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A B S T R A C T   

Identifying potential cancer-associated genes and drug targets from omics data is challenging due to its diverse 
sources and analyses, requiring advanced skills and large amounts of time. To facilitate such analysis, we 
developed Cat-E (Cancer Target Explorer), a novel R/Shiny web tool designed for comprehensive analysis with 
evaluation according to cancer-related omics data. Cat-E is accessible at https://cat-e.bioinfo-wuerz.eu/. Cat-E 
compiles information on oncolytic viruses, cell lines, gene markers, and clinical studies by integrating molecu
lar datasets from key databases such as OvirusTB, TCGA, DrugBANK, and PubChem. Users can use all datasets 
and upload their data to perform multiple analyses, such as differential gene expression analysis, metabolic 
pathway exploration, metabolic flux analysis, GO and KEGG enrichment analysis, survival analysis, immune 
signature analysis, single nucleotide variation analysis, dynamic analysis of gene expression changes and gene 
regulatory network changes, and protein structure prediction. Cancer target evaluation by Cat-E is demonstrated 
here on lung adenocarcinoma (LUAD) datasets. By offering a user-friendly interface and detailed user manual, 
Cat-E eliminates the need for advanced computational expertise, making it accessible to experimental biologists, 
undergraduate and graduate students, and oncology clinicians. It serves as a valuable tool for investigating 
genetic variations across diverse cancer types, facilitating the identification of novel diagnostic markers and 
potential therapeutic targets.   

1. Introduction 

Cancer is a common disease that significantly threatens human life. 
According to the World Health Organization (WHO), cancer causes 
around 9.6 million deaths annually, or around one in six fatalities 
worldwide [1]. Modern medical research is rapidly expanding, 
providing new opportunities driven by increasing amounts of 
cancer-related data. The challenge uniquely answered by Cat-E is to 
evaluate molecular targets and innovative protein targeting strategies in 
the light of the massive volume of available omics data. Notable re
sources such as Genotype-Tissue Expression (GTEx) and The Cancer 
Genome Atlas (TCGA) have significantly enhanced data analysis and the 
ability to understand gene functions (TCGA: https://tcga-data.nci.nih. 
gov/tcga; GTEx:https://gtexportal.org/home/). Access to these re
sources has led to the development of numerous pipelines for 

investigating large gene expression datasets that are now used as stan
dards in data analysis. For example, survival analysis is essential for 
examining the relationships between gene expression levels and prog
nostic outcomes, particularly in evaluating the clinical significance of 
specific drug targets assessed. Several web tools such as TSVdb [2], 
Gepia2 [3], and cBioPortal [4] have been developed to analyze differ
ential gene expression (DGE) using TCGA data. For ease of use, Cat-E 
was developed as a one-stop R/Shiny application integrating routines 
for diverse omics data and features, including expression and protein 
structure, for rapid cancer drug target evaluation. 

R/Shiny applications have become increasingly popular in bioin
formatics, advancing the interpretation and analysis of biological data. 
Popular tools are for example GENAVi [5], which allows the user to load 
and analyze enriched and DGE data; ShinyGO [6] and PRO-Simat [7], 
allowing both dynamic simulations and pathway enrichment analysis; 
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and GEOexplorer web server [8], conducting DGE and enrichment an
alyses with GEO datasets. 

The study of gene mutations in cancer research has significantly 
improved using TCGA data. Tools such as Cancer3D [9] and IntOGen 
[10] are crucial for locating and describing genetic changes linked to 
various types of cancer. MIMOSA2 [11] facilitates the modelling and 
evaluation of relationships between microbiota members and their 
metabolic products. Shiny GATOM [12] is an example of a Shiny web 
application designed for metabolic analysis. 

Despite those tools offering outstanding contributions in cancer 
research, there are several limitations which we tackle here: The first is 
the lack of integration with diverse data sources, which might lead to 
incomplete analysis or even misinterpretation of the analysis. Moreover, 
many tools have limited scalability or computing resources, which can 

limit or slow down the analysis of large datasets. Furthermore, we found 
several such tools were not user-friendly and had nonintuitive in
terfaces, which required advanced technical or programming skills. 

Our new, interactive web tool, Cancer Target Explorer (Cat-E), in
tegrates published databases, datasets, and multiple analyses in a unique 
framework and toolkit, allowing evaluation of potential cancer-drug 
targets in the light of transcriptome and proteome data; this includes 
pathway analysis, metabolic flux analysis, immune signature analysis, 
survival analysis, and single nucleotide variation analysis. We designed 
Cat-E to facilitate research of new cancer targets and protein structures 
as well as new cancer targeting strategies related to cancer pathways and 
weak immune responses. The intended users are experimental bi
ologists, undergraduate and graduate students, and oncology research- 
minded clinical scientists. Our goal is to simplify access to cancer- 

Fig. 1. Schematic representation of Cat-E web tool analyses workflow. Cat-E implements nine functional analyses related to cancer and oncolytic viruses. Blue arrows 
depict the logical flow of an analysis. 
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related transcriptome and omics data, offer a central data warehouse 
with detailed and trustworthy information, and enable users to conduct 
bioinformatic analyses efficiently, even without programming skills. We 
are confident that Cat-E is a welcome tool for evaluating various anti- 
cancer targets (mainly proteins, and with suitable omics data, also 
genes and RNAs) in different types of cancer including evaluation in the 
light of prognostic markers. 

2. Materials and methods 

Cat-E was implemented using Shiny package of the R programming 
language (version 4.2.3), and MariaDB (https://mariadb.org). As 
explained in the following subsections, we incorporated the Python and 
Java scripts and multiple R packages to implement various analyses 
(Fig. 1). 

2.1. Data collection 

Data on cell lines infected by oncolytic viruses were retrieved from 
the OvirusTDB database [14]. The following oncolytic viruses are 
available for analysis in Cat-E: Adenovirus, Herpes simplex virus, Mea
sles virus, Canine parvovirus, Vaccinia virus, Alphavirus, Reovirus, 
Avian influenza A virus, Sindbis virus, Vesicular stomatitis virus, 
Parvovirus, Newcastle disease virus, Enterovirus, Respiratory syncytial 
virus, Mumps virus, Measles virus, Tanapoxvirus, Poxvirus, Sendai 
virus, Semliki forest virus, Maraba virus, Myxoma virus, and Bovine 
herpesvirus. 

Moreover, diverse datasets on oncolytic virus strains were obtained 
from STRING viruses, intAct, and BioGRID [15–17], and a new database 
including these data was created using MariaDB. Datasets were obtained 
for human (Homo sapiens) and following viruses: Human adenovirus A 
serotype 12 (HadV-12), Human adenovirus A serotype 31, Human 
adenovirus B serotype 3, Human adenovirus C serotype 2 (HadV-2), 
Human adenovirus C serotype 5 (HadV-5), Human adenovirus D sero
type 9, Human adenovirus E, Human adenovirus 36, Human herpesvirus 
1, Human herpesvirus 1 (strain 17), Human herpesvirus 8, Human 
herpesvirus 8 (HHV-8), Human herpesvirus 8 type M, Human herpes
virus, Murine adenovirus A serotype 1 (MadV-1), Newcastle disease 
virus, Enterovirus, Respiratory syncytial virus, Mumps virus, Measles 
virus, Tanapoxvirus, Poxvirus, Reovirus type 1 (strain Lang) (T1L), 
Reovirus type 3 (strain Dearing), Sendai virus, Semliki forest virus, 
Sindbis virus, Vesicular stomatitis virus, Myxoma virus, Bovine 
herpesvirus, Avian orthoreovirus, Vaccinia virus, Vaccinia virus 
Copenhagen, Vaccinia virus WR, Vaccinia virus L-IPV, Vaccinia virus 
Ankara, Vaccinia virus GLV-1h68, and Vaccinia virus VVΔTKΔN1L. 

The Cancer Genome Atlas (TCGA) and GTEx data were acquired 
using the TCGAbiolinks package [18], allowing differential expression 
and clinical analyses of 33 various tumor types. 

The following tumor types are included in Cat-E: Adrenocortical 
carcinoma (ACC), Bladder Urothelial Carcinoma (BLCA), Breast invasive 
carcinoma (BRCA), Cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC), Cholangiocarcinoma (CHOL), Colon adeno
carcinoma (COAD), Lymphoid Neoplasm Diffuse Large B-cell Lym
phoma (DLBC), Esophageal carcinoma (ESCA), Glioblastoma 
multiforme (GBM), Head and Neck squamous cell carcinoma (HNSC), 
Kidney Chromophobe (KICH), Kidney renal clear cell carcinoma (KIRC), 
Kidney renal papillary cell carcinoma (KIRP), Acute Myeloid Leukemia 
(LAML), Brain Lower Grade Glioma (LGG), Liver hepatocellular carci
noma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell car
cinoma (LUSC), Mesothelioma (MESO), Ovarian serous 
cystadenocarcinoma (OV), Pancreatic adenocarcinoma (PAAD), Pheo
chromocytoma and Paraganglioma (PCPG), Prostate adenocarcinoma 
(PRAD), Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin 
Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), 
Testicular Germ Cell Tumors (TGCT), Thyroid carcinoma (THCA), 
Thymoma (THYM), Uterine Corpus Endometrial Carcinoma (UCEC), 

Uterine Carcinosarcoma (UCS), and Uveal Melanoma (UVM). 
Cell line information was collected from the DepMap database 

(https://depmap.org/portal/), including detailed tissue-specific cell line 
characteristics (e.g., cell line models, mutations, and DNA alterations). 
Furthermore, gene marker information was retrieved from the Cell 
Markers database [19]. 

To enhance the database embedded within Cat-E, we incorporated 
multiple data sources, including rPanglaoDB [20] for cell type infor
mation, DrugBANK [21] for drug descriptions, PubChem [22] for mo
lecular details and drug structures, DGIdb [23] for drug-gene 
interactions, and STITCH [24] for drug-gene network information. 
Comprehensive details on clinical studies, including those on chimeric 
antigen receptor T-cell (CAR-T) treatment, bispecific antibody treat
ments, cytostatic therapies, and oncolytic virus therapies, were obtained 
from clinicaltrials.gov [25] and CKTTD checkpoint database [26]. 

2.2. The analytical capabilities of Cat-E 

Cat-E provides a comprehensive approach to analyze cancer-related 
data, including gene expression, metabolic pathways, metabolic flux, 
GO and KEGG enrichment, survival, immune signature, single nucleo
tide variation, gene regulatory dynamics, and protein structure predic
tion (Fig. 1). It allows the user to upload their own data or select DGE 
data from the specified cancer types section to conduct a range of ana
lyses. The details on the methodology and building of these analyses are 
described in the following subsections: 

2.2.1. Differential gene expression (DGE) analysis 
Datasets of more than 11,250 patient samples across 33 distinct 

cancer tissue types were collected by TCGA and GTEx databases through 
the TCGAbiolinks package [18]. Subsequently, data was normalized and 
filtered at the 25th quantile and DGE analysis was performed by limma 
[27], edgeR [28], and TCGAbiolinks [18]. Ensembl IDs were converted 
to Hugo Symbols using biomaRt package [29]. Cat-E provides filtered 
outcomes derived from Differential Gene Expression (DGE) analysis, 
presenting refined DGE data alongside tailored parameters, including 
log-fold change (log2FC) thresholds, p-value thresholds, and options for 
selecting statistical methods such as limma or ANOVA. The resulting 
outcomes are visualized through tabular formats and graphical repre
sentations, including violin plots, volcano plots, and Principal Compo
nent Analysis (PCA) plots. 

Cat-E also enables retrieval of GEO data using GSE identifiers 
through the GEOquery package [30], allowing limma-based DGE anal
ysis by selecting log2FC and p-value thresholds. It is also possible to 
upload the user’s DGE analysis results and compare them with already 
published data using a Venn diagram, comparing common and unique 
genes. 

2.2.2. Metabolic pathway analysis 
The GATOM package and mwcsr package (Maximum Weight Con

nected Subgraph) [32] were introduced to analyze transcriptional 
and/or metabolic data to identify the most significant metabolic sub
network [12]. Cat-E enables metabolic pathway analysis either by 
selecting 33 different cancer types or by uploading other datasets. 

2.2.3. Metabolic flux analysis 
Metabolic flux analysis is integrated by CNApy [31], a Python-based 

graphical user interface (GUI) derived from CellNetAnalyzer. This 
integration was achieved through a connection to R/Shiny, facilitated 
by the reticulate package [33]. SBML files of the metabolic network 
were created with the COBRA package [34] and visualized using d3flux 
(https://github.com/pstjohn/d3flux). These metabolic SBML/XML files 
enable Flux Balance Analysis (FBA), Parsimonious FBA, Flux Variability 
Analysis (FVA), and Elementary Flux Mode (EFM) analysis. 
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2.2.4. GO and KEGG enrichment analysis 
R-package topGO and Kolmogorov-Smirnov (K-S) test were inte

grated to analyze GO terms [35], with both efficiency and sensitivity to 
topology. ClusterProfiler R package [36] was included to perform KEGG 
enrichment analysis for each of the 33 cancer types. Cat-E also allows 
modification of the protein-protein interactions (PPI) network and cre
ation of the oncolytic virus models. KEGG analysis can be performed 
using the list of the human genes in the network with the parameters of 
"fdr", "maxGSsize = 500", and custom thresholds for p-value and 
q-value. Pathway representations are generated using log2FC values 
obtained from the DGE data and are visualized with the help of the 
pathview package [37]. 

2.2.5. Survival analysis 
Survival analysis evaluates the prognostic implications of various 

clinical factors. Clinical data were collected utilizing the TCGAbiolinks 
package [18] and survival analysis implemented via the survival [38] 
and survminer packages [39]. The results are visualized using the vis
Network [40], Plotly [41], and ggplot2 [42] packages, providing 
interactive and informative representations of the survival outcomes. 
This comprehensive approach facilitates a thorough examination of 
survival patterns and their association with relevant clinical variables. 

2.2.6. Immune signature analysis 
To provide insights into immunological aspects, imsig package [43] 

was integrated to analyze immune-related processes via selected 
collection of immune gene signatures obtained from a network-based 
deconvolution method. Specifically, imsig is dedicated to identifica
tion of gene signatures linked to different biological processes, including 
B cells, interferon, macrophages, monocytes, neutrophils, NK cells, and 
others. A conservative correlation threshold of r = 0.7 was used for 
feature selection and immune signature analysis to ensure robustness. 
Inter-gene correlations were calculated using the DiffCorr package [44], 
a computational tool created explicitly for evaluating differential cor
relation, and networks were visualized using the visNetwork package 
[40]. 

2.2.7. Single nucleotide variations (SNVs) analysis 
SNVs analysis was implemented using genomic sequencing data 

obtained from TCGA. The information consisting of Mutation Annota
tion Format (MAF) files was obtained through TCGAbiolinks [18], 
providing a comprehensive overview of somatic mutations. The files 
contained vital data, including chromosome location, variant allele 
frequency, and functional consequences of the mutations. 

The SNV analysis was conducted and an oncoplot generated using 
the Maftool R package [45] to display the mutation frequencies in the 
samples. The g3viz package [46] in Cat-E was employed to create 
lollipop diagrams, thereby enhancing interactivity and visualization of 
SNVs. 

2.2.8. Dynamic gene regulatory analysis with Jimena 
Jimena [47] was integrated into Cat-E, facilitating the simulation 

and analysis of dynamic gene regulatory networks. The database within 
Cat-E, comprising nearly 40,000 signaling networks obtained from 
OmnipathR [48], enables efficient gene searches and streamlines the 
creation of customized biological signaling pathways. Through the 
combination of Cat-E and Jimena, the manipulation and simulation of 
these networks can be conducted, providing valuable insights into the 
regulatory mechanisms of cellular processes. Moreover, this platform 
presents opportunities for drug discovery efforts by exploring potential 
therapeutic interventions via manipulation of signaling networks within 
a computer simulation. 

2.2.9. Protein structure 
Protein structure prediction plays a crucial role in elucidating the 

functional characteristics of proteins. AlphaFold data were retrieved 

from the AlphaFold DataBase [49],[50] using UniProt KnowledgeBase 
identifiers. Obtained data was processed and visualized in a 
three-dimensional format using the NGLVieweR package [51]. The 
visualization process involved color-coding of the protein structures 
based on their confidence scores (pLDDT), facilitating clear visualization 
and enabling comprehensive analysis of the predicted models. Specif
ically, the color scheme was as follows:  

• Dark blue: Indicates a very high confidence level, where pLDDT 
> 90.  

• Light blue: Represents a high confidence level, with 90 > pLDDT 
> 70.  

• Yellow: Corresponds to a low confidence level, where 70 > pLDDT 
> 50.  

• Orange: Indicates a very low confidence level, with pLDDT < 50. 

Integration of 3Dmol.js into Cat-E enabled the generation of three- 
dimensional protein structures utilizing Protein Data Bank (PDB) 
codes [52]. This comprehensive approach ensured accurate represen
tation and analysis of protein structures, providing valuable insights into 
their functional properties. 

3. Results 

This study introduces the Cat-E web tool for detailed analysis of gene 
expression, pathway enrichment, single nucleotide variations, survival 
patterns, immune signatures, metabolic flux, and structural character
ization, particularly in cancer research. We identify significant targets 
for further research through DGE analysis and reveal essential cellular 
processes via GO enrichment. Examining individual changes in nucleo
tides and survival rates shows significant mutation clusters and distinct 
trends across various stages of the disease, respectively. Metabolic flux 
analysis identifies crucial pathways, such as gluconeogenesis, revealing 
possible targets for anticancer drug action, and AlphaFold can bring 
valuable information about protein structure. Taken together, this 
complex approach improves our comprehension of cancer biology and 
highlights the potential of Cat-E as a powerful tool for cancer research 
and therapeutic advancement. 

We demonstrate the functionality of Cat-E using three distinct lung 
adenocarcinoma (LUAD) datasets (Fig. 2): DGE data available in Cat-E 
(use case 1), signaling network data from non-small cell lung carci
nomas (NSCLC) [13] (use case 2), and glucogenesis pathway in cancer 
cells [53] (use case 3). 

3.1. Use case 1: The analyses of LUAD data within the Cat-E database 

The first use case of Cat-E is the LUAD dataset, which was chosen 
from among the 33 different types of cancer tissues available in Cat-E. 
The following section uses this dataset to show the results of several 
respective analyses: DGE, GO enrichment, SNV, survival, immune 
signature, and metabolic pathway exploration (Fig. 2). 

3.1.1. DGE analysis 
The DGE analysis on the LUAD dataset using the Limma method 

revealed 2146 genes identified as statistically significant (log2FC > 2 
and p-value < 0.001; Fig. 3A). Among these, 925 genes were upregu
lated, while 1221 genes displayed downregulation. The upregulated 
genes golm1, pycr1, tedc2, tubb3, and muc16 emerged as compelling 
targets for further investigation. To demonstrate the comparison of DGE 
results, we used Cat-E to compare the LUAD data set with data from 
GEPIA2, using an interactive Venn diagram to analyze distinct and 
shared genes (n = 857) (as shown in Fig. 3B). 

3.1.2. Gene ontology (GO) enrichment 
Cat-E provides comprehensive features for conducting GO enrich

ment analysis. The findings are displayed using bar graphs and lists, 
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illustrating the top 20 GO terms pertinent to LUAD after filtering, 
covering biological processes, molecular functions, and cellular com
ponents (log2FC > 2 and p-value < 0.001; Fig. 3C). 

3.1.3. Analysis of single nucleotide variations (SNVs) 
Cat-E allows detailed analysis of SNVs, which are significant genetic 

alterations affecting cellular function and disease progression. The 
analysis of somatic mutation patterns in 616 patients with LUAD by Cat- 
E (Fig. 3D) elucidates the genes tp53, ttn, and muc16 with the highest 
mutation frequencies of 50%, 43%, and 41%, respectively (Supple
mentary Fig. 1). Muc16 can be a significant mutation hotspot, as 
depicted in the lollipop plot (Fig. 3D). Missense mutations are the most 
common variant classification in LUAD patients. The most prevalent 
mutations in the variant category of the single nucleotide are cytosine to 
adenine transversions. 

3.1.4. Survival and immune signature analyses 
Cat-E provides advanced survival analysis tools for visualizing sur

vival outcomes using clinical data stratified by tumour classifications. 
Analysis of survival data from LUAD patients, stratified by pathologic 
staging, unveils distinct survival trends. Notably, the stage 1B cohort 
exhibits the longest survival duration compared to the other trajectories 
(as depicted in Fig. 4A). Furthermore, analysis of expression levels of 

muc16, a frequently regulated and mutated gene, indicates no significant 
correlation with survival outcomes (Fig. 4B). 

Moreover, Cat-E facilitates the study of immunological signatures by 
arranging crucial immune genes in networked and tabular layouts. We 
conducted a correlation network analysis to investigate gene in
teractions within immunological clusters specific to LUAD. Cat-E sys
tematically organized and illustrated basic immunological signatures 
(ImSig) and their relationships with various types of immune cells. 

3.1.5. Metabolic pathway analysis result 
The Cat-E framework incorporates the functionality for metabolic 

pathway analysis, enabling the identification of canonical metabolic 
pathways, with particular emphasis on those exhibiting an adjusted p- 
value of ≤ 0.05. Additionally, it allows users to examine specific re
actions along with their corresponding enzymes. As an illustrative 
example, we constructed a metabolic pathway network within Cat-E 
using LUAD data, focusing on the top 50 positively associated genes 
(see Fig. 4C). Cat-E enabled the identification of active metabolic 
pathways in the LUAD data, as depicted in Fig. 4C where increased lipid 
metabolism is evident. 

Fig. 2. Application of Cat-E for cancer research. Summary of analytical parameters and outputs for the LUAD case studies performed using Cat-E. Potential targets for 
anti-cancer drug action are explored using the databases in Cat-E. 
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3.2. Use case 2: Dynamic simulation of gene regulatory network analysis 

In the second use case, we employed the non-small cell lung carci
nomas (NSCLC) dataset from the study investigating the role of 
epithelial-to-mesenchymal transition (EMT) in various conditions [13]. 
Subsequently, dynamic simulations of gene regulatory networks were 
created using the integrated Jimena module [47]. Based on dynamic 
simulation outcomes using the provided signaling network [13], a 
combination of targeted drugs involving ARS-1620 and alisertib 
demonstrated efficacy in overcoming resistance in NSCLC with KRAS 
mutation, particularly in cell lines characterized by high c-MYC 
expression levels. The XML and TXT formats of this model are uploaded 
to our repository in GitHub (https://github.com/salihoglu/Cat-E) to 

facilitate reproduction of this analysis. 
To enhance the usability of the application, we have developed a 

dedicated database. Moreover, with Cat-E, users can generate the 
required files for the Jimena module [47]. This capability enables dy
namic simulation of pathway data established in previous research. Our 
integrated system streamlines the creation of corresponding TXT files 
and expedites the extraction of relevant gene data from the database. 

3.3. Use case 3: Metabolic flux analysis: gluconeogenesis pathway in 
cancer 

Cat-E provides functionality for generating metabolic SBML files for 
users lacking pre-existing ones, using the integration between COBRA 

Fig. 3. A. Volcano plot illustrating DGEs in LUAD (the black, blue, and red circles represent nonsignificant, down-regulated, and up-regulated genes, respectively); B. 
A Venn diagram showing the comparison between the LUAD data within Cat-E (Selected_Data) and the DGE LUAD data in the GEPIA2 (User_Data); C. A bar graph 
displaying the top 20 GO terms obtained from enrichment analysis; D. Visual representation of mutation positions within the muc16 gene in LUAD. 
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and d3flux tools (see Fig. 5A-B). Fig. 5B illustrates the exploration of the 
gluconeogenesis pathway in cancer cells [53], initiated through an EFM 
analysis. Notably, our metabolic flux evaluation revealed a significant 
increase in the flux of pck2 (phosphoenolpyruvate carboxykinase 2) in 
LUAD cancer (see Fig. 5C). This finding is particularly noteworthy in 
light of the concurrent upregulation of the pck2 gene observed in the 
DGE dataset. Our investigation not only addresses the intricate dy
namics of the gluconeogenesis pathway, but also elucidates the molec
ular basis of this process, highlighting the potential implications of pck2 
upregulation in LUAD. 

3.4. Detailed cancer targets: example of PCK2 protein structure 

The integration of AlphaFold [49,50] provides easy and effective 
structural analysis on biological macromolecules, which are crucial for 
understanding potential therapeutic targets. As an example, we focus on 
the pck2 (Q16822) protein. Fig. 6 shows an interactive model of pck2 for 
protein structure prediction, generated using AlphaFold. The specific 
amino acids can be selected, as demonstrated in yellow (labeled as 
’selection: 1–20’; Fig. 6), by the illustration of the first 20 amino acids of 
the protein sequence. Furthermore, the interface provides options for 
adjusting colors and offers features such as displaying ligands, rotating 
the model, and formatting options, thereby providing valuable insights 
into the structural characteristics. 

Through these functions within Cat-E, users can explore the predic
tive capabilities of AlphaFold by providing a UniProt ID and can adjust 

the structural characteristics. 
Numerous opportunities for further exploration in cancer research 

are possible, based on the availability of suitable omics data. These 
include detailed analyses of cancer pathways and investigations into 
combination therapies, as evidenced by our previous studies on 
combinatorial-targeted treatment in the NSCLC with aggressive KRAS- 
Biomarker signatures [13], modeling of stem cell differentiation [54], 
and further usage of Cat-E tools for stratifying cancer types in colorectal 
cancer [55] or lung cancer [56]. 

3.5. Obtaining drug combination and targeting strategies insights using 
Cat-E 

The comprehensive analyses conducted using Cat-E provide insights 
into the molecular landscape of cancer, offering researchers a wealth of 
data to explore potential therapeutic targets. The analysis shows that the 
upregulated muc16 gene is correlated with abagovomab, gefitinib, and 
bevacizumab drug treatments, as indicated in the gene-drug database 
integrated within Cat-E (Table 1). These data can be retrieved from two 
different sources, directly from the Drug_>genes (e.g.muc16) or via the 
Drug-> Description ->Indication (e.g. lung cancer). 

Moreover, metabolic flux analysis revealed significant alterations in 
the gluconeogenesis pathway, particularly concerning the upregulation 
of the Pycr family. These findings emphasize the potential usage of 
targeting metabolic pathways in lung cancer to find new routes of cancer 
cell growth prevention. Furthermore, structural analysis of proteins 

Fig. 4. A. Survival analysis based on pathological staging in LUAD clinical data, with each color representing a distinct pathological stage (Red: Stage1, Blue: 
Stage1A, Green: Stage1B, Purple: Stage2, Orange: Stage2A, Yellow: Stage2B, Brown: Stage3A, Pink: Stage3B, Grey: Stage4); B. Comprehensive analysis of overall 
survival regarding the expression levels (Green: down-regulation, Orange: up-regulation) of muc16 in LUAD tumor samples; C. Identification of active metabolic 
pathways within LUAD data, illustrated by a red line indicating log2FC> 0 and a green line indicating log2FC< 0. 
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using AlphaFold offers insights into potential druggable targets, 
providing a foundation for the design efforts of structure-based drugs. 

To further enhance cancer protein and drug target evaluation, 
especially regarding oncogenes, tumor drivers, and failure of different 
apoptosis pathways (e.g. mutation or loss of p53), researchers can use 
Cat-E to create dynamic signaling networks based on the obtained data. 
By simulating these networks and testing relevant drugs within the dy
namic context, researchers can refine their understanding of signaling 
pathways implicated in cancer progression and identify promising 
candidates for therapeutic intervention. Cat-E offers a systematic dy
namic framework for exploring and validating potential cancer targets, 
as a critical step in advancing precision medicine, by looking at indi
vidual tumor drivers, driver combinations, signature constellations and 
even evaluating the effect of specific mutations in the light of omics data 
to predict successful drug targeting or resistance. 

4. Discussion 

The Cat-E web tool was explicitly developed to examine proteins and 
protein cascades involved in cancer as promising drug targets against a 
background of alternative strategies (oncolytic viruses, immune strate
gies, cytostatics) and provides user-friendly access to crucial databases. 
The user can upload their data in various formats, including DGE data, 
as well as other omics and functional data to help interpret differences in 

DGEs. Cat-E offers a wide variety of analytical tools for cancer targeting- 
related studies, capable of conducting nine different types of analyses to 
meet the diverse requirements of the cancer research community, such 
as biologists, oncologists, and clinicians. 

Cat-E can analyze TCGA-GTEx data for 33 different cancer types and 
perform DGE analysis on GEO data using the user’s GSE ID, as well as 
presentation of immune gene signatures. Cat-E offers datasets available 
through GEO via a user-friendly web tool tailored for individuals lacking 
advanced programming skills. This web application provides a thorough 
and standardized protocol of gene expression analysis for effectively 
accessing GEO datasets. The analysis results can be stored in a CSV file 
format. It simplifies online metabolic flux analysis by smoothly incor
porating the CNApy tool. Moreover, Cat-E is a crucial tool for catego
rizing research on various cancer drug targets and targeting strategies, 
such as cytostatic drugs, CAR-T cells, cancer-targeting bispecific anti
bodies, and oncolytic virus methods, in light of all available omics data 
including clinical trial data, as available (e.g. lists of long- and short- 
survival-related genes). This categorization is essential for evaluation 
of cancer targeting strategies, as Cat-E assists in navigating not only 
direct protein structures but also protein and pathway combinations as 
well as the extensive range of immunomodulatory approaches. 

Case studies demonstrate that Cat-E enables rapid assessment of in
dividual genes, their expression, and their significance in cancer. For 
example, one of the primary genes that is increased in expression in 

Fig. 5. Analysis of the metabolic flux in LUAD cancer cells. A. Module for loading or generating the necessary.sbml file essential for conducting metabolic flux 
analysis; B. Representation of the generated metabolic model (additional tabs furnish results of flux analysis, optimized outcomes, and summary data); C. Computed 
flux values for the reactions generated, presented as a network. 
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LUAD is muc16. This gene was identified as a significant hotspot for 
mutations through SNV analysis using Cat-E. On a note of caution, Cat-E 
survival plots do not exhibit a straightforward and evident correlation 
between upregulation and survival. However, the significance of muc16 
in cancer has been documented in the literature [59]. 

Existing tools such as GEPIA2 [3], GENAVi [5], GNOSIS [57], 
HPVTIMER [58], and the ShinyGATOM app [12] enable expression, 
survival, and correlation analyses using TCGA and GTEx data, as well as 
metabolic pathway analysis. Cat-E distinguishes itself by providing a 
wider variety of analysis tools and databases all in one place. Aside from 
analyzing cancer omics data, multiple network analysis tools are 
accessible for investigating cancer and evaluating protein-based cancer 

drug targets for comparison to other anti-cancer strategies (immune 
cells, immune modulation, oncolytic virus). These tools encompass 
general, regulatory, and metabolic network analyses and are equipped 
to examine user-provided data sets in the required format. Cat-E ex
plores targets and target pathways regarding oncolytic viruses, targeting 
cancer proteins and drug evaluation, combined effects of kinase in
hibitors and tumor driver inhibitors, cytostatic therapy, immunomod
ulatory therapies like CAR-T cells, as well as interactive protein 
structure examination and drug targeting. Cat-E does not function as a 
clinical study nurse tool nor is it intended for use in clinic or for moni
toring or assessing patient therapy directly; instead, it concentrates on 
molecular interactions and mechanisms. 

The Cat-E platform will enhance its robust capabilities in the future 
by incorporating additional omics network analysis tools, embracing 
open-source development and integrating with advanced computational 
models such as large language models (LLMs). Cat-E is positioned to 
narrow the gap between bench research and clinical research by broad 
evaluation of targeting strategies and protein targets. 

5. Conclusions 

The Cat-E (Cancer Target Explorer) web tool is a sophisticated 
platform that provides a multidimensional view of omics data to eval
uate various cancer protein targeting strategies as well as immunolog
ical and oncolytic intervention strategies in cancer research. It includes 
differential gene expression, metabolic flux, single nucleotide varia
tions, visualization of predicted and experimental protein structure, 
drug interactions, and exploration. As shown for lung adenocarcinoma 
(LUAD) datasets, Cat-E demonstrates its utility in enabling users to 
explore genetic variations, identify diagnostic markers, and propose 

Fig. 6. Interactive model of the pck2 (Q16822) protein in Cat-E, generated using AlphaFold for protein structure prediction. The visualization highlights the first 20 
amino acids of the protein sequence (selection: 1–20), depicted in yellow. The color scheme applied to the protein structure is based on AlphaFold confidence scores, 
with dark blue representing very high confidence (pLDDT > 90), light blue indicating high confidence (90 > pLDDT > 70), yellow reflecting low confidence (70 >

pLDDT > 50), and orange denoting very low confidence (pLDDT < 50). This confidence-based coloring scheme facilitates an in-depth assessment of structural 
predictions. 

Table 1 
The list of the drugs associated with muc16 gene in the treatment of lung cancer.  

Drug name Interaction claim 
source 

Drug concept ID 

ABAGOVOMAB TdgClinicalTrial, TTD 
ChemblInteractions 

CHEMBL1742981 

GEFITINIB Drugbank online CHEMBL939 
BEVACIZUMAB Drugbank online CHEMBL1201583 
OREGOVAMAB TdgClinicalTrial 

ChemblInteractions 
CHEMBL2107917 

TAMOXIFEN NCI CHEMBL83 
DOCETAXEL NCI CHEMBL92 
CYCLOSPORINE NCI CHEMBL160 
TOPOTECAN NCI CHEMBL84 
ETOPOSIDE NCI CHEMBL44657 
DMUC-5754A (SOFITUZUMAB 

VEDOTIN) 
TTD CHEMBL3545372 

NCI: National Cancer Institute, TTD: Therapeutic Target Database 
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therapeutic targets across various cancer types. This tool is especially 
valuable for experimental biologists, clinical scientists, and students, 
bridging the gap between complex bioinformatics and extensive target 
and pathway evaluation. By simplifying access to as well as analysis of 
complex data sets, Cat-E enhances our understanding of cancer biology, 
including the evaluation of personalized cancer protein targeting stra
tegies including combinations, immune modulation and oncolysis. 
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