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Abstract
The large family of costimulatory molecules plays a crucial 
role in regulation of the immune response. These molecules 
modulate TCR signalling via phosphorylation cascades. 
Some of the coinhibitory members of this family, such as 
PD-1 and CTLA-4, already constitute approved targets in 
cancer therapy and, since 2011, have opened a new area 
of antitumour immunotherapy. Many antibodies targeting 
other inhibitory receptors (Tim-3, VISTA, Lag-3 and so on) 
or activating costimulatory molecules (OX40, GITR and so 
on) are under evaluation. These antibodies have multiple 
mechanisms of action. At the cellular level, these antibodies 
restore the activation signalling pathway and reprogram T 
cell metabolism. Tumour cells become resistant to apoptosis 
when an intracellular PD-L1 signalling is blocked. CD8+ T 
cells are considered to be the main effectors of the blockade 
of inhibitory receptors. Certain CD8+ T cell subsets, such as 
non-hyperexhausted (CD28+, T-bethigh, PD-1int), follicular-like 
(CXCR-5+) or resident memory CD8+ T cells, are more prone 
to be reactivated by anti-PD-1/PD-L1 monoclonal antibody 
(mAb). In the future, the challenge will be to rationally 
combine drugs able to make the tumour microenvironment 
more permissive to immunotherapy in order to potentiate its 
clinical activity.

The clinical benefit observed in patients with 
cancer after blockade of inhibitory receptors 
and their ligands is the fruit of a long history 
beginning with basic research concerning the 
rules of activation of T lymphocytes, followed 
by characterisation of the phenotype of these 
cells in chronic infections and in the tumour 
microenvironment.

A brief review of the basic knowledge about 
activation and regulation of T lymphocytes 
and the mechanisms leading to their dysfunc-
tionality could help to elucidate and optimise 
these treatments.

How to activate T cells: the two-signal 
hypothesis
T cell activation depends on the interaction 
between the T cell receptor (TCR) and a 
peptide, presented by antigen-presenting 
cells (APCs) such as dendritic cells via major 

histocompatibility complex (MHC) class I or 
II molecules in case of CD8 or CD4 T cells, 
respectively. However, T cell activation also 
requires an appropriate cytokine environ-
ment and a ‘second signal’ in order to be 
effective.

In naive T cells, the interaction between the 
TCR and its MHC–peptide complex alone 
without a second signal results in an anergic 
state. Only memory T cells can be activated 
by simple recognition of a MHC–peptide 
complex.1

Although originally proposed in 1970 by 
Bretcher and Cohn, Schwartz et al were the 
first to validate the hypothesis of a two-signal 
model allowing T cell activation2: interaction 
between the TCR and its antigen, followed 
by interaction between a T cell costimulatory 
receptor and its ligand on the APC. The first 
costimulatory receptor, CD28, a member of 
the immunoglobulin superfamily, was discov-
ered shortly thereafter.3 It is constitutively 
expressed on the membrane of naive T cells 
and two ligands have been identified: CD80 
(B7-1) and CD86 (B7-2), both expressed by 
APC. TCR/CD28 engagement results in activa-
tion of several intracellular signalling pathways 
leading to increased production of cytokines 
such as interleukin (IL)-2, further supporting 
T cell activation.

Other positive costimulatory receptors 
(CD40, OX40, CD137  and so on) are also 
upregulated on T cells during activation 
allowing fine tuning of their differentiation 
into memory T cells and cytokine polarisa-
tion.

Upregulation of coinhibitory 
receptors also occurs during T cell 
activation
During T cell activation, inhibitory receptors 
such as CTLA-4, PD-1, Lag-3, Tim-3, Tigit and 
Vista are also induced to limit overstimulation 
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of the immune system after antigen encounter, resulting 
in return to a resting state.

CTLA-4 (cytotoxic T lymphocyte associated protein 4), 
like CD28, is a member of the immunoglobulin super-
family.4 The CTLA-4 locus is very close to the CD28 
locus, and they have very similar protein sequences. 
CTLA-4 is induced on Foxp3neg CD4+T and CD8+T cells 
after early activation, while it is constitutively expressed 
on regulatory T cells (Treg). Nuclear factor of activated 
T cells  (NFAT) and Foxp3 regulate the expression of 
CTLA-4.5 6 CTLA-4 binds with higher avidity to the same 
ligands (CD80 and CD86) as CD28, leading to competi-
tive binding between the costimulatory and coinhibitory 
receptors. CTLA-4 engagement inhibits T cell prolifera-
tion and IL-2 production. CTLA-4 is believed to act at the 
priming phase in lymph nodes, as their ligands (CD80 
and CD86) are mainly expressed on APCs.

PD-1 (programmed cell  death ligand 1 or CD279) is 
also a member of the immunoglobulin superfamily. It is 
more widely expressed than CTLA-4 and can be detected 
on activated T cells, B cells and natural killer (NK) cells, 
and over a longer time frame than CTLA-4 (6–12 hours 
for PD-1 compared with 1 hour for CTLA-4).7 PD-1 binds 
programmed death ligand 1 and 2, while PD-L1 also 
interacts with CD80 and PD-L2 interacts with RGMb 
(repulsive guidance molecule B).8 PD-L1 is expressed 
by tumour cells and immune cells, while PD-L2 is only 
expressed on dendritic cells in normal tissue. All these 
interactions transmit an inhibitory signal. After binding, 
PD-1 becomes clustered with T cell receptors (TCRs) and 
recruits phosphatase SHP2 (Src homology 2 domain-con-
taining tyrosine phosphatase 2) via its immunoreceptor 
tyrosine-based switch motif, which induces dephosphor-
ylation of the proximal TCR signalling molecules and 
suppression of T cell activation.9 The results of a recent 
study challenge this dogma by showing that CD28 is the 
most sensitive target for dephosphorylation by the PD-1–
Shp2 complex.10

CTLA-4 and PD-1 can both participate in T cell dysfunc-
tion, but they do not have exactly the same impact on 
immune system homeostasis, as demonstrated in murine 
models.

CTLA-4 deficiency is lethal for mice, with early onset of 
aggressive lymphoproliferative disorders and multiorgan 
infiltration by polyclonal T cells.11 PD-1 deficiency induces 
more indolent autoimmune diseases such as rheumatoid 
arthritis, glomerulonephritis or dilated cardiomyopathy 
and is compatible with survival in mice.12 13

These findings are consistent with clinical observations 
of patients receiving anti-CTLA-4 or anti-PD-1 therapy, as 
immune adverse events are more common and often of 
higher grade with ipilimumab, an anti-CTLA4 antibody, 
than with anti-PD1 therapies.14

Three other coinhibitory receptors (Tim-3, Lag-3 and 
Vista) are currently under clinical investigation as poten-
tial therapeutic targets, either alone or in combination 
with anti-PD-1 antibodies (anti-Tim-3: NCT02817633; 
anti-Lag-3: NCT02488759, NCT02060188, NCT02061761, 

NCT01968109, NCT02658981, NCT02966548, 
NCT03005782; anti-Vista: NCT02812875, NCT02671955).

►► Tim-3 (T cell immunoglobulin and mucin 3) is 
expressed by activated T cells, NK cells and monocytes. 
A majority of tumour-infiltrating lymphocytes (TILs) 
coexpresses PD-1 and Tim-3, and this coexpression 
seems to block their functionality.15 16 Tim-3 binds to 
Galectin-9, CEACAM1 (carcinoembryonic antigen-
related cell adhesion molecule 1), HMBG1 (high-
mobility group box 1) and phosphatidyl serine.

In the absence of ligand binding, Bat3 is bound to the 
cytoplasmic tail of Tim-3 and prevents inhibition of T cell 
signalling via recruitment of Lck.17 Binding of Tim-3 to 
its ligands leads to phosphorylation of its cytoplasmic tail, 
release of Bat3 and possible recruitment of Fyn, which 
can induce T cell anergy.18

Some Tim-3 ligands (galectin-9  and HMBG1) are 
induced in inflammatory conditions, while Tim-3 expres-
sion is driven by Interferon (IFN)β and IL-27, suggesting 
a role of Tim-3 in inflammatory conditions.19 20

►► LAG-3 (lymphocyte-activation gene-3) is found on 
activated T cells, B cells, NK cells and plasmacytoid 
dendritic cells. Its known ligand is CMH II, and the 
main hypothesis regarding its mechanism of action 
consists of competitive inhibition of the interaction 
between the antigen and CD4+T cell TCR. Recently, 
two other ligands of LAG-3 have been identified. 
LSECtin expressed by melanomas suppressed 
tumour-specific T cell response21 and Galectin-3 
expressed by CD8+ T cells may inhibit antitumour T 
cell response via cis and trans interactions with LAG-
3.22 LAG-3 also seems to have specific actions on 
CD8+ T cells and is also frequently coexpressed with 
PD-1 on TILs.7 LAG-3-deficient mice are normal 
under steady-state conditions but show uncontrolled 
expansion of T cells when challenged with antigen 
or staphylococcal enterotoxin B.23

►► VISTA: programmed death-1 homologue (PD-
1H, also called VISTA) is a member of the CD28 
family of proteins and has been shown to act as 
a coinhibitory ligand on APCs that suppress T 
cell responses (proliferation and production of 
cytokines) and induce Foxp3 expression.24 VISTA 
is predominantly expressed in the haematopoietic 
compartment with the highest expression observed 
in the myeloid lineage. The VISTA receptor on T 
cells has not yet been identified. Anti-VISTA therapy 
accentuates the development of the T cell-mediated 
autoimmune disease, experimental autoimmune 
encephalomyelitis, in mice.25

The exhaustion phenomenon
Chronic diseases are associated with chronic antigen 
exposure and inflammation and persistent T cell acti-
vation. During this persistent antigen stimulation, the 
effector function of CD8+  T cells gradually decreases, 
a phenomenon known as exhaustion. The process of 



Open Access

3Granier C, et al. ESMO Open 2017;2:e000213. doi:10.1136/esmoopen-2017-000213 Granier C, et al. ESMO Open 2017;2:e000213. doi:10.1136/esmoopen-2017-000213

T cell differentiation into effector and memory T cells 
is altered and switches towards a particular state called 
exhaustion. CD8+  T cells lose their IL-2 secretion and 
proliferative capacities, cytotoxic function and finally can 
no longer secrete IFN-γ or degranulate.26 Exhausted T 
cells express various inhibitory receptors (PD-1, CTLA-4, 
Tim-3, TIGIT and LAG-3) and their pattern of expression 
(frequency and level) correlates with different levels of 
exhaustion. The coexpression of many of these receptors 
on a single type of T cell increases their dysfunctional 
state.

The frequency and level of expression of PD-1 and 
other inhibitory receptors have been shown to be higher 
in intratumoural T lymphocytes than in normal tissue or 
peripheral blood, especially on the membrane of anti-tu-
mour T lymphocytes.27

Exhausted T cells showed defective mitochondrial 
function and restoration of this function by mitochon-
dria-targeted antioxidants improved T cell function.28 
The concept of T  cell dysfunction and exhaustion was 
first described in the setting of chronic viral infection 
by the groups of RM Zinkernagel29 and R Ahmed.30 31 
The first molecular description of exhaustion in human 
cancer was reported by Rosenberg and H Zarour in mela-
noma patients27 32 and by Ochsenbein AF in patients 
with chronic myeloid leukaemia.33 In preclinical models, 
various groups have demonstrated the clinical value of 
targeting these inhibitory receptors in chronic viral infec-
tions34 and cancer.35–37

Several factors promoting T cell exhaustion have been 
described. The level and duration of exposure to antigen 
(>2 weeks and chronic rather than acute exposure) and 
the absence of CD4 helper T cells are key events that 
induce abnormal accumulation of inhibitory receptors.38

TCR-dependent pathways, especially NFAT transcrip-
tion factor, play a key role in the exhausted phenotype. 
NFAT has been shown to promote T cell anergy and 
exhaustion by binding to sites that do not require coopera-
tion with AP-1.39 Genes directly induced by an engineered 
NFAT1 unable to interact with AP-1 transcription factors 
overlapped with genes expressed in exhausted CD8+  T 
cells in vivo.39 Cytokine production is severely impaired 
because of a selective defect in activation-induced NFAT 
nuclear translocation.40

Exhaustion-specific accessible regions were enriched 
for consensus binding sites for NFAT and Nr4a family 
members, indicating that chronic stimulation confers a 
unique accessibility profile on exhausted cells.41

Although exhausted T cells are characterised by a 
high level of PD-1 expression and coexpression of inhib-
itory receptors, all these biomarkers could be transiently 
expressed after activation. A recent study based on single-
cell resolution of TILs reported that distinct gene modules 
for T cell dysfunction and activation can be uncoupled 
and that these modules at a single levels are exclusive. 
These authors showed that loss of function involved 
metallothioneins that upregulate zinc metabolism. In a 
preclinical model, they could also identify GATA biding 

protein 3  (GATA-3) as a driver of dysfunctionality.42 A 
gene profile of exhaustion can therefore be distinguished 
from the very similar gene activation programme.

Mechanisms of action of antagonists of inhibitory 
receptors

Inhibition of the interaction between inhibitory receptors and 
their ligands reinvigorates intratumour CD8+ T cells
As expected, due to their role in reversal of inhibition of 
tumour immunity, administration of anti-CTLA-4 or anti-
PD-1/PD-L1 antibodies leads to activation of the immune 
system (figure 1).

An increased level of circulating IFN-γ and IFN-γ-in-
duced chemokines (CXCL-9 and CXCL-10) was observed 
in the serum of patients treated by both anti-PD-1 and 
anti-PD-L1.43 44 T  cells with an activated phenotype 
were also induced after administration of checkpoint 
inhibitors. For instance, many studies have reported an 
increase of IFN-γ-producing CD4+ICOS+ T cells in both 
peripheral blood and tumour tissue after treatment with 
ipilimumab alone or in combination with nivolumab.45–47 
Activation markers such as Ki67 and HLA-DR were also 
increased on T cells in patients treated by anti-PD-L1 or 
anti-PD-1.43 48 An influx of CD8+  T  cells in the tumour 
microenvironment has also been reported after anti-
CTLA-4 or nivolumab administration in melanoma and 
renal cell carcinoma.44 49 50 Preliminary studies have also 
reported that CTLA-4 blockade confers lymphocyte resis-
tance to Treg in advanced melanoma.51 Ipilimumab also 
increased TCR diversity, as reflected by the number of 
unique TCR clonotypes, and the vast majority of changes 
occurred in the memory T  cell pool.52 An increase of 
T  cell reactivity against tumour antigens has also been 
reported after ipilimumab therapy.53

Depending on the couple of inhibitory receptors and 
their ligands, blockade of this interaction could alle-
viate an inhibitory signal on CD8+ T cells, but for other 
inhibitory receptors such as CTLA-4 and TIGIT, which 
compete with activating receptors (CD28  and CD226), 
blockade would also promote the positive costimulatory 
pathway.54–56 Moreover, CTLA-4 downregulates CD86 and 
CD80 expression on APCs by transcytosis and CTLA-4 
blockade would inhibit this phenomenon.57

Antagonists of inhibitory receptors lead to T cell metabolic 
reprogramming
Nutrient competition between cells influences tumour 
cell growth, survival and function. T cell fitness and func-
tion are directly linked to metabolic activity. Activated T 
cells consume large quantities of glucose, amino acids 
and fatty acids.

Tumour cells and immune cells compete for the glucose 
present in the tumour microenvironment. Tumour 
cells have a very high glucose uptake capacity. Aerobic 
glycolysis, which is regulated by the bifunctional enzyme 
glyceraldehyde-3-phosphate dehydrogenase  (GAPDH), 
is required for T cells to attain full effector status.58 
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When glucose is present, GAPDH engages in its enzy-
matic function, but when cells are glucose  restricted, 
GAPDH becomes available to bind the 3′UTR of IFN-γ 
messenger  RNA, preventing its efficient translation. 
Glucose deprivation or inhibition of glycolysis by 2-deoxy-
D-glucose inhibits IFN-γ production and mammalian 
target of rapamycin (mTOR) activity.59 60 Various molec-
ular mechanisms can explain the glucose dependence 
of T cells. Phosphoenolpyruvate (PEP) is a glycolytic 
metabolite that plays a role in intracytoplasmic calcium 
mobilisation, essential for T cell activation after TCR 
engagement. More specifically, PEP promotes TCR-me-
diated Ca2+-NFAT signalling and effector functions 
by repressing sarco/ER Ca2+-ATPase activity.61  Glycol-
ysis deprivation dampens the level of PEP, resulting in 
decreased levels of intracellular calcium. The down-
stream effect is a lack of activation of CD4+ TILs. EZH2 is 
an histone-lysine N-methyltransferase, which plays a role 
in DNA methylation and transcriptional repression. It 
binds directly to the promoter areas of Notch repressors, 
NUMB and FBXW7, and represses their transcription via 
H3K27me3, and subsequently causes Notch activation, 
resulting in antiapoptotic gene activation and effector 
cytokine expression on T cells. EZH2+ T cells mediate 
potent antitumour immunity in human cancers and are 
associated with long-term survival. Tumours have been 

shown to impair T cell EZH2 expression via glucose 
restriction.62

Lastly, PD-L1 signalling regulates the Akt/mTOR 
pathway, which results in decreased translation of glyco-
lytic enzymes and dampened glycolysis.60

Chang et al showed that anti-CTLA-4 and anti-PD-1 
blockade therapy corrects the tumour-induced glucose 
restriction experienced by TILs and restores their 
glycolytic capacity and hence their effector function in 
experimental models.60

Other metabolic checkpoints (tryptophan, arginine, 
ATP and so on) are involved in T cell fitness and are 
lacking in the tumour microenvironment. However, the 
direct impact of antagonists of inhibitory receptors on 
these metabolites has not been demonstrated.

Blockade of intrinsic tumour signalling mediated by PD-L1
PD-L1 has mainly been studied as a checkpoint ligand, 
which delivers a negative signal to T cells leading to 
dysfunction and ultimately apoptosis. Previous studies 
have demonstrated intrinsic reverse signalling after 
PD-L1 binding to PD-1. Hirano et al referred to PD-L1 and 
PD-1 binding as a molecular shield, which can prevent 
tumour destruction by T cells.63 This finding was initially 
interpreted to be a negative signal of PD-L1 to T cells. 
However, it has subsequently been shown that loss of 

Figure 1  Mechanisms mediating the clinical activities of anti-PD-1/PD-L1/CTLA-4 antibodies. Various complementary 
mechanisms may account for the clinical activity of blockade of the PD-1–PD-L1 axis or CTLA-4 inhibitory receptors. Only 
antibodies with isotypes activating Fc receptors on macrophages or NK cells, such as ipilimumab, are able to mediate ADCC 
(ie, IgG1 isotype). Anti-PD-1 and anti-CTLA-4 antibodies reverse inhibitory signals transmitted to T cells and allow metabolic 
reprogramming of T cells. Reverse signalling of PD-L1 on tumour cells may also be affected by blocking the PD-L1–PD-1 
interaction. ADCC, antibody-dependent cellular cytotoxicity.
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the intracellular domain of PD-L1 is required to induce 
this molecular shield. Azuma et al reported that PD-L1 
intrinsic signalling conferred an antiapoptotic property 
to tumour cells. After elimination of the intracellular 
domain of PD-L1 in tumour cells, tumour regressions 
were observed in mouse models. Secondary activation of 
the mTOR pathway and PD-L1-mediated autophagy also 
participate in its intrinsic role in tumour growth. Blocking 
the PD-1–PD-L1 interaction may affect the antiapoptotic 
and proliferative activities of PD-L1.64

Which cells are targeted by antagonists of inhibitory 
receptors
CD8+ T cells
The current dogma supported by various preclinical and 
clinical data argues in favour of a major role of T cells and 
especially CD8+ T cells to explain the therapeutic activity 
of antagonists of inhibitory receptors (figure 2).65 66 The 
presence of pre-existing T cells before therapy correlated 
with the clinical activity of PD-1 and CTLA-4 blockade, 
as TIL density in melanoma patients treated by anti-
CTLA-4 correlated with good clinical response.67 Another 
study reported that pre-existing CD8+ T cells at the inva-
sive tumour margin were a prerequisite for the efficacy 
of PD-1 blockade in a cohort of 15 patients treated for 
melanoma.68 In addition, during therapy, analysis of 
early on-treatment tumour biopsies identified a signifi-
cantly higher density of CD8+ T cells in responders versus 
non-responders to CTLA4 and PD-1 blockade.69

Various groups, including our own, are trying to identify 
the subpopulations of CD8+ T cells that provide the prolif-
erative burst after PD-1 therapy. In a model of chronic 
infection, Rafi Ahmed’s group identified a population of 
CD8+  T cells that proliferated after anti-PD-1 administra-
tion, which expressed PD-1, ICOS, CD28 and CXCR5 and 
with a gene signature related to CD4 T follicular helper and 
CD8+ T cell memory precursor. The TC1 transcription factor 
plays an important role to generate this population predom-
inantly found in lymphoid tissue.70 These CXCR5-CD8+ T 
cells express low levels of PD-1 and control viral infection in 
the lymphocytic choriomeningitis virus model.71 72

In line with these results, Rafi Ahmed’s group showed 
that CD28 signalling is required for the efficacy of 
PD-1 targeted therapy.73 A population of CD8+  T cells 
expressing CD28 is present in the CD8 TIL population. 
In blood, a population of CD8+PD-1+CD28+ T cells pref-
erentially proliferated after anti-PD-1 therapy.73 Since 
hyperexhausted T cells lack CD28 expression, these 
results support the idea that early exhausted T cells 
mediate the activity of PD-1–PD-L1 blockade.

It would be of interest to compare the pheno-
type of these responsive CD8+  T cells with that of 
PD-1+int Tbethigh Eomeslow observed in chronic viral infec-
tion, which also proliferated, produced cytokines and 
exerted cytolytic function.74 75 When these cells convert 
into PD-1high Tbetlow and Eomeshigh with chronic exposure 
to antigen, they become exhausted.

Figure 2  Immune cells targeted by anti-PD-1/PD-L1 and anti-CTLA-4. anti-CTLA-4 monoclonal antibody with an IgG1 
isotype depletes intratumoural regulatory T cells. In chronic infection and cancer, various PD-1+CD8+ T cells have been shown 
to proliferate or to be activated in response to anti-PD-1/PD-L1 therapy. The overlapping phenotype between these various 
subpopulations of CD8+ T cells is under investigation.
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We have recently shown, in a series of renal cell carci-
noma patients, that the CD8+ T cells coexpressing PD-1 
and Tim-3 are poorly functional after stimulation and 
cannot be reactivated by anti-PD-1 alone.16 The pres-
ence of this population correlated with poor prognosis. 
In mice and humans, upregulation of Tim-3 after PD-1–
PD-L1 blockade was associated with clinical resistance to 
these drugs.76 77 Interestingly, the previous population of 
CXCR5+CD28+CD8+ T cells considered to be targeted by 
anti-PD-1 did not express Tim-3.70 73

Finally, another population called resident memory T 
cells, which persist in tumour tissue, isrequired for the 
efficacy of certain immunotherapeutic approaches.78 This 
population, identified by CD103 and CD49a markers, 
expressed PD-1 and preferentially recognised tumour 
cells compared with conventional circulating effector 
CD8+ T cells.

Non-CD8+ T cells
CD4+CD25+Foxp3+Treg have emerged as a dominant 
T cell population inhibiting antitumour effector T 
cells. Activated and highly suppressive Tregs upregulate 
multiple inhibitory receptors, including PD-1, CTLA-4, 
Tim-3 and TIGIT, which often contribute to Treg stability 
and functions.79–81

Mice with Treg selective ablation of CTLA-4 developed 
severe autoimmune disease mimicking the off-target 
effects observed after anti-CTLA-4 administration 
in humans.82 The physiological function of CTLA-4 
therefore appears to be to suppress T cell responses to 
self-antigens by controlling Treg activity.

Targeting CTLA-4 on Tregs with certain antibody 
isotypes (IgG1) therefore appears to deplete Tregs via 
antibody-dependent cellular cytotoxicity and contributes 
to reverse tumour-induced T cell dysfunction.83 84

Conclusion
Despite a clinical breakthrough following the use of 
antagonists of inhibitory pathways on CD8+ T cells, there 
was only a weak rationale for their clinical development, 
as T cells express many inhibitory receptors and most 
researchers believed that the blockade of one receptor 
would be compensated by the presence of other inhibi-
tory receptors keeping the immune system in check. In 
addition, many other immunosuppressive mechanisms 
operate in the tumour microenvironment: Treg cells, 
myeloid derived suppressor cells, M2 macrophages, 
soluble immunosuppressive cytokines and enzymes 
(IL-10, tumor growth factor beta, indoleamin 2,3-dioxy-
genase, CD39 and so on), which were considered to also 
participate in CD8+ T cell dysfunction.  To explain this 
poor initial judgement, it is likely that the blockade of 
one dominant immunosuppressive pathway has an impact 
on other escape mechanisms and restores the balance 
towards antitumour immunity. From an optimistic point 
of view, we could plan to target these other immunosup-
pressive mechanisms in combination with checkpoint 

inhibitor blockade in order to improve the clinical 
activity of immunotherapy. More than 350 clinical trials 
of combined therapy are ongoing, which raise new hopes 
and promises in the field of cancer immunotherapy. In 
addition, recent studies challenge the previous concept 
that blockade of the PD-1–PD-L1 axis reinvigorates 
exhausted T cells, as the epigenetic profile of exhausted 
T cells remains stable after anti-PD-1 therapy,85 and the 
requirement for CD28 signalling excludes a major role 
of terminally exhausted T cells that do not express CD28 
as the effector cells mediating the clinical activity of anti-
PD-1/PD-L1. These results provide a strong rationale for 
the combination of anti-PD-1/PD-L1 therapy with other 
therapeutic strategies (vaccines, oncolytic viruses and so 
on) designed to generate de novo induction of antitu-
mour early memory CD8+ T cells.86 87
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