normal samples, we chose to ex-
clude the GSE14548 normal samples (n = 14) from the
analysis and to focus our epithelial-stromal co-
expression analysis on the GSE4823 dataset, which was
the largest normal breast dataset (n = 22) and the only
dataset to include technical replicates (as part of a dye-
swap experimental setup). We confirmed strong intra-
replicate correlation for all normal epithelial and stromal
samples from GSE4823 (Additional file 5), which further
supported the quality of this dataset for constructing a
normal breast epithelial-stromal co-expression network.

Genome-wide computation of epithelial-stromal
co-expression relationships in normal breast, ER-negative
invasive breast cancer, and ER-positive invasive breast
cancer

For each gene within each diagnostic class (normal
breast, ER-negative IBC, and ER-positive IBC), we used
simple linear regression to build univariate models linking
gene expression in the stroma with gene expression in the
epithelium. We exhaustively computed all pairwise associ-
ations of epithelial and stromal gene expression in normal
breast, ER-negative IBC, and ER-positive IBC. In total, we
computed 11,700 x 11,700 = 136,890,000 pairwise associa-
tions between epithelial and stromal gene expression in
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each of normal breast, ER-negative IBC, and ER-positive
IBC, resulting in the evaluation of approximately 411 mil-
lion epithelial-stromal co-expression associations. We per-
formed the co-expression analysis and computed false
discovery rates (FDRs) using the matrixEQTL package
[57]. To enable quantitative comparisons of epithelial-
stromal co-expression networks in normal breast, ER-
negative IBC, and ER-positive IBC, we standardized the
number of edges in each network by constructing net-
works from the most significant 10,000 interactions in
each of the three diagnostic categories. Network
visualization and analyses were performed using the
igraph [58], RedeR [59], and SANTA [60] software pack-
ages in R [61].

Epithelial-stromal co-expression network connectivity and
emergence of self-loops

We compared the overall number of network edges with
FDR < 5 % in the normal breast, ER-positive IBC, and
ER-negative IBC epithelial-stromal co-expression networks.
Overall, we identified the highest number of significant
connections in ER-negative IBC, followed by ER-positive
IBC, and then normal breast (Fig. 2a). A much larger pro-
portion of network edges represented epithelial-stromal
“self-loops” in breast cancer, as compared with normal
breast (Fig. 2b), and the most significant network edges in
breast cancer represented epithelial-stromal self-loops in
both ER-positive (Fig. 2c, Table 1) and ER-negative (Fig. 2d,
Table 1) IBC networks.

Epithelial-stromal co-expression network hubs in normal
breast and breast cancer

To identify genes with the most connections in the
epithelial-stromal co-expression networks, we computed
the network degree for each gene in each network. The
ten most highly connected genes in each network are
presented in Table 2 and the network degrees of all
genes in the networks are provided in Additional file 6.
In the normal breast, ER-positive IBC, and ER-negative
IBC networks, the most highly connected genes contrib-
uted to the co-expression networks primarily through
their stromal expression (Table 2) (p < 0.03 in each
network).

In normal breast, the set of most highly connected
genes included genes involved in cell surface receptor
linked signal transduction, including HTR2A, FGF22,
FPR3, GABRAG6, and RPE65; several of these are involved
in neuroactive ligand receptor interaction (HTR2A,
FPR3, GABRAG).

In the ER-positive IBC epithelial-stromal co-expression
network, the most connected gene was brain-derived
neurotrophic factor (BDNF) (Table 2), which is a secreted
growth factor most highly expressed by smooth muscle in
normal tissues [62]. BDNF's contributions to the network
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Fig. 2 Invasive breast cancer is associated with increased self-loops. a Number of significant epithelial-stromal co-expression interactions. The
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in normal breast, ER-negative IBC, and ER-positive IBC. b Proportion of self-loops among significant epithelial-stromal co-expression interactions.
The y-axis indicates the proportion of significant relationships (FDR < 5 %) that are self-loop relationships in normal breast, ER-negative IBC, and
ER-positive IBC. There is a significantly higher proportion of self-loop relationships among statistically significant interactions in IBC as compared
with normal breast (p < 2.2e-16). ¢, d Proportion of self-loops and co-expression interaction significance in ER-positive IBC (c) and ER-negative IBC
(d). The y-axis indicates the proportion of self-loop relationships among epithelial-stromal crosstalk interactions at progressive levels of statistical
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invasive breast cancer; FDR false discovery rate

were predominantly stromal (61/63, 97 % of interactions).
BDNF expression has been shown to significantly impact
breast cancer cell survival [63—65], to be a pro-oncogenic
target of microRNAs in breast cancer [66, 67], and to be
associated with decreased patient survival in breast cancer

[68]. The second most connected gene in ER-positive
IBC was the IFIHI transcript, encoding the melanoma
differentiation-associated protein 5 (MDAS5), and the next
most connected gene was FUT5, encoding the alpha-(1,3)-
fucosyltransferase enzyme. The next five most connected
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Table 1 Top-ranked epithelial-stromal co-expression relationships
in normal breast, ER-negative IBC, and ER-positive IBC

Normal breast

Epithelium Stroma T-Stat p-value FDR
IPCEF1 SPINK1 29.29 6.70e-18 9.17e-10
HSPAT2A PNMA2 21.15 3.71e-15 1.74e-07
ALDOB PNMA2 21.11 3.85e-15 1.74e-07
SULTTET PNMA2 20.80 5.09e-15 1.74e-07
DPT SPINK1 19.98 1.10e-14 2.90e-07
SFTPB PNMA2 19.83 127e-14 2.90e-07
ADAM28 PLCLT 18.80 352e-14 6.88e-07
SCNTITA SYNPO2L 18.10 7.18e-14 1.23e-06
HSPAT2A CFTR 1745 143e-13 2.18e-06
IPCEF1 SLC4AT0 -16.73 3.17e-13 4.34e-06
ER-positive IBC

Epithelium Stroma T-Stat p-value FDR
CEACAMS CEACAMS 1805 4.84e-24 6.65e-16
S100A7 ST00A7 1478 293e-20 2071e-12
FAM5C FAM5C 14.24 142e-19 6.49e-12
BEX1 BEX1 12.70 1.46e-17 501e-10
IFIHT IFIHT 11.00 3.55e-15 9.74e-08
AGT AGT 10.74 8.34e-15 1.91e-07
BAMBI BAMBI 1062 1.26e-14 248e-07
PCDH8 PCDH8 10.29 3.80e-14 6.53e-07
S100A8 S100A8 10.06 842e-14 1.28e-06
ATHL1 ATHLT 9.95 1.25e-13 1.72e-06
ER-negative IBC

Epithelium Stroma T-Stat p-value FDR
ORM1 ORM1 19.29 6.32e-17 8.68e-09
PCP4 PCP4 13.95 1.40e-13 9.62e-06
MMP10 MMP10 13.65 2.29e-13 1.05e-05
DSC3 DSC3 1339 3.53e-13 121e-05
NPY5R CPBI 1246 1.82e-12 4.99e-05
IMPA2 IMPA2 12.10 3.46e-12 791e-05
ASPM SRPK1 12.02 4.07e-12 7.99e-05
LCN2 LCN2 11.83 5.72e-12 9.81e-05
KRT16 KRT16 11.37 1.36e-11 2.08e-04
SH3GL2 SH3GL2 11.31 1.55e-11 2.13e-04

ER estrogen receptor, FDR false discovery rate, IBC invasive breast cancer

genes in ER-positive IBC (KIF20A, UBE2C, FOXMI,
CCNB?2, KIF4A) are all associated with cell division, cell
cycle, and proliferation (Table 2).

In ER-negative IBC, neurotensin (N7S) was the most
connected gene in the epithelial-stromal co-expression
network and contributed to the network primarily through
its stromal expression. The most-connected gene with
epithelial expression was the mitotic checkpoint serine/
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Table 2 Top-ranked genes by epithelial-stromal co-expression
network degree in normal breast, ER-negative IBC, and
ER-positive IBC

Normal breast

Gene Stromal degree  Epithelial degree  Self-loop
1 GABRA6 56 1 No
2 FGF22 63 0 No
3 POU3F1 54 6 No
4 FPR3 58 0 No
5 RPEGS 20 32 No
6 ASPM 51 0 No
7 ARL3 50 0 No
8 HHIPL2 45 0 No
9 HTR2A 12 32 No
10 ABI3BP 43 0 No
ER-positive IBC

Gene Stromal degree  Epithelial degree  Self-loop
1 BDNF 61 2 No
2 IFIHT 37 19 Yes
3 FUTS 35 18 No
4 KIF20A 29 23 Yes
5 UBE2C 26 26 Yes
6 FOXM1 33 16 Yes
7 CCNB2 34 12 No
8 KIF4A 28 11 Yes
9 DSC3 33 5 Yes
10 MGAM 1 35 Yes
ER-negative IBC

Gene Stromal degree  Epithelial degree  Self-loop
1 NTS 79 0 No
2 MYRF (C110rf9) 63 0 No
3 SRPK1 61 0 No
4 DENND5B 46 6 No
5 BUBI 0 48 No
6 EZH2 45 2 Yes
7 DAP3 38 8 Yes
8 GRM1 45 0 No
9 KIF20A 6 37 No
10  DLGAP5 " 32 Yes

The columns indicate each gene’s connections due to stromal expression
(stromal degree), epithelial expression (epithelial degree), and whether it is in
a self-loop in the table’s tissue (normal, ER-positive IBC, or ER-negative IBC). ER
estrogen receptor, IBC invasive breast cancer

threonine-protein kinase BUB1 (Table 2). Stromal expres-
sion of the glutamate receptor, metabotropic 1 (GRM1I)
contributed to 45 epithelial-stromal co-expression interac-
tions in ER-negative IBC, making it one of the top-ranked
genes in this network (Table 2). GRMI has recently been
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identified as a therapeutic target in ER-negative breast
cancer [69]. Our analysis further supports the importance
of GRMI-mediated signaling in ER-negative breast cancer.
The most connected gene involved in a self-loop in ER-
negative IBC was the histone-lysine N-methyltransferase
EZH2, whose co-expression interactions were primarily
due to its stromal expression (Table 2). EZH2 overexpres-
sion has been previously associated with aggressive ER-
negative IBC [70, 71].

Visualization and functional enrichment analyses of
epithelial-stromal co-expression networks

To visualize the epithelial-stromal co-expression net-
works, we used the RedeR [59] package in R. For
visualization, we limited the analysis to genes with a net-
work degree greater than five (Fig. 3). The high-level
network visualizations suggest several broad differences
between the normal breast and IBC networks. First, the
proportion of nodes involved in epithelial-stromal self-
loops (colored pink in Fig. 3) was dramatically increased
in ER-positive IBC (31 % of nodes in the ER-positive
IBC network figure) and ER-negative IBC (22 % of nodes
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in the ER-negative IBC network figure) as compared
with the normal breast (2 % of nodes in the normal
breast network figure) (both p < 2.2e-16). Second, the
proportion of positive edges (colored yellow in Fig. 3)
was increased in the ER-positive IBC (85 %) and ER-
negative IBC (88 %) networks compared with the normal
network (65 %) (both p < 2.2e-16). Additionally, analysis
of the nested sub-networks in ER-positive breast cancer
showed a very high-level of functional enrichment for
several critical biological processes (e.g., type 1 interferon
response and mitotic cell cycle) in network clusters,
demonstrating that unsupervised hierarchical clustering
alone based on the edge-weighted epithelial-stromal co-
expression network adjacency matrix is able to uncover
sets of genes that are highly enriched for protein-
protein interactions and that contribute to important
biological processes in breast cancer (Fig. 3d, e).

To systematically test for network functional enrich-
ment and to directly compare network functional enrich-
ment across the three epithelial-stromal co-expression
networks, we used the Spatial Analysis of Network As-
sociations (SANTA) method, which statistically tests the
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association between a query geneset and a network, enab-
ling the functional annotation of networks [60]. To per-
form the functional enrichment analyses, we used four
collections of genesets: Gene Ontology (GO) Biological
processes (n = 825) [72]; Kyoto Encyclopedia of Genes
and Genome (KEGG) pathways (n = 186) [73], a compen-
dium of breast cancer prognostic signatures (n = 125)
[74], and a collection of cell type-specific signatures that
we compiled for this analysis (n = 42), for a total of 1178
signatures evaluated (Additional files 7 and 8).
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Overall, the functional enrichment significance scores
for ER-negative and ER-positive IBC networks showed
moderate correlation with each other (Spearman Rho =
0.23), but little correlation with the epithelial-stromal
co-expression network functional enrichment scores in
normal breast (Spearman Rho = -0.06 and -0.08 with
ER-positive IBC and ER-negative IBC, respectively), sup-
porting significant functional network rewiring in breast
cancer (Fig. 4). Overall, we identified a total of 20, 40,
and 44 significant genesets in the normal, ER-positive
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IBC, and ER-negative IBC epithelial-stromal co-expression
networks, respectively, at an FDR of 5 %. We identified a
significant positive enrichment for genesets identified in
both ER-positive IBC and ER-negative IBC, with 19 gene-
sets identified in both ER-positive IBC and ER-negative
IBC among the 65 genesets identified as significant in ei-
ther network (odds ratio (OR) = 40.0, p < 2.2e-16). There
was no significant overlap in the pathways identified as sig-
nificant in the ER-positive or ER-negative IBC epithelial-
stromal networks and those identified as significant in the
normal network (both p > 0.50) (Fig. 4).

Normal breast functional geneset enrichment

The most functionally enriched terms in the normal
breast tended to be KEGG terms and GO biological pro-
cesses (Fig. 4, Additional file 7), including the biological
processes metal ion transport, regulation of lymphocyte
activation, alcohol metabolic process, lipid catabolic
process, and neuropeptide signaling pathway; and the
KEGG terms: ribosome and steroid hormone biosynthesis.
With the exception of the KEGG term ribosome (which
was significantly enriched in ER-positive IBC), these
genesets were not enriched in breast cancer.

ER-positive breast cancer functional geneset enrichment
Breast cancer prognostic signatures (which represented
11% of the total genesets analyzed) were highly enriched
among the top pathways in ER-positive IBC, represent-
ing nine of the top ten pathways in ER-positive IBC.
These prognostic pathways included inflammation-
related signatures (Vanvliet 2008 (127 genes); Ascierto
2012 (immune 349 genes); Rody 2009 (interferon); Rody
2009 (199 genes)), a signature associated with histologic
grade and tumor proliferation in ER-positive breast can-
cer (Sotiriou 2006 (GGI)), a signature based on chromo-
somal instability (Carter 2006 (CIN 70)), a signature
associated with TP53 mutation status in ER-positive
breast cancer (Coutant 2011 (ER-positive 39 genes)), and
a signature defined based on an association with progno-
sis in ER-positive breast cancer (ER-positive predictor)
[74]. The top-ranking GO biological process was wun-
folded protein response and the top-ranking KEGG term
was ribosome. These data show that a diverse set of
prognostic genesets, including both immune-associated
genes and proliferation associated genesets, are strongly
enriched in the ER-positive IBC epithelial-stromal co-
expression network.

ER-negative breast cancer functional geneset enrichment

In ER-negative IBC, six of the top ten enriched signa-
tures were breast cancer prognostic signatures, including
chromosomal instability signatures (Carter 2006 (CIN
70); Carter 2006 (CIN 25)), a signature associated with
prognosis in ER-positive breast cancer (Teschendorff
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2006 (t52)), a signature associated with histologic grade
in ER-positive breast cancer (Sotiriou 2006 (GGI)), a
PTEN-associated signature (Saal 2007 (PTEN pathway)),
and genes associated with TP53 mutation status in ER-
negative breast cancer (Coutant 2011 (ER- 30 genes)).
The top-ranking GO biological process was regulation of
GTPase activity and the top-ranking KEGG pathway was
Huntington Disease. In addition, we identified strong
functional enrichment for two embryonic stem cell mod-
ules [75], supporting a link between an embryonic stem cell
expression signature and epithelial-stromal co-expression
in ER-negative IBC.

Comparative functional network enrichment analysis of
epithelial-stromal co-expression networks and epithelial-
epithelial co-expression networks

To directly compare network functional enrichment be-
tween epithelial-epithelial co-expression networks and
epithelial-stromal co-expression networks, we repeated
the SANTA and functional enrichment analyses on
epithelial-epithelial co-expression networks in normal
breast, ER-positive IBC, and ER-negative IBC (Fig. 5).
The overall pattern of functional enrichment scores in
the epithelial-epithelial network was weakly correlated
with the patterns observed in the epithelial-stromal co-
expression networks for correlation between the epithelial-
epithelial and epithelial-stromal functional enrichment
scores in normal breast (Spearman Rho = 0.09), ER-
positive IBC (Spearman Rho = 0.22), and ER-negative IBC
(Spearman Rho = 0.14) Fig. 5). We identifies significantly
more functionally enriched pathways overall in the
epithelial-epithelial co-expression network in ER-positive
IBC (n = 86 with FDR < 5 %) as compared with the
epithelial-stromal co-expression network in ER-positive
IBC (n = 40) (p = 3.8e-5), with no significant differences
in numbers of significant pathways in the epithelial-
epithelial versus the epithelial-stromal networks in ER-
negative (p = 1) or normal breast (p = 0.25). Overall, there
was significant positive association of pathways identified
by the epithelial-epithelial analysis and epithelial-stromal
analysis in ER-positive breast cancer (OR = 49.5, p < 2.2e-16;
Fig. 5), with no significant positive association between
pathways identified in the epithelial-stromal versus
epithelial-epithelial in ER-negative IBC or normal breast
(both p > 0.21).

For the prognostic signatures, there was no significant
difference in the numbers of genesets identified as signifi-
cantly enriched in the ER-positive epithelial-stromal net-
work versus the epithelial-epithelial network (p = 0.62);
however, we did identify significantly more prognostic sig-
natures as enriched in the ER-negative epithelial-stromal
co-expression network (19/125, 15 %), as compared
with the ER-negative epithelial-epithelial co-expression
network (5/125, 4 %) (p = 0.005) (Additional file 9). In
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breast cancer; Neg negative; Norm normal; Pos positive

Fig. 5 Comparative functional network enrichment analysis of the epithelial-stromal versus epithelial-epithelial co-expression networks in normal
breast, ER-positivelBC, and ER-negativelBC. a—c Scatterplots in which each point is a functional geneset plotted according to its statistical
significance in the epithelial-epithelial co-expression network (y-axis) and the epithelial-stromal co-expression network (x-axis) in normal
breast, ER-positive IBC, and ER-negative IBC. Terms are colored as in Fig. 4. A subset of top-ranking genesets is labeled in the plots. d—f Venn
diagrams of genesets identified as significantly enriched (FDR < 5 %) in epithelial-epithelial and/or epithelial-stromal co-expression networks
in normal breast, ER-positive IBC, and ER-negative IBC, respectively. EE epithelial-epithelial; ER estrogen receptor; ES epithelial-stromal; IBC invasive

particular, in ER-negative IBC, there was strong and
specific enrichment for a core embryonic stem cell
module [75] and for a genomic grade signature [76] and
a genomic instability signature [77] in the epithelial-
stromal co-expression network, with no enrichment for
these pathways in the epithelial-epithelial co-expression
network. In ER-positive IBC, the genomic grade index
and chromosomal instability signatures were both sig-
nificantly enriched in both the epithelial-epithelial and
epithelial-stromal networks.

We also identified a subset of pathways that showed
significant enrichment in the epithelial-epithelial net-
works, but not the epithelial-stromal networks (Fig. 5).
Interestingly, a signature initially defined by expression
in a fibroblastic neoplasm (the fibromatosis signature
[4]) was the most highly enriched signature in the
epithelial-epithelial co-expression networks in both ER-
positive and ER-negative IBC and showed no significant
enrichment in the epithelial-stromal co-expression net-
works (Fig. 5). Similarly, the macrophage CSF1-response
signature [5] was highly enriched in the ER-negative IBC
epithelial-epithelial network, but showed no significant
enrichment in the ER-negative IBC epithelial-stromal
network. These data suggest that in IBC, stromal-derived
gene signatures may become activated within the epithelial
compartment of breast cancer, consistent with a process
of epithelial-to-mesenchymal transition.

Epithelial-stromal self-loop co-expression relationships
are increased in breast cancer

We defined an epithelial-stromal self-loop co-expression
relationship to be a gene expression pattern in which a
gene’s epithelial expression level was correlated with the
same gene’s stromal expression level. Based on this def-
inition, the overall background frequency of self-loop re-
lationships was less than 0.01 %. Among statistically
significant co-expression relationships (FDR < 5 %), we
identified a much larger proportion of self-loops in ER-
positive IBC (332/1746, 19.0 %) and ER-negative IBC
(210/2441, 8.6 %) as compared with normal breast (5/965,
0.52 %) (all p < 2.2e-16) (Fig. 2). These data suggest that
the emergence of epithelial-stromal self-loop relationships
is a characteristic feature of the rewiring of epithelial-
stromal co-expression networks that occurs in breast
carcinogenesis.

The most statistically significant epithelial-stromal co-
expression relationships in IBC tended to be self-loop
relationships, with 89 % and 75 % of relationships signifi-
cant at FDR < 0.0001 representing self-loops in ER-
positive and ER-negative IBC, respectively, compared
with only 8 % and 2 % of relationships with an FDR be-
tween 10 % and 1 % (both p-values for trend < 2.2e-16)
(Fig. 2). These data show that epithelial-stromal self-
loop interactions tend to show the largest univariate
significance levels. To further evaluate the role of
epithelial-stromal self-loop nodes in the overall network,
we compared the network degree of self-loop genes to
the network degree of the non-self-loop genes. These
data show that self-loop genes tend to be significantly
more connected in the networks as compared with non-
self-loop genes (all p < 2.2 e-16) (Additional file 10). We
assessed the overlap in self-loop genes identified in ER-
positive IBC and ER-negative IBC, and we identified a
significant positive enrichment (OR = 4.4, p < 2.2e-16),
with 89 genes identified as self-loops in both the ER-
positive and ER-negative IBC networks. There was no
significant overlap between self-loop genes identified in
normal breast and self-loop genes in the ER-positive or
ER-negative IBC networks (both p > 0.19).

Genes with the strongest self-loop relationships in ER-
negative IBC included ORMI1, PCP4, MMPI0, DSC3,
IMPA2, ASPM, LCN2, KRT16, and SH3GL2 (Table 1).
Genes with the strongest self-loop relationships in ER-
positive IBC included CEACAMS, SI100A7, FAMSC,
BEX1, IFIHI1, AGT, BAMBI, PDHS, SI00A8, and ATHLI
(Table 1). The self-loop status of each gene in each of
the three epithelial-stromal co-expression networks is
included in Additional file 6.

Evaluation of epithelial-stromal self-loops with breast
cancer-fibroblast co-culture data

Co-culture of breast cancer cells with fibroblasts is an
in vitro system that has been widely used for studying
the effects of direct physical interactions of breast cancer
cells with fibroblasts [78—80]. To determine an associ-
ation between epithelial-stromal self-loops and changes
in breast cancer epithelial cells and fibroblasts induced
by direct physical interactions, we used a publicly avail-
able list of genes identified by Camp and colleagues [81]
in a gene expression profiling-based study as induced in
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both breast cancer cells and fibroblasts upon breast can-
cer cell-fibroblast co-culture. We observed a significant
overlap between genes predicted to be self-loops by our
epithelial-stromal co-expression analyses (in ER-positive
IBC and/or ER-negative IBC) and genes identified as up-
regulated in breast cancer cell lines following co-culture
with fibroblast cell lines (OR = 2.33, Fisher’s exact p =
0.002), with 19 genes (IFI30, SI00A8, S100A9, FABPS,
SEMAS3F, S100P, TAP1, TGFB3, IMPA2, LCN2, CYP2J2,
OAS2, DUSPI, IFIH1, SERPINA3, SAMDY, DDXS5S, ILIR?2,
ASRGLI) identified by both the epithelial-stromal co-
expression self-loop analysis and the breast cancer-
fibroblast co-culture in vitro study.

Evaluation of an independent LCM dataset in ER-positive
invasive breast cancer

To validate our findings on an independent set of sam-
ples, we obtained epithelial and stromal LCM-derived
gene expression profiling data from a total of 36 cases of
ER-positive IBC from McGill University. We performed
an epithelial-stromal co-expression analysis (as described
above) on this independent dataset. To assess network
concordance between our original ER-positive IBC data-
set and the ER-positive IBC dataset from McGill Univer-
sity, we applied a raw p-value cutoff of 0.001 to identify
significant network edges and then assessed concordance
in the sign of association among edges identified at this
threshold in both datasets. Using this approach, we iden-
tified strong concordance in network predictions, with a
Spearman correlation of network edge t-statistics of 0.44
(p < 2.2e-16) (Additional file 11), with 981 of the 1142
edges identified in both datasets showing concordant
direction (86 %, p < 2.2e-16). In agreement with our
earlier findings, in the McGill University dataset, there
was a strong positive association of the proportion of self-
loop interactions and the statistical significance of network
edges, with an increasing proportion of self-loops among
the most significant network edges (Additional file 12),
and we identified significant concordance in predicted
self-loops in the two datasets, with an eightfold increase in
the proportion of self-loops in the McGill University data-
set among genes predicted by the primary analysis to be
self-loops, as compared with genes not predicted in the
primary analysis to be self-loops (p < 2.2e-16).

Pathological evaluation of epithelial-stromal self-loop
co-expression relationships by immunohistochemistry on
tissue microarrays

To evaluate the epithelial-stromal self-loop relationships
by an additional approach on independent samples, we
identified the 38 proteins predicted by the epithelial-
stromal co-expression network to be involved in statisti-
cally significant epithelial-stromal self-loops (FDR < 5 %)
in both ER-positive and ER-negative IBC and not in
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normal breast. For each of these 38 proteins, we used
the Human Protein Atlas [51] to identify images of nor-
mal breast and breast cancer tissue microarrays (TMAs)
stained for the protein by immunohistochemistry. For
each marker, a pathologist (EYO) separately assessed
the protein’s expression in the epithelium and stroma
(Additional file 13). Out of the 38 proteins, four anti-
bodies were unavailable and one antibody (COL2A1)
was uninterpretable. Thus, immunohistochemistry im-
ages for a total of 33 antibodies were analyzed, including
a total of 72 cores of benign breast tissue (median
of two cores per antibody), and a total of 276 cores of
breast cancer (median of eight cores per antibody). Of
the 33 evaluable antibodies, four antibodies (UGT2B28,
SLPI, SULT4A1,VGLL1) failed to show staining in the
epithelium or stroma from any of the tumor or benign
breast tissue cores. Of the remaining 29 antibodies, 24
(83 %) showed positive staining in both the epithelial
and stromal compartments of the invasive breast carcin-
oma cores compared with only 13 (45 %) showing posi-
tive epithelial and stromal staining in benign breast
tissue (p = 0.006). Of the 24 antibodies that showed
positive epithelial and stromal expression in invasive
breast cancer, 18 (75 %) showed coordinated epithelial
and stromal expression in at least 50 % of the evaluated
cores, and nine (38 %) showed coordinated epithelial
and stromal expression in all evaluated cores (Fig. 6). Of
the 13 proteins that showed positive epithelial and stro-
mal staining in benign breast tissue, six proteins were
expressed in the breast epithelium and stromal endothelial
cells without staining of the stromal spindled (fibroblastic)
cells. This pattern of exclusive stromal endothelial staining
was not observed in the positive epithelial-stromal cancer
cases, in which stromal staining included at least focal
spindle cell staining in each positive case. Taken together,
these results support that the emergence of epithelial-
stromal self-loops represents an important property of the
rewiring of epithelial-stromal co-expression networks that
occurs in carcinogenesis.

Computational evaluation of epithelial-stromal self-loop
co-expression relationships by immunohistochemistry on
tissue microarrays

As an alternative and complementary approach for un-
biased estimation of epithelial-stromal self-loop interac-
tions, an automated image-processing strategy was
designed and applied to a large set of TMA images from
the Human Protein Atlas [51, 52]. Specifically, we evalu-
ated all available proteins for the genes listed in Table 1
for ER-positive IBC, ER-negative IBC, and normal
breast, as well as the top 50 most connected genes (with
the largest degree) from the ER-positive IBC, ER-
negative IBC, and normal breast epithelial stromal net-
works in both the normal and breast cancer samples



Oh et al. Genome Biology (2015) 16:128

Page 13 of 21

A
| Cor=0.76 ..
~MX1
_ | cor=0.86 ’
c ~“q . . . .. . .
s
S .
m .
o
g e, .
S ORM1
< T T T T T
z [ 1 2 3 4
T
® Cor=0.72 L. e
3 . :
£ : :
s .
T R S
- " ! SERPINA1
- TOM1L1

2 - 0 1 2 3 4

Stromal mRNA expression

cancer epithelium; open arrow stromal cells)

Fig. 6 Genes predicted to be involved in epithelial-stromal self-loops show coordinate epithelial and stromal protein expression by immunohistochemistry.
a Scatterplots of MRNA expression of MX1, ORM1, SERPINAT, and TOM1LT in epithelium and stroma of 82 invasive breast carcinomas from LCM-derived
gene expression data. The epithelial and stromal expression of each gene is positively correlated in cancer. b Protein expression of MX1, ORM1,
SERPINAT, and TOMI1LT is concurrently seen in cancer epithelium and stromal spindle cells in images from the Human Protein Atlas. Stronger protein
expression is often seen at the periphery of tumor nests and at the tumor-stroma interface for each protein marker (black bar 100 um, black arrow

from the Human Protein Atlas. Up to six TMA images
were analyzed for each protein in each of normal breast
and breast cancer. We wrote a custom R script to per-
form bulk download of images from the Human Protein
Atlas (Additional file 14). Overall, we evaluated 1147 im-
ages from a common set of 105 proteins in normal
breast (n = 475 images) and breast cancer (n = 672 images)
from the Human Protein Atlas.

Each immunohistochemistry image was processed
using an automated image analysis pipeline to extract
the proportion of pixels stained brown in the epithelium
and stroma (Additional file 15). To achieve this goal, the
image was first divided into superpixels. Superpixels are
locally smooth regions into which an image can be parti-
tioned based on local intensity and edge statistics. Next,
each superpixel was identified as either belonging to
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epithelium or stroma. Superpixels that contained back-
ground and fat were discarded from segmentation based
on a simple intensity threshold. A support vector ma-
chine (SVM) algorithm was used to predict the class
(epithelium or stroma) of each superpixel. Texture fea-
tures were used to train the SVM classifier. Specifically,
the texture features extracted for each superpixel were
correlation, contrast, dissimilarity, homogeneity, and local
binary pattern. The proportion of pixels with brown stain
in the epithelium and the stroma were reported and ana-
lyzed for validation (Additional file 16).

After computing the proportion of epithelial and stro-
mal pixels with protein staining, we classified the epithelial
and stromal stains as positive or negative by performing
univariate Gaussian mixture model-based clustering with
two clusters (“negative” and “positive”) separately for the
epithelial and stromal protein expression scores. A protein
was classified as co-expressed in the epithelium and
stroma if the protein was in the positive cluster in both
the epithelium and stroma. This analysis showed a signifi-
cant increase in self-loops in breast cancer as compared
with normal breast tissue, with epithelial-stromal protein
co-expression in breast cancer for 45 % of proteins pre-
dicted by the network analysis to be self-loops and for 38 %
of proteins not predicted to be self-loops, as compared
with only 10 % of proteins in normal samples (Fig. 7).
Thus, this analysis supports significantly increased
epithelial-stromal protein co-expression in breast
cancer as compared with normal breast (p < 2.2e-16).
There was a trend for increased epithelial-stromal co-
expression for predicted self-loops versus the non-
predicted self-loops within the cancer samples, al-
though this trend did not obtain statistical significance
(45 % vs 38 %, p = 0.13).

Discussion

Over the past two decades, there has been increasing ap-
preciation of the importance of epithelial-stromal interac-
tions in supporting initiation, progression, metastasis, and
drug resistance in solid tumors [15, 17, 19, 24]. However,
little is known on a systems level of how global patterns of
epithelial-stromal interactions evolve during carcinogen-
esis. Thus, we developed a computational approach for
building and analyzing genome-wide epithelial-stromal
co-expression networks using transcriptional profiling
data obtained from matched epithelial and stromal
samples.

Co-expression networks have been widely used in
studies of cancer (e.g., to identify prognostic signatures
[49] and to uncover cellular phenotypes in the tumor
microenvironment from bulk expression profiling data
[50]). Further, the critical role of stromal gene expression
patterns in determining patient prognosis is now well-
established and has been demonstrated in many cancer

Page 14 of 21

types, including breast, colorectal, and lymphoma [7, 9, 12].
However, no prior studies have used co-expression net-
works to directly assess the evolution of coordinated
patterns of epithelial-stromal gene expression genome-
wide in cancer.

Our analysis of genome-wide epithelial-stromal co-
expression networks showed epithelial-stromal co-
expression network self-loops to be highly enriched
among the most significant interactions in IBC, and
we validated by immunohistochemistry that epithelial-
stromal self-loop co-expression relationships are much
more common in IBC than in normal breast tissue.
Our analysis identified significant functional rewiring
of epithelial-stromal co-expression networks in IBC as
compared with normal breast, with the emergence of
network enrichment for prognostic signatures in the IBC
epithelial-stromal networks as compared with the normal
breast epithelial-stromal co-expression network.

Limitations of our study include the fact that our net-
works were based on correlation of mRNA expression
levels. Although a large body of work has supported the
effectiveness of studying networks of co-expression in-
teractions to prioritize functionally related genes and
biological modules [47, 82—84], it is critical to note that
most correlations observed in large scale Omics datasets
do not represent functional interactions but instead rep-
resent indirect, or “passenger,” interactions. Thus, al-
though the analysis of co-expression networks is a useful
approach for uncovering new co-expression relation-
ships and prioritizing hubs most likely to be important
to the network, discriminating truly functionally inter-
acting molecules from indirect correlations will require
future hypothesis-driven mechanistic studies to func-
tionally validate hypotheses generated from this work.
These studies could include a variety of pre-clinical
epithelial-stromal in vitro and in vivo modeling ap-
proaches, including 2D and 3D co-culture systems [85]
and genetically engineered mouse models. These ap-
proaches could be leveraged to determine the biological
mechanisms producing the patterns of epithelial-stromal
co-expression observed in our analyses. These potential
mechanisms include cancer cell to stromal cell physical
interactions; cancer cell and stromal cell interactions
with the extracellular matrix; and cancer cell and stro-
mal cell response to secreted factors, such as cytokines,
adipokines, proteases, angiogenic factors, growth factors
[13, 16], and exosome transfer [86, 87].

Additional limitations of the study include the fact that
the primary analysis was based entirely on LCM-derived
data from the epithelium and stroma. The stroma con-
tains a variety of different cell types, including smooth
muscle cells, fibroblasts, endothelial cells, perictyes, and
adipocytes. In our bulk stromal tissue analyses, stromal
expression values represent a summary of expression
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Fig. 7 Assessment of protein co-expression in the epithelium and stroma by computational image analysis. We performed a large-scale validation
experiment of predicted cancer self-loops by evaluating 1147 images from a common set of 105 proteins in normal breast and breast cancer.

We then performed machine learning-based epithelial-stromal segmentation followed by quantitation of protein expression in the epithelium
and stroma. Red indicates epithelium and green indicates stroma. Pixels whose class was either unknown or which did not belong to either of the
classes are represented in black. After this, pixels containing brown stain in each region were extracted by applying a threshold to the intensity
values in the red, green, and blue channels of the image. Brown pixels belonging to epithelium or stroma were reported and analyzed for
validation. The analysis shows significantly increased epithelial-stromal protein co-expression in breast cancer as compared with normal breast, as
predicted by our network analysis (p < 2.2e-16). There was a trend for increased epithelial-stromal co-expression for predicted self-loops within
the cancer samples, although this did not reach statistical significance (45 % vs 38 %, p = 0.13). non-SL non-self-loop; SL self-loop
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from these heterogeneous cell types and our analyses
were unable to account for differences in stromal cell
type proportions between samples. In principle, future
studies could address these limitations by applying spatially
resolved transcriptome profiling methods to enable the
assessment of stromal expression patterns with single
cell resolution [31-34].

Beyond functional validation of network components
and application of spatially resolved single cell transcrip-
tome measurements, future work can build on our ana-
lysis in several additional directions. The first direction
is to generate epithelial-stromal co-expression networks
from larger sample sizes spanning diverse cancer types.
Recently developed molecular methods for spatially re-
solved transcriptomics [34] and highly multiplexed next-
generation immunohistochemistry [35] may enable the
generation of large, spatially resolved cancer expression
profiling datasets. The generation of these datasets across
diverse clinically annotated cancer samples will enable
the construction of well-powered epithelial-stromal co-
expression networks and permit comparative analyses of
epithelial-stromal crosstalk networks, network functional
enrichment, and network hubs across human cancers.

A second important future direction is to integrate
additional Omics data types (e.g., epigenetic profiling,
copy number profiling, mutation profiling) into the
epithelial-stromal co-expression network analytic frame-
work to enable identification of the genetic and epigenetic
etiology of patterns of epithelial-stromal co-expression
network connectivity. This general approach has proven
to be a powerful method for studying the genetics of gene
expression [88, 89], and we expect integrative analyses
of tissue region-specific genetics and gene expression
will provide important insights into the genetic basis of
epithelial-stromal co-expression networks in cancer.

Third, constructing epithelial-stromal co-expression net-
works from epithelial and stromal samples obtained from
pre-invasive neoplasia (e.g., atypical ductal hyperplasia and
ductal carcinoma in situ) will allow the characterization of
temporal changes in epithelial-stromal co-expression net-
work connectivity during the longitudinal process of car-
cinogenesis. There is strong evidence that stromal changes
precede the development of IBC and several candidate
mediators of this process have been described [14, 90].
However, no prior studies to date have systematically ana-
lyzed the evolution of epithelial-stromal co-expression re-
lationships on a genome-wide scale in early neoplasia.

Ultimately, we hope that the systematic characterization
of epithelial-stromal co-expression relationships will lead
to the identification of drivers of epithelial-stromal cross-
talk and to the development of new epithelial-stromal
network-derived diagnostics and therapeutics, aimed at
monitoring and targeting epithelial-stromal interactions
for early detection, diagnosis, and treatment of cancer.
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Conclusions

We developed an approach for constructing and analyz-
ing epithelial-stromal co-expression networks in normal
breast and breast cancer. Our network analysis identi-
fies a major increase in the number of epithelial-stromal
self-loops in breast cancer samples, and we validated
the co-ordinate epithelial and stromal expression of a
subset of self-loop proteins by analysis of immunohisto-
chemistry data. Our analysis provides new biological in-
sights into the functional rewiring of epithelial-stromal
co-expression networks in breast cancer. The approach
may facilitate the development of new diagnostics and
therapeutics targeting epithelial-stromal interactions in
cancer.

Methods

Datasets

The expression profiling data from pairs of epithelial-
stromal samples in our study were derived from five
published datasets [39-41, 43, 54] available from the
NCBI GEO database [GEO:GSE4823, GEO:GSE5847,
GEO:GSE10797, GEO:GSE14548, and GEO:GSE35019].
The GSE4823 dataset contains 22 matched epithelial
and stromal samples from histologically normal breast
[40], which were profiled using the Agilent Whole Hu-
man Genome Oligo Microarray G4112A platform. The
study included replicate arrays for each sample, which
were averaged prior to inclusion in our study. The
GSE5847 dataset consisted of 34 sets of matched epi-
thelial and stromal samples obtained from non-
inflammatory breast carcinomas (30 ductal and 4 lobu-
lar) and 15 sets of matched epithelial and stromal sam-
ples captured from the inflammatory breast carcinoma
[39], which were profiled using the Affymetrix U133A
2.0 platform. The inflammatory breast carcinoma cases
were excluded from our analysis. The GSE10797 data-
set consisted of 28 sets of matched epithelial and stro-
mal samples from invasive breast carcinomas (25 ductal
and 3 lobular) and five matched epithelial and stromal
samples from histologically normal breast, all profiled
by the Affymetrix U133A2.0 platform [43]. The
GSE14548 dataset consisted of 14 sets of matched epi-
thelial and stromal samples obtained from invasive
ductal carcinoma and profiled on the Affymetrix
U133X3P platform [54]. The GSE35019 dataset con-
sisted of 11 sets of matched epithelial and stromal sam-
ples obtained from invasive ductal carcinoma, all
profiled using the Whole Genome DASL platform [41].
The method for dataset integration is described in the
Results section “Assembly of an LCM dataset of paired
epithelial and stromal samples in normal breast, ER-
negative invasive breast cancer, and ER-positive inva-
sive breast cancer”. The datasets used in the analysis
are provided in Additional file 17.



Oh et al. Genome Biology (2015) 16:128

Computation of epithelial-stromal co-expression interactions
For each of the three datasets, we used the MatrixEQTL
package to compute all pairwise associations of epithelial
and stromal gene expression levels and to estimate FDRs
[57]. The FDR computation with MatrixEQTL accounted
for the full set of hypotheses analyzed, but for computa-
tional speed, FDRs were only reported for interactions
achieving a raw p-value less than 0.001. The full listing of
all interactions that achieved this raw p-value threshold is
provided in Additional file 18. The same approach was ap-
plied for computing the epithelial-epithelial co-expression
interactions, with the exception that the self-interactions
were removed from the epithelial-epithelial networks.

Network analysis

For each of normal breast, ER-positive IBC, and ER-negative
IBC, we selected the 10,000 most significant co-expression
relationships for network analyses. We used the iGraph
package in R [58] to compute each node’s epithelial and
stromal degree in each network. Network visualization
was performed with the RedeR package in R [59]. Func-
tional network enrichment analyses were performed with
the SANTA package in R using default parameters [60].

Processing of validation LCM dataset

The normalization of the validation dataset is described
in [40]. Specifically, microarray data were feature ex-
tracted using Feature Extraction Software (v. 7.11) from
Agilent with the default parameters. Raw data were
uploaded to the NCBI GEO database and are accessible
as data series [GEO:GSE68744]. Outlier features on ar-
rays were flagged by the software. Arrays were required
to have an average raw signal intensity of 1000 in each
channel, and a signal to noise ratio above 16 per chan-
nel. MvA plots were examined for signs of hybridization
or labeling problems. Replicate arrays were required to
have a concordance above 0.944. This level was established
empirically using sets of known good replicate arrays in
our database. Data preprocessing and normalization were
automated using the BIAS system [91]. Raw feature inten-
sities were background corrected using the RMA back-
ground correction algorithm [92, 93]. Resulting expression
estimates were converted to log2-ratios. Within-array
normalization was performed using spatial and intensity-
dependent loess [94]. Median absolute deviation scale
normalization was used to normalize between arrays [95].
The normalized data used in our analyses is provided in
Additional file 19.

Validation of predicted epithelial-stromal self-loops by
manual pathological assessment of immunohistochemistry
images from the Human Protein Atlas

To validate predicted epithelial-stromal self-loop interac-
tions by an orthogonal and in situ approach, we used
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the large collection of protein immunohistochemistry
images from normal and cancer tissue available at the
Human Protein Atlas, which is a publicly available data-
base with millions of high-resolution images showing
the spatial distribution of proteins in 44 different normal
human tissues and 20 different cancer types, including
breast tissue and breast cancer [51]. For each of the 38
genes included in the protein atlas and predicted by our
analysis as contributing to epithelial-stromal self-loops
in both ER-positive IBC and ER-negative IBC at an
FDR < 5 %, we evaluated the gene’s protein expression
in the epithelium and stroma of normal breast tissue
and breast cancer. Information on the antibodies used
and the pathological interpretation of the immunohis-
tochemistry studies is provided in Additional file 13.

Validation of predicted epithelial-stromal self-loops by
computational image analysis assessment of
immunohistochemistry images from the human
protein atlas

Image preparation

We downloaded images from the Human Protein Atlas
using a custom-designed R-script (Additional file 14).
The script searches for information based on a user-
defined query (i.e., gene name) and downloads the cor-
responding images and meta data (e.g., antibody stain,
patients, and disease information) from all four cat-
egories in the Human Protein Atlas: tissue atlas, sub-
cell atlas, cell line atlas, and cancer atlas. The script
was tested and optimized on Windows, Linux, and LSF
cluster machine. As described in the results, we used
the script to download a total of 1147 images from a
common set of 105 proteins in normal breast (n = 475
images) and breast cancer (n = 672 images) from the
Human Protein Atlas.

Image analysis

We wrote an automated image analysis script in Python
to classify each image into epithelial and stromal regions
using a SVM and to compute the proportion of posi-
tively staining pixels in the epithelium and in the stroma.
The image-processing script and the results of the immu-
nohistochemistry quantification are provided as Additional
files 14  and 15, respectively.

Knitr file to reproduce primary analyses

A knitr file (.rnw) and the resulting .pdf file are provided
with the complete R code to reproduce the primary ana-
lyses and figures from the manuscript (Additional file 20).

Data access

The data from this study is provided in Additional files.
In addition, the microarray datasets are available from
GEO under the listed accession numbers [GEO:GSE4823,
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GEO:GSE5847, GEO:GSE10797, GEO:GSE14548, and
GEO:GSE35019]. Raw data from the McGill University
validation dataset were uploaded to the NCBI GEO
database and are accessible as data series [GEO:GSE68744.

Ethical approvals

The McGill University validation dataset was approved
by the McGill University Health Centre Research Ethics
Board (protocols SDR-99-780 and SDR-00-966). All par-
ticipants provided written informed consent, and all use
of human samples was performed in accordance with the
Declaration of Helsinki.

Additional files

Additional file 1: Association of dataset with ESR1 status. The y-axis
indicates the ESRT epithelial mRNA level. Cases of invasive breast cancer
are grouped along the x-axis and colored according to the dataset the
sample is derived from (blue = GSE10797, black = GSE14548,

green = GSE35019, red = GSE5847). The shape of each object in the
plot indicates whether it was classified as ESR1-positive (triangle) or
ESR1-negative (circle). This plot provides no striking evidence of batch
effect effecting ESR1 status, with no significant association between
the ESR1 classification (positive vs negative) and dataset site (P = 0.34).

Additional file 2: Hierarchical clustering relationship with dataset.
We performed unsupervised hierarchical clustering of the normal breast
(top panel), ER-positive IBC samples (middle panel), and ER-negative IBC
samples (bottom panel) from the epithelium (left panels) and the stroma
(right panels). We performed clustering with Euclidean distance and
complete linkage. Each leaf in the dendrogram is labeled with the dataset
the sample came from (normal 5 = GSE10797, 14 = GSE14548, 22 = GSE4823;
IBC 9 = GSE14548, 11 = GSE35019, 28 = GSE10797, 34 = GSE5847).

Additional file 3: Scatterplots of first two principal components
with points colored by dataset. Each plot displays a scatterplot of a
sample along the first two principal components for normal breast (top
panel), ER-positive IBC samples (middle panel), and ER-negative IBC samples
(bottom panel) from the epithelium (left panels) and the stroma (right
panels). The color of each sample indicates the dataset it comes from
(normal red = GSE14548, green = GSE4823, black = GSE10797; IBC

blue = GSE10797, black = GSE14548, green = GSE35019, red = GSE5847).

Additional file 4: Permutation experiment to assess impact of
shuffling dataset on the concordance of co-expression analyses
across sites. Barplots on the left indicate the observed fraction of sign
reversed correlations on the true data (Labels Not Shuffled) as compared
with the median fraction of sign reversed correlations with the Labels
Shuffled, when the epithelial-stromal co-expression analysis was performed
separately on the two largest datasets for normal breast (top panel),
ER-positive IBC (middle panel), and ER-negative IBC (lower panel). The
histograms on the right show the distribution of the sign-reversed
correlations across 100 iterations. The observed sign-reversed correlation
fraction with the true dataset labels is indicated with a red arrow. In normal
breast, there is strong evidence of batch effect, while there is no evidence
of significant batch effect in ER-positive and ER-negative IBC.

Additional file 5: Hierarchical clustering of largest normal breast
dataset shows strong concordance between technical replicates. \We
performed unsupervised hierarchical clustering of the technical replicate
(dye-swap) normal samples from GSE4823. There is strong concordance
for each of the technical replicates, and for each sample technical
replicates show the strongest correlation with each other.

Additional file 6: Epithelial-stromal co-expression network node
degree matrix. This data table presents each gene’s overall degree,
epithelial- and stromal-specific degree, and presence of self-loops in the
normal, ER-positive IBC, and ER-negative IBC networks. The column
Normal Degree indicates the row’s gene’s overall degree in the normal
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breast epithelial stromal cross-talk network. The columns Stroma Normal
Degree and Epi Normal Degree indicate the number of connections derived
from stromal or epithelial expression in the normal network, respectively.
The column Normal Self-loop contains a 1 if the row's gene is involved in a
self-loop interaction in the normal breast network, and a 0 otherwise. The
remaining columns follow the same naming conventions for the ER-positive
IBC and ER-negative IBC epithelial-stromal crosstalk networks.

Additional file 7: Genesets used in the functional geneset
enrichment analyses. This zip directory contains four files,
c2.cp.kegg.v4.0.symbols.gmt, c5.bp.v4.symbols.gmt,
CellTypeSpecificSignatures.txt, and PrognosticSignatures.txt, which
contain genesets for the KEGG biological pathways, GO biological processes,
cell type-specific signatures, and breast cancer prognostic signatures,
respectively.

Additional file 8: SANTA functional network enrichment analysis
results. This file contains the functional network enrichment analysis
results. Each row indicates a geneset, and the columns contain results for
each network connotation Each cell in the matrix is the adjusted p-value
(FDR) for the row's geneset in the column’s network. The genesets derive
from four collections: breast cancer prognostic signatures (BRCA_PROG_SIG)
[74], a collected set of cell type-specific signatures (CELL_TYPE_SPEC), Gene
Ontology biological processes (GO_BP) [72], and KEGG biological pathways
(KEGG) [73].

Additional file 9: Proportion of genesets identified as significantly
enriched in the epithelial-epithelial and epithelial-stromal co-expression
networks according to geneset category. The y-axis indicates the
proportion of overall genesets enriched in the normal, ER-positive IBC,
and ER-negative IBC networks. The red bars indicate the epithelial-epithelial
co-expression network and the blue bars indicate the epithelial-stromal
co-expression network. A-C show the overall genesets, GO biological
process genesets, and breast cancer prognostic signature genesets,
respectively.

Additional file 10: Epithelial-stromal self-loops are significantly
more connected in the epithelial-stromal networks than non-self-
loops. The boxplots display the distribution of node degree for self-loop
genes (SL) and non-self-loop genes (No-SL) in normal breast, ER-positive
IBC, and ER-negative IBC epithelial-stromal co-expression networks. The
median node degree is significantly higher for the self-loops in each of
the three networks (all p < 2.2e-16).

Additional file 11: Scatterplot of epithelial-stromal T-statistics from
the McGill ER-positive IBC LCM dataset and the original meta-ER-
positive IBC dataset. Fach point represents an epithelial-stromal
co-expression relationship, which achieved a raw p < 0.001 in the
epithelial-stromal co-expression analysis. The x-axis indicates the T-statistic in
the ER-positive IBC meta-dataset, and the y-axis indicates the T-statistic on
the McGill ER-positive IBC dataset. The Spearman correlation is 0.44

(p < 2.2e-16).

Additional file 12: Self-loops tend to have more significant edges
in the McGill ER-positive IBC LCM dataset. The y-axis indicates the
proportion of epithelial-stromal self-loops. The groups on the x-axis
indicate significance windows for the epithelial-stromal interactions,
ranging from most significant (~log(fdr) > 5) to the least significant
(—log(fdr) < 3).

Additional file 13: Results from the manual pathology evaluation
of predicted self-loop proteins by immunohistochemistry. Each row
represents an evaluated protein. Column A indicates the protein’s gene
symbol. Column B indicates the Antibody ID from the Human Protein
Atlas. Columns C—E contain information from benign breast tissue, and
columns F-J contain information from invasive breast cancer. N indicates
the number of evaluable cores. The Pos column indicates the number
of positive cores. The positive cases are coded as £, epithelium only;
EE, epithelium and endothelial cells; ES, epithelium and stroma; and S,
stroma only. (CSV 2 kb)

Additional file 14: R-scripts for downloading images from the
Human Protein Atlas. The zip directory contains two r scripts: the
r script hpa.r is used for downloading images from the Human
Protein Atlas and an example use of the script is provided in
hpa_examples.r.
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Additional file 15: Python script for analyzing the HPA
immunohistochemistry images. This zip directory contains two python
files: brown_stain_extraction.py and RGB_SVM.pk1. The image-processing
code and its description are provided in the *py file and the
RGB_SVM.pk1 file contains the model parameters.

Additional file 16: Results of computational image analysis of
epithelial and stromal protein expression in the Human Protein
Atlas. The zip directory contains two files, CancerHPA.csv and
NormalHPA.csv, which contain the results of applying the script to
quantitate protein expression in the epithelium and stroma of cancer and
normal samples, respectively. Each output file contains the following
columns: Stroma.pixels and Epithelium.pixels (indicating the total number
of pixels in the stroma and epithelium, respectively); Brown.Spots.in.Stroma
and Brown.Spots.in.Epithelium (indicating the number of positively stained
pixels in the epithelium and stroma, respectively); and Nucleus.Pixels.in.Stroma
and Nucleus.pixels.in.Epithelium (indicating the number of pixels classified as
nucleus in the stroma and epithelium, respectively).

Additional file 17: The expression data for each sample from GEO
used in our analyses. This zip directory contains ten text files, each
labeled with the dataset’s GEO series identifier, an indicator of whether
the data is from normal (No) or breast cancer (Br), an indicator of
whether the data is from the epithelium (Epi) or stroma (Str), and the
number of samples in the dataset.

Each file is a tab-delimited table containing the epithelial-stromal interactions
that achieved a raw p-value of 1e-3 in the epithelial-stromal co-expression
network indicated by the file's name (Normal, ER-positive IBC, ER-negative
IBC). Each row indicates an epithelial-stromal interaction. The first column

gene expressed in the epithelium, the third column indicates the interaction’s
T-statistic, the fourth column indicates the raw p-value associated with the
T-statistic, and the fifth column indicates the interaction’s FDR.

Additional file 19: Normalized gene expression data from paired
epithelial and stromal samples in the McGill University validation

eset_erp_finak_ex.txt, which contain the gene annotation and gene
expression data, respectively. The gene expression matrix contains
normalized expression values, with tumor epithelial (TE) data for 36
patients in the first 36 data columns, and tumor stromal (75) data for the
same 36 patients in the remaining 36 columns.

Additional file 20: Knitr script for performing statistical analyses in
R (analysis.knit.zip). This zip directory contains two files, analysis.rnw
and analysis.pdf, for running the main statistical analyses from the paper
in R (analysis.rnw) and for producing a file containing both the code and
the results and figures from the analyses (analysis.pdf).
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