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SUMMARY

Chemotherapy remains controversial for stage II nasopharyngeal carcinoma
because of its considerable prognostic heterogeneity. We aimed to develop an
MRI-based deep learning model for predicting distant metastasis and assessing
chemotherapy efficacy in stage II nasopharyngeal carcinoma. This multicenter
retrospective study enrolled 1072 patients from three Chinese centers for
training (Center 1, n = 575) and external validation (Centers 2 and 3, n = 497).
The deep learning model significantly predicted the risk of distant metastases
for stage II nasopharyngeal carcinoma and was validated in the external valida-
tion cohort. In addition, the deep learning model outperformed the clinical and
radiomics models in terms of predictive performance. Furthermore, the deep
learning model facilitates the identification of high-risk patients who could
benefit from chemotherapy, providing useful additional information for individu-
alized treatment decisions.
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INTRODUCTION

The benefit of chemotherapy for stage II nasopharyngeal carcinoma (NPC) in the intensity-modulated ra-

diation therapy (IMRT) era has been controversial because the 5-year overall survival (OS) and distant

metastasis-free survival (DMFS) have reached over 90% in recent years.1–3 However, some studies4,5

have shown that survival outcomes vary significantly among stage II patients, especially for distant metas-

tasis (DM). Stratified treatment is proposed in the latest version of the National Comprehensive Cancer

Network guidelines to better manage patients with stage II NPC.6 For patients with T2N0 disease, radio-

therapy alone is routinely recommended, whereas concurrent chemoradiotherapy is administered in the

presence of high-risk factors [e.g., bulky tumor volume or high Epstein-Barr virus deoxyribonucleic acid

(EBV DNA)].6 Besides concurrent chemoradiotherapy, induction or adjuvant chemotherapy is recommen-

ded for patients with T1-2N1 disease with adverse features.6

EBV DNA is a robust prognostic marker with potential clinical applications in NPC and is routinely de-

tected.7 However, interlaboratory detection of EBV DNA varies considerably for the same test using iden-

tical procedures, and the primer/probe sets are not uniform.8 On the other hand, the lack of an objective,

standardized method to describe and measure bulky tumor volumes limits its application in clinical prac-

tice.9 An important finding from several studies10–12 has revealed that radiologic extranodal extension

(rENE) is a powerful imaging biomarker for risk stratification in NPC. Nevertheless, due to the use of

non-standardized diagnostic criteria, the incidence of rENE varies from 7.7% to 75.6%.13–15 Thus, identi-

fying additional biomarkers that can help predict prognosis and developing individualized treatment stra-

tegies are critical.

Radiomics is an emerging field that aims to extract high-throughput quantitative features from medical

images and reveal the underlying pathophysiology of diseases.16 The introduction of deep learning (DL)

enables radiomics to extract information quickly and precisely from biomedical images by using deep

convolutional neural networks in a fully automated manner.17 Emerging evidence suggests that DL has

remarkably improved the diagnostic, prognostic, and therapeutic responses of various cancer types.18–20
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To date, most DL applications in NPC have focused on predicting prognosis and exploring the benefits of

chemotherapy in locally advanced NPC,21–23 predicting recurrence,24 and tumor region segmentation.25,26

However, no study has reported the value of a MRI-based deep learning model for stage II NPC.

In this study, we aimed to develop and externally validate a multiparametric MRI-based DL model for pre-

dicting distant metastases in patients with stage II NPC. Furthermore, based on the DLmodel, we sought to

identify patients most likely to benefit from chemotherapy.

RESULTS

Baseline characteristics

A total of 1072 patients from three Chinese hospitals were recruited (Figure 1). The clinicopathological

characteristics of patients in the training cohort [n = 575; 395 (68.7%) men] and external validation cohort

[n = 497; 326 (65.6%) men] are summarized in Table 1. The median age was 44 years (interquartile range,

38�51 years) in the training cohort and 48 years (interquartile range, 40�56 years) in the validation cohort.

Construction of models

To construct the clinical model, T category, rENE, and sex, which showed statistically significant differences

in the univariable and the multivariable analysis of DM (Table 2), were included in the Cox proportional haz-

ards regression analysis. For the radiomics model, a total of 1395 features were extracted, with each MRI

sequence generating 465 features. There were three types of extracted radiomics features from each

sequence: 216 first-order statistical features, 42 shape-based features, and 207 texture features. After

LASSO regression, four, nine, six, and four features were selected from the axial T1W, T2W, CET1W, and

the combined sequence, respectively, which were strongly associated with DM. The radiomics models

of each sequence and the combined sequence were created separately. Table 3 summarizes the mean

Dice similarity coefficient for the three sequences of the 3D-Unet framework segmentation structure, which

ranged from 0.82 to 0.85. The DL models for each sequence and the combined sequence were determined

by the output scores of the 3D-Unet framework.

Comparison of the predictive accuracy of models

We calculated the C-indexes and plotted 5-year TD-ROC curves (Figure 2) to compare the accuracy

of the models in predicting DM. The DL model and radiomics model based on the combined

sequence yielded higher C-indexes than the single MR sequence in the training cohort (DL T1W vs.

DL T2W vs. DL CET1W vs. DL combined: 0.79 vs. 0.72 vs. 0.78 vs. 0.85; radiomics T1W vs. radiomics T2W vs. radio-

mics CET1W vs. radiomics combined: 0.57 vs. 0.56 vs. 0.64 vs. 0.66) and the validation cohort (DL T1W vs. DL T2W

vs. DL CET1W vs. DL combined: 0.80 vs. 0.78 vs. 0.71 vs. 0.84; radiomics T1W vs. radiomics T2W vs. radiomics CET1W

vs. radiomics combined: 0.61 vs. 0.69 vs. 0.68 vs. 0.71), respectively. Then, we utilized Cox proportional haz-

ards regression analysis to integrate crucial clinical features, including T category, rENE, and sex, into the

output scores obtained from the DL combined and radiomics combined models for developing DC and RC

models in the training cohort.

As shown in Table 4, theC-index andarea under curve (AUC) of the radiomics combinedmodelwere lower than

those of clinical, DL combined, RC, and DC models in both training and validation cohorts. The DC model

yields the highest C-index and AUC value compared to other models in the training (C-index: 0.89, 95%

CI:0.84–0.94; AUC: 0.90, 95% CI: 0.85–0.96) and validation (C-index: 0.87, 95% CI:0.80–0.93; AUC: 0.85,

95% CI: 0.78–0.93) cohorts. Besides, the DC model had a significantly higher C-index and AUC value than

the DL combined model in the training cohort (C-index: 0.89 vs. 0.85, p = 0.02; AUC: 0.90 vs. 0.85, p =

0.007); however, consistent results were not obtained in the external validation cohort (C-index: 0.87 vs.

0.84, p = 0.76; AUC: 0.85 vs. 0.84, p = 0.75). The C-index and AUC of the RC model were not significantly

improved compared to those in the clinical model in both training (C-index: 0.78 vs. 0.77, p = 0.65; AUC:

0.80 vs. 0.78, p = 0.53) and validation (C-index: 0.78 vs. 0.73, p = 0.28; AUC: 0.74 vs. 0.72, p = 0.65) cohorts.

Comparison of the discrimination ability of the models

Patients were then divided into high- and low-risk groups according to the optimal cutoff value of each

model (DL combined model: 0.501, clinical model: �0.262, radiomics combined model: �5.245, RC model:

�1.42, DCmodel: 5.11). Kaplan�Meier curves of DMFS and OS were plotted to identify the association be-

tween the models and prognosis. In each model, high-risk patients had a significantly worse DMFS
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Figure 1. Flowchart of the selection process of patients from three centers

Abbreviation: NPC, nasopharyngeal carcinoma; AJCC/UICC, American Joint Committee on Cancer/Union for International Cancer Control; IMRT, intensity-

modulated radiation therapy; MRI, magnetic resonance imaging.
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compared to that for low-risk patients in the training cohort (DL combined model: hazard ratio (HR), 16.05;

95% CI, 7.68–33.57; p < 0.001; radiomics combined model: HR, 3.71; 95% CI, 2.00–6.88; p < 0.001; clinical

model: HR, 10.98; 95% CI, 3.92–30.77; p < 0.001; RC model: HR: 2.73; 95% CI, 2.05–3.63; p < 0.001; DC

model: HR, 20.73; 95% CI: 10.89–39.44; p < 0.001; Figures 3A–3E) and the validation cohort (DL combined

model: HR, 14.49; 95% CI, 7.20–29.14; p < 0.001; radiomics combined model: HR, 4.65; 95% CI, 2.47–8.77;

p < 0.001; clinical model: HR, 3.62; 95% CI, 1.72–7.62; p < 0.001; RC model: HR, 2.57; 95% CI: 1.88–3.52;

p < 0.001; DCmodel: HR, 16.11; 95% CI: 8.56–30.32; p < 0.001; Figures 3F–3J). A similar trend was observed

for OS in the training and validation cohorts (Figures S1; for all, p < 0.05).

Subgroups analysis based on the DL combined model

Considering that there was no significant improvement in the predictive accuracy of the DC and RC

models, subsequent subgroup analyses and analyses of chemotherapy benefits were performed using

the DL combined model. Subgroup analyses were conducted within the stratification factors (age, sex,

rENE, EBV DNA, and clinical stage) in the training and validation cohorts to assess the performance of

the DL combined model in predicting DM. The forest plots (Figure 4) show that the DL combined model had

promising predictive ability in most subgroups, except for the T2N0 subgroup in the training (HR: 3.73,

95% CI: 0.30–45.93, p = 0.27) and validation (HR: 5.07, 95% CI: 0.41–62.62, p = 0.18) cohorts. However,

the p values for interaction in the clinical stage and other subgroups were all p > 0.05, indicating no signif-

icant prediction difference of the DL combined model among subgroups in both training and validation co-

horts (Figures 4A and 4B). Of note, in the T2N0 subset, the prognosis did not improve in patients who
iScience 26, 106932, June 16, 2023 3



Table 1. Baseline characteristics of 1072 patients in training and validation cohort

Characteristics Training cohort (n = 575) Validation cohort (n = 497) p value

Age, median (IQR), years 44 (38–51) 48 (40–56) <0.001

Sex assigned at birth, No. (%) 0.28

Male 395 (68.7) 326 (65.6)

Female 180 (31.3) 171 (34.4)

Histopathology, No. (%) <0.001

WHO I 0 (0) 55 (11.1)

WHO II-III 575 (100) 442 (88.9)

Ta, No. (%) 0.15

T1 301 (52.3) 238 (47.9)

T2 274 (47.7) 259 (52.1)

Na, No. (%) 0.32

N0 64 (11.1) 46 (9.3)

N1 511 (88.9) 451 (90.7)

LDHb, No. (%) <0.001

Normal 554 (96.3) 467 (94.0)

Abnormal 21 (3.7) 9 (1.8)

Unknown 0 (0) 21 (4.2)

EBV DNAc, No. (%) <0.001

Undetectable 311 (54.1) 310 (62.4)

Detectable 238 (41.4) 122 (24.5)

Unknown 26 (4.5) 65 (13.1)

rENE, No. (%) 0.13

Without 436 (75.8) 399 (80.3)

Coalescent nodes 120 (20.9) 87 (17.5)

Adjacent structures infiltration 19 (3.3) 11 (2.2)

Chemotherapy, No. (%) <0.001

Without 175 (30.4) 102 (20.5)

DDP/NDP-based 367 (63.9) 347 (69.8)

Non-DDP/NDP-based 33 (5.7) 48 (9.7)

5-year DMFS (%) (95% CI) 93.5 (91.4–95.5) 92.9 (90.6–95.2) 0.70

5-year OS (%) (95% CI) 92.2 (90.0–94.5) 94.5 (92.4–96.6) 0.09

FU time (month)d 80.0 (69.0–102.0) 77.0 (63.0–97.0) NA

Abbreviations: IQR: interquartile range; WHO, World Health Organization; LDH, lactate dehydrogenase; EBV DNA, Epstein-

Barr virus deoxyribonucleic acid; rENE, radiologic extranodal extension; DDP, cisplatin; NDP, nedaplatin; DMFS, distant

metastasis-free survival; OS, overall survival; FU, follow-up.
aAccording to the eighth edition of the American Joint Committee on Cancer/Union for International Cancer Control cancer

staging manual.
bAbnormal, center 1: >245 U/L, center 2 and center 3: >250U/L.
cDetectable thresholds, center 1: <1000copy/mL, center 2: <500copy/mL, center 3: <500copy/mL.
dData are represented as median (IQR).
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received chemoradiotherapy compared to those who received radiotherapy alone in terms of 5-year DMFS

(97.8% vs. 98.3%, p = 0.85) and OS (93.4% vs. 92.7%, p = 0.98) (Figures 5A and 5B).
Chemotherapy benefits in patients with T1-2N1 disease based on the DL combined model

We conducted an exploratory analysis to investigate the value of chemotherapy in low- and high-risk pa-

tients based on the DL combined model. The DL combined model was unable to stratify risk in the patients

with T2N0 disease; therefore, 886 patients with T1-2N1 disease who received cisplatin/nedaplatin-based

chemotherapy in the training and validation cohorts were included in the subsequent analysis. The
4 iScience 26, 106932, June 16, 2023



Table 2. Univariate and multivariable analysis of DM in the training cohort for clinical model construction

Covariate

Univariate analysis Multivariate analysis

HR 95% CI p value HR 95% CI p value

Age, years 1.00 0.97–1.03 0.88 0.99 0.96–1.03 0.68

Sex assigned at birth

Male Reference Reference

Female 0.29 0.11–0.74 0.009 0.35 0.13–0.90 0.03

Ta category

T1 Reference Reference

T2 2.27 1.19–4.30 0.01 2.54 1.27–5.08 0.008

Na category

N0 Reference Reference

N1 2.61 0.63–10.80 0.19 1.82 0.38–8.65 0.45

LDHb

Normal Reference Reference

Abnormal 2.25 0.70–7.29 0.18 2.20 0.67–7.24 0.19

EBV DNAc

Undetectable Reference Reference

Detectable 3.24 1.65–6.37 0.001 1.74 0.83–3.64 0.14

rENE

Without Reference Reference

G1 3.82 1.95–7.49 <0.001 2.98 1.43–6.20 0.004

G2 15.53 6.67–36.14 <0.001 9.51 3.62–24.96 <0.001

Chemotherapy

No Reference Reference

Yes 1.90 0.88–4.10 0.10 1.01 0.44–2.35 0.97

G1: Coalescent nodes; G2: Adjacent structures infiltration.

Abbreviations: DMFS, distant metastasis-free survival; OS, overall survival; HR, hazard ratio; CI, confidence interval; LDH,

Lactate dehydrogenase; EBV DNA, Epstein-Barr virus deoxyribonucleic acid; rENE, radiologic extranodal extension.
aAccording to the eighth edition of the American Joint Committee on Cancer/Union for International Cancer Control cancer

staging manual.
bAbnormal, center 1: >245 U/L, center 2 and center 3: >250U/L.
cDetectable thresholds, center 1: <1000copy/mL, center 2: <500copy/mL, center 3: <500copy/mL.
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cumulative cisplatin/nedaplatin dose (CCND) data were collected. We adopted 160 mg/m2 as the

threshold for the CCND because it was the median value. In the high-risk group, patients who received

a CCND >160 mg/m2 had a better DMFS but not OS compared to those who received a CCND of %

160 mg/m2 or radiotherapy alone (5-year DMFS: 83.5% vs. 60.0% vs.72.1%, p = 0.02; OS: 88.7% vs. 72.7%

vs. 78.1%, p = 0.06; Figures 5E and 5F). However, in the low-risk group, the 5-year DMFS and OS rates

were similar among patients receiving radiotherapy alone, receiving a CCND %160 mg/m2, and receiving

a CCND >160 mg/m2 (DMFS: 98.8% vs. 98.0% vs. 98.1%, p = 0.57; OS: 97.1% vs. 97.0% vs. 96.6%, p = 0.98;

Figures 5C and 5D).

DISCUSSION

In this multicenter study, we developed a DL combined model to predict DM in patients with stage II NPC.

The DL combined model showed encouraging results in both the training and validation cohorts, accurately

classifying patients into high- and low-risk groups. High-risk patients with T1-2N1 disease could benefit

from chemotherapy with a CCND >160 mg/m2 in terms of reducing DM, whereas low-risk patients with

T1-2N1 disease and patients with T2N0 disease did no benefit from chemotherapy.

ResNet27 and CNN22 networks have been used in studies focusing on prognosis prediction. In contrast to

the networks used in these studies, the 3D-Unet model in the current study implements automatic
iScience 26, 106932, June 16, 2023 5



Table 3. Performance of 3D-Unet framework in primary tumor and metastatic lymph nodes segmentation

Mean DSC Training cohort Validation cohort

CET1W 0.84 G 0.03 0.84 G 0.03

T1W 0.84 G 0.04 0.85 G 0.01

T2W 0.83 G 0.02 0.82 G 0.02

Abbreviations: DSC, Dice similarity coefficient; T1W, axial T1-weighted; T2W, axial T2-weighted; CET1W, contrast-enhanced

axial T1-weighted.

Data are represented as mean G SD.
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segmentation of the tumor and metastatic lymph node, using skip connections between the encoder and

decoder to merge low- and high-level features, which ultimately allows finer image details to be retained

for predicting DM.28 Based on a promising automatic segmentation, the DL model achieved encouraging

results in predicting DM.

The DL and radiomics models from combined sequences had better prognostic performance than did

either sequence alone. The use of three axial sequences may have allowed for the comprehensive capture

of microscopic and macroscopic features, reflecting the biological behavior of tumors. Shen et al.29 and

Zhang et al.30 both proposed a radiomics model based on only several handcrafted features for locally

advanced NPC (the C-index ranged from 0.686 to 0.758). In addition, radiomics relies on the precise delin-

eation of the tumor boundary by oncologists, which suffers from an interrater bias and the potential to miss

important peritumoral microenvironment information, besides being time-consuming. In comparison, DL

can learn complex and non-linear functions between the inputs and output labels by combining numerous

nodes and layers while tuning parameters to maximize prediction accuracy.17 Then, the DL framework

could maximally and comprehensively extract higher-order features for more accurate predictions.

Accurate prediction of prognosis is crucial for the management of patients with cancer. The DL model in

the current study successfully differentiated patients into high- and low-risk subgroups, with significant dif-

ferences in DM risk between the two groups. For low-risk patients with T1-2N1 disease, radiotherapy alone

may be sufficient because no benefit can be derived from chemotherapy. In a recent clinical trial, Tang

et al.31 similarly reported that radiotherapy alone is practicable for intermediate-risk patients with NPC

(stage II and T3N0 without adverse features such as rENE or EBV DNA load R4000 copies/mL). Neverthe-

less, the assessment of ENE currently relies on imaging and lacks consistent diagnostic criteria, thereby

leading to varying subjective results among radiologists.10–14 In addition, no internationally accepted stan-

dardized test procedure exists for EBV DNA testing. Given these aspects, the clinical generalizability and

applicability of the trial results by Tang et al.31 are limited. Unlike unstable clinical factors, our DL model
Figure 2. TD�ROC curves of the models

(A) and (B) present the TD-ROC curves of models for DMFS in the training and validation cohorts. Abbreviations: TD-ROC,

time-dependent receiver operating characteristic; DMFS, distant metastasis-free survival; AUC, area under curve.

6 iScience 26, 106932, June 16, 2023



Table 4. Performance of models in predicting DMFS

Models

Training cohort Validation cohort

C-index 95% CI p value C-index 95% CI p value

Radiomics combined model 0.66 0.59–0.73 Ref 0.71 0.62–0.80 Ref

Clinical model 0.77 0.71–0.83 0.005 0.73 0.64–0.82 0.97

DL combined model 0.85 0.78–0.92 <0.001 0.84 0.78–0.90 0.02

RC model 0.78 0.71–0.84 <0.001 0.78 0.70–0.86 0.43

DC model 0.89 0.84–0.94 <0.001 0.87 0.80–0.93 0.009

DC model vs. DL combined model – – 0.02 – – 0.76

RC model vs. Clinical model – – 0.65 – – 0.28

AUC 95% CI p value AUC 95% CI p value

Radiomics combined model 0.67 0.59–0.74 Ref 0.70 0.60–0.80 Ref

Clinical model 0.78 0.73–0.85 0.01 0.72 0.62–0.81 0.78

DL combined model 0.85 0.78–0.93 <0.001 0.84 0.77–0.91 0.02

RC model 0.80 0.73–0.87 <0.001 0.74 0.65–0.84 0.36

DC model 0.90 0.85–0.96 <0.001 0.85 0.78–0.93 0.01

DC model vs. DL combined model – – 0.007 – – 0.75

RC model vs. Clinical model – – 0.53 – – 0.65

Note that, DL combined model and Radiomics combined model were conducted based on the three MR sequences (T1W, T2W,

and CET1W). DC model, a model combining deep learning and clinical variables. RC model, a model combining radiomics

and clinical variables.

Abbreviations: NPC, nasopharyngeal carcinoma; C-index, Harrell’s concordance index; CI: confidence interval; DL, deep

learning; Ref, reference; AUC, area under curve.
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provides a more objective and accurate prognostic stratification approach to bridge this gap. In addition,

the DL model is based on MR images, which are routinely obtained before treatment and are noninvasive.

Therefore, the DL model can be used as an effective and practical tool to predict DMFS for patients with

stage II NPC.

Notably, the DC and RC models that were constructed by combining the clinical parameters with the

DL combined model and radiomics combined model, respectively, did not significantly improve the predictive

performance. To be widely used and accepted, predictive models should be simple and practical while

accurately predicting prognosis.32 However, introducing a new clinical parameter into the DL combined

model adds extra uncertainty and complexity in practice. In brief, our proposed DL combined model provides

the advantages of simplicity and accurate prediction of DM.

In addition to providing risk stratification, the DL model, more importantly, effectively differentiates popula-

tions that could benefit from chemotherapy. Our results showed that chemotherapy with a CCND

>160 mg/m2 could improve DMFS for the high-risk T1-2N1 population. This finding lays a foundation for sub-

sequent clinical trials to explore optimal treatment options (e.g., induction chemotherapy, concurrent chemo-

therapy) for high-riskpatients. Thecurrentguidelinesof theChineseSocietyofClinicalOncology33 recommend

a cumulative cisplatin dose of 200 mg/m2 for patients receiving concurrent chemoradiotherapy. However, the

evidence isbasedonposthocanalysesof phase III trialson locally advancedNPC.34–36The recommendeddose

for locally advanced NPC may be inappropriate for stage II patients. The chemotherapy dose of 160 mg/m2

could be an important reference for personalized therapeutic strategy among patients with NPC, and it repre-

sents two cycles of chemotherapy (80 mg/m2 per cycle) in NPC endemic areas.

Subgroup analysis showed that the prognosis prediction of DL combined model was evident in the T1N1

and T2N1 subgroups but was uncertain in the T2N0 subgroup. This may be because patients with T2N0 dis-

ease had superior survival outcomes (5-year DMFS: 96.2%, OS: 93.3%), and it is difficult to detect significant

differences since the endpoints were small probability events. Notably, patients with T2N0 disease fail to

benefit from chemotherapy compared to RT alone. For such patients, RT alone may be sufficient in the

IMRT era.
iScience 26, 106932, June 16, 2023 7



Figure 3. Kaplan�Meier curves of DMFS for models in the training and validation cohorts

(A) and (F) present the DMFS curves of the DL combined model in the training and validation cohorts. (B) and (G) present the DMFS curves of the

radiomics combined model in the training and validation cohorts. (C) and (H) present the DMFS curves of the clinical model in the training and validation

cohorts. (D) and (I) present the DMFS curves of the RCmodel in the training and validation cohorts. (E) and (J) present the DMFS curves of the DCmodel in the

training and validation cohorts. Note that, the DL combined model and Radiomics combined model were conducted based on the three sequences (T1W, T2W,

and CET1W). DC model, a model combining deep learning and clinical variables. RC model, a model combining radiomics and clinical variables.

Abbreviations: DL, deep learning; DMFS, distant metastasis-free survival.

See also Figure S1.
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In conclusion, the deep learning model based on multiparametric MRI provides a strong prediction of DM for

patients with T1-2N1 NPC, thus aiding in decision-making regarding individualized treatment strategies.

Limitations of the study

First, this was a retrospective study; therefore, the inherent introduction of selective bias was unavoidable.

Second, there was heterogeneity between the training and validation groups in the clinical parameters of

age, histopathology, EBV DNA, and LDH. Third, the DL model was constructed based on patients from an

endemic area; the applicability of the DL model to patients from nonendemic areas remains unknown.

Finally, there is a lack of interpretability of results predicted by the DL model. Prospective trials are war-

ranted to investigate the clinical applicability and interpretability of the DL model for stage II NPC.
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Figure 4. Predictive performance of the DL combined model for DMFS within subgroups

(A) Training cohort; (B) Validation cohort. *: complete case analysis. Abbreviations: DL combinedmodel, deep learningmodel based on the three sequences

(T1W, T2W, and CET1W); DMFS, distant metastases-free survival; HR, hazard ratio; CI, confidence interval; EBV, Epstein-Barr virus deoxyribonucleic acid;

rENE, radiologic extranodal extension.
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Figure 5. Kaplan�Meier analyses of chemotherapy benefit in patients with stage II NPC

(A and B) DMFS and OS curves for patients receiving RT and chemoradiotherapy in the T2N0 subgroups.

(C and D) DMFS and OS curves for low-risk patients receiving RT alone, chemotherapy with CCND %160 mg/m2, and CCND >160 mg/m2 based on

DL combined model.

(E and F) DMFS and OS curves for high-risk patients receiving RT alone, chemotherapy with CCND %160 mg/m2, and CCND >160 mg/m2 based on

DL combined model. Abbreviations: NPC, nasopharyngeal carcinoma; DMFS, distant metastases-free survival; OS, overall survival; RT, radiotherapy; DL

combined model, deep learning model based on the three sequences (T1W, T2W and CET1W).
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

R (version 3$6$1) R software https://www.r-project.org

3D-Slicer (version 4.9.0) 3D-Slicer software http://www.slicer.org

3D-Unet framework Github https://github.com/Deeplearninghhh/MRI_ML

Python (version 2.12) Python software https://www.python.org/downloads/release/

python-378/

pyTorch (version:1.4.0) pyTorch software https://pytorch.org/

Other

Research Data Deposit Sun Yat-Sen University Cancer Center https://www.researchdata.org.cn

Source code Github https://github.com/Deeplearninghhh/MRI_ML
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Yun-Fei Xia (xiayf@sysucc.org.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d De-identified patient standardized data have been deposited at the Research Data Deposit public plat-

form (No.RDDA2022264880), and DOIs are listed in the key resources table. They are available upon

request if access is granted. To request access, contact Sun Yat-Sen University Cancer Center.

d All original code has been deposited at the Github and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient cohorts

In this multicenter retrospective study, 1072 patients with stage II NPC treated between April 2008 and July

2017 were recruited from three hospitals in China and followed up until October 1, 2021. Figure 1 shows the

inclusion criteria, exclusion criteria, and the selection process of patients from the three centers in detail.

For training purposes, data were obtained from 575 patients at Sun Yat-Sen University Cancer Center (Cen-

ter 1). For validation purposes, we included 285 patients from Fujian Medical University Cancer Hospital

(Center 2) and 212 patients from Jiangxi Cancer Hospital (Center 3). The institutional review boards of

each center approved this study and waived the requirement for informed consent owing to the retrospec-

tive nature of this study.

METHOD DETAILS

Treatment and follow up

The induction and adjuvant chemotherapy regimens were as follows: the TP regimen consisted of doce-

taxel 75 mg/m2 (or paclitaxel 135�175 mg/m2) and cisplatin (or nedaplatin 75 mg/m2) on day 1. The GP

regimen comprised cisplatin (or nedaplatin 80 mg/m2 ) on day 1 and gemcitabine 1000 mg/m2 on days

1 and 8, respectively. The PF regimen comprised cisplatin (or nedaplatin 80�100 mg/m2) on day 1 and

5-Fu 800�1000 mg/m2/d, 120 h continuous intravenous (CIV). Finally, the TPF regimen consisted of
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docetaxel 60-75 mg/m2 (or paclitaxel 135�175 mg/m2) on and cisplatin (or nedaplatin 60�75 mg/m2) on

day 1, and 5-Fu 500�750 mg/m2/d, 120h CIV. A certain proportion of the patients were treated with oxa-

liplatin (85�130 mg/m2), lobaplatin (30 mg/m2), or carboplatin (AUC=5) instead of cisplatin/nedaplatin.

The regimen was repeated every 3 weeks for two to four cycles.

Concurrent chemotherapy consisted of 30�40 mg/m2 cisplatin/nedaplatin administered every week,

80�100 mg/m2 cisplatin/nedaplatin administered every 3 weeks, 15�30mg/m2 docetaxel administered

every week, 50 mg/m2 paclitaxel administered every week, 85�130mg/m2 oxaliplatin administered every

3 weeks, carboplatin (AUC=5) administered every 3 weeks, or 30 mg/m2 lobaplatin administered every

3 weeks. In addition, a subset of patients was administered a two-drug regimen of TP and PF (dose as pre-

viously described) every 3 weeks. More information about chemotherapy was described in Table S1.

All patients were treated with IMRT, including daily radiation therapy five times a week for 6�7 weeks. A

cumulative dose of 66�72 Gy/28�33 fractions to the planning target volume (PTV) of the primary gross tu-

mor volume and 64�70 Gy/28�33 fractions to the PTV of the involved lymph nodes. The prescribed doses

were 6066 Gy/28�33 fractions to the PTV of high-risk clinical target volume and 54�56 Gy/28�33 fractions

to the PTV of low-risk clinical target volume.

Patients were followed up every 3 months for the first 2 years, every 6 months for the next 3 years, and annu-

ally thereafter. DM was diagnosed using various examinations, which included chest computed tomogra-

phy (CT), abdominal ultrasound/CT/MRI, bone scan or positron emission tomography-CT. For some sus-

pect lesions, a pathological examination was conducted. The primary clinical outcome of this study was

DMFS. The second endpoint was OS.
MRI information and preprocessing

Axial T1-weighted (T1W), T2-weighted (T2W), and contrast-enhanced T1-weighted (CET1W) images of pre-

treatment head and neck MRI were acquired. The MRI scanners and parameters are described in Tables S2

and S3. Preprocessing of the MR images first included normalization to correct the scanner-related varia-

tions. Then, a bias field correction was applied using the N4ITK algorithm to correct the potential effects on

the image from magnetic field inhomogeneities.37 Image preprocessing was performed in Python using

the open-source Pyradiomics package (version 2.12; https://pyradiomics.readthedocs.io/en/2.1.2/). Codes

of image preprocessing are available at GitHub (https://github.com/Deeplearninghhh/MRI_ML).
Regions of interest segmentation

For training the segmentation of the 3D-Unet framework as well as for extracting radiomics features, the

primary tumor and metastatic lymph node segmentation were contoured on each slice of the three axial

MR sequences by an oncologist (Y.J.H.) using 3D-Slicer software (version 4.9.0; Open source: http://

www.slicer.org). The outline results were reviewed by a senior head and neck radiologist with 30 years of

subspecialist experience (L.Z.L.).
Construction of the DL model

To increase the diversity of the training samples for the segmentation and to prevent over-fitting, data

augmentation methods were employed in the training cohort, including rotation and blurring. After data

augmentation, 575 3 3236 (110,400 in total) MR images were obtained for the segmentation.

U-net can extract global contextual information from an original image while preserving spatially contin-

uous detail in the target image.38 We adopted a three-dimensional (3D)-Unet as the backbone network

because the input is an axial sequence of 3D MRI images consisting of axial slices of each patient.28 The

network architecture is illustrated in Figure S2. The design of the 3D-Unet in this study integrates the func-

tions of automatic tumor and metastatic lymph node segmentation with DM risk prediction. The 3D-Unet

network was first trained for automatic segmentation and then trained for the prediction of DM after the

segmentation achieved stable performance.

Three axial MRI slices were sampled as 1923 192 by using linear interpolation as the input to the network to

apply this model to the MRI of three centers. The encoder embeds the original high-dimensional data into

the low-dimensional space, called ‘‘ the bottleneck layer’’. Then, the decoder converts the values of the
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bottleneck layer back into the original high-dimensional space to reconstruct the segmented images with

detailed information.

The encoder consists of the repeated application of two 3 3 3 3 3 convolutions, each followed by a recti-

fied linear unit (ReLU) and a 23 23 2max pooling operation with strides 2 for downsampling.17 The output

of the convolution layer was transferred to the decoder before the pooling operation of the encoder. The

number of filters in the convolutional layer doubled after each downsampling. However, the decoder first

upsampled the featuremap using a 23 23 2 convolution operation, thereby reducing the feature channels

by one-half. This was followed by two 3 3 3 3 3 convolutions, each with ReLU. Finally, the segmentation

map was generated by a 1 3 1 3 1 convolution operation. In this process, the loss function is a Dice

loss,39 and it is defined as follows:

LDice = 1 � 2

PN
i TiPiPN
i Ti+Pi

= 2
T
T
P

T
S
P

(Equation 1)

The loss function is a measure of the average divergence between the output of the network (P) and the

actual function (T) being approximated over the entire input domain (sized, m 3 n). The variable i denotes

the index of each pixel in the image spatial space: N = m 3 n.

On this basis, we added a distant metastasis prediction model. The DM prediction model takes the results

of the global averaging pool as the input, followed by a pool layer, a fully connected layer with ReLU acti-

vation, and a classification layer with softmax activation. We used the same network structure and training

strategy to train the MR images of three axial MR sequences separately and to output the predicted prob-

ability value of DM for each sequence. For the output of the combined sequence, the results of the global

average pool of the three MR sequences, three tensors of 6144*1*1, were merged to obtain a combined

tensor of the combined sequence for subsequent prediction. The loss function used in this part was a

cross-entropy loss:39

LCE = � 1

N

XN

i = 1

½Ti lnðPiÞ + ð1 � TiÞlnð1 � PiÞ� (Equation 2)

The batch size was set at 64, and the learning rate was set as 1E-4. We applied the adam optimizer in the

torch library and then set the epoch to 500 for the iterations. Deep learning models were trained using py-

Torch (version:1.4.0; Open source: https://pytorch.org/). All experiments were conducted on a computing

cluster: two NVIDIA Tesla V100 with a 32 TB frame buffer (NVIDIA Corporation, Santa Clara, CA, USA). The

codes for the construction of the DL model were uploaded onto a public platform (available at: https://

github.com/Deeplearninghhh/MRI_ML).
Construction of clinical model

Before constructing the clinical model, an rENE assessment was conducted. The criteria for unequivocal

rENE were G1 (coalescent nodal mass comprisingR2 adjacent nodes) and G2 (invasion beyond perinodal

fat to frankly infiltrate adjacent structures, e.g., muscles, nerves, and parotid glands). Two radiologists

evaluated the MRI scans independently (L.Z.L. and Y.P.X.). Evaluation of rENE relied on contrast-enhanced

T1-weighted as well as other MR sequences. Inconsistent assessment results were resolved by consensus.

Examples of rENE images have been presented in Figure S3. Clinical variables, including age, sex, T cate-

gory, N category, LDH, EBV DNA, rENE, and chemotherapy, were included in univariate and multivariable

analyses of DM in the training cohort. Then, clinical variables with statistically significant differences in

univariate and multivariable analyses were incorporated in Cox proportional hazards regression analysis

to construct the clinical model. The output of each model is a risk score for each patient, representing

the patient’s risk of DM.
Construction of the radiomics model

The radiomics model was constructed according to the reported guidelines.40 First, images were re-

sampled to a 3 3 3 3 3 mm voxel size to standardize the voxel spacing.16 The MRI intensity values were

also discretized using a fixed 25Hbin width to reduce image noise.41 Then, wavelet filtering and Gaussian

filtering were performed per image to extract radiomic features with different frequency domains. Quan-

titative radiomic features were extracted from manually segmented regions of interest for each sequence

separately using the Pyradiomics package of Python (version 2.12; https://pyradiomics.readthedocs.
16 iScience 26, 106932, June 16, 2023
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io/en/2.1.2/). Codes of image preprocessing and feature extraction are available at GitHub (available at:

https://github.com/Deeplearninghhh/MRI_ML).

All the extracted features were standardized using the Z scoremethod to ensure comparable ranges for the

feature values. Features are consistent with the definitions of features described by the Imaging Biomarker

Standardization Initiative.40 Next, we conducted a radiomics feature selection in the training cohort. First,

p-values between each feature and DMFS were calculated by univariate analysis. Pearson correlation co-

efficients (r) were calculated between each pair of features to analyze linear correlations. Only the most

important prognostic features were retained in the features pairs with r > 0.85 (lower p-values in the univar-

iate analysis). Second, the least absolute shrinkage and selection operator (LASSO) Cox regression method

was used to filter out essential features. LASSO regression performs L1 regularization, where some coeffi-

cients can become zero and be eliminated from the model.42 The feature selection steps were performed

separately for the features of the T1W, T2W, and CET1W sequence as well as for all features. Therefore,

radiomics model of each sequence and combined sequences was conducted to predict DM based on a

linear combination of selected features, weighted by their respective coefficients.
Construction of the combined models

The output score of the DL combined model (DL model based on three MR sequences) and the

radiomics combined model (Radiomics model based on three MR sequences) was combined with selected

clinical features, respectively, using Cox proportional hazards regression analysis to construct an inte-

grated deep learning and clinical (DC) model and a combined radiomics and clinical (RC) model in the

training cohort.
Performance assessment of the models

The performance of the 3D-Unet framework in segmentation was evaluated using the Dice similarity coef-

ficient. The prediction performance of each model for DMFS was first evaluated in the training cohort and

then verified in the external validation cohort. We then plotted Kaplan�Meier curves to demonstrate the

association between the models and prognosis. In addition, Harrell’s concordance index (C-index) and

time-dependent receiver operating characteristic (TD-ROC) analysis were conducted to evaluate the pre-

dictive ability of the models.
QUANTIFICATION AND STATISTICAL ANALYSIS

EBV DNA and lactate dehydrogenase were missing data at complete random; therefore, they were pro-

cessed using a complete case analysis.43 Clinical variables were compared between the training and vali-

dation cohorts using Pearson’s chi-square or Fisher’s exact tests for categorical variables and the

Mann�Whitney U test for continuous variables. Survival curves were obtained using the Kaplan�Meier

method and were compared using the log-rank test. Univariate and multivariate analyses were conducted

using the Cox proportional hazard model. We used the ‘compareC’ and ‘timeROC’ packages in R software

to calculate the P-values that compared the C-index and area under curve (AUC) values between models.

To determine the optimal cut-off values for each model, we employed the ‘surv_cutpoint’ function from the

‘survminer’ R package. This function calculates the cut-off values that yield the lowest log-rank statistic for

DMFS. We used ‘QualInt’ R package to calculate the P value of the interaction test in subgroups analysis.

To address the problem that subgroup analyses with a small number of events may have monotonic likeli-

hoods when fitting Cox models, resulting in large confidence interval (CI), we applied Firth’s penalized par-

tial likelihood correction to the Cox regression model.44 Statistical analysis was conducted using R software

(version 3$6$1; http://www.R-project.org; R Foundation for Statistical Computing, Vienna, Austria). A two-

sided P value <0.05 indicated a statistically significant difference.
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