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Co-expression network analysis of the lncRNAs and 
mRNAs associated with cervical cancer progression

Li Jiang, Li Hong, Wenwu Yang, Yuzi Zhao, Aili Tan, Yang Li

A b s t r a c t

Introduction: Cervical cancer is the second most common type of cancer and 
the third leading cause of cancer deaths in females in developing countries. 
Recent studies showed that long non-coding RNAs play a key role in human 
cancers. However, the molecular mechanisms underlying the initiation and 
progression of cervical cancer remained to be further explored.
Material and methods: In this study, we explored the differential expression 
of lncRNAs and mRNAs in cervical cancer progression by analyzing the public 
dataset GSE63514. Next, PPI and co-expression networks were constructed 
to reveal the potential roles of cervical cancer related mRNAs and lncRNAs. 
Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway analysis was performed to explore functions of dif-
ferentially expressed genes (DEGs) in cervical cancer.
Results: In the present study, we observed that 3021 mRNAs were up-regu-
lated and 1605 mRNAs were down-regulated in cervical cancer progression. 
Meanwhile, we for the first time found that 172 lncRNAs were up-regulated 
and 106 lncRNAs were down-regulated in cervical cancer progression. Co-ex-
pression network analysis showed that lncRNAs were widely co-expressed 
with cell cycle related genes in cervical cancer, implicating the important 
roles of these lncRNAs in cell proliferation regulation. Of note, we identified 
two hub lncRNA-mRNA networks involved in regulating various biological 
processes in cervical cancer progression.
Conclusions: Our results identified key mRNAs and lncRNAs in cervical can-
cer progression. This study will provide novel insights to explore the poten-
tial mechanisms underlying cervical cancer progression.

Key words: long non-coding RNAs, cervical cancer, protein-protein 
interaction analysis, expression profiling.

Introduction

Cervical cancer is the second most common type of cancer and the 
third leading cause of cancer deaths in women in developing countries 
[1–3]. Previous studies had revealed that transcription factors, miRNAs, 
and RNA binding proteins were involved in cervical cancer progression. 
For example, AP-2β suppressed cervical cancer cell proliferation by in-
ducing the degradation of β-catenin [4], and microRNA-221-3p promoted 
cervical cancer metastasis by targeting THBS2 [5]. However, the molec-
ular mechanisms underlying the initiation and progression of cervical 
cancer remained to be further explored. 
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Long non-coding RNAs (lncRNAs) were a  type 
of non-coding RNAs more than 200 nucleotides in 
length [6, 7]. Interestingly, several studies showed 
that a few lncRNAs had protein coding potential. 
Recent reports demonstrated the important roles 
of lncRNAs in cancer progression [8]. LncRNAs 
were differently expressed in various human can-
cers, such as prostate cancer, lung cancer and 
breast cancer, and were involved in regulating 
widespread biological processes, including cell 
proliferation, apoptosis, metastasis and autoph-
agy [9–11]. In cervical cancer, lncRNAs had been 
revealed to be involved in tumor proliferation, ra-
dio-resistance and metastasis regulation. For ex-
ample, HOTAIR promoted HeLa cell migration and 
invasion by inhibiting miR206 [12], and HOXD-AS1 
regulated cervical cancer proliferation by activat-
ing Ras/ERK signaling [13]. However, the roles of 
lncRNAs in cervical cancer progression remained 
to be further explored.

In the present study, we aimed to identify differ-
entially expressed lncRNAs and mRNAs in cervical 
cancer progression by analyzing the public dataset 
GSE63514, including 24 normal, 14 CIN1 lesions, 
22 CIN2 lesions, 40 CIN3 lesions, and 28 cervical 
cancer samples. We constructed a protein-protein 
interaction network and lncRNA co-expression 
network to reveal the potential roles of cervical 
cancer related mRNAs and lncRNAs. This study will 
provide useful information to explore the poten-
tial candidate biomarkers for diagnosis, prognosis, 
and drug targets for cervical cancer.

Material and methods

Microarray data and data preprocessing

In this study, we downloaded a public dataset, 
GSE63514 [14], from NCBI GEO datasets (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?ac-
c=GSE63514). GSE63514 dataset including 24 
normal, 14 CIN1 lesions, 22 CIN2 lesions, 40 CIN3 
lesions, and 28 cervical cancer samples. All sam-
ples were cryosectioned and used for laser-cap-
ture, RNA extraction, two rounds of T7-mediated 
amplification, and cRNA biotinylation. Then, bio-
cRNA was hybridized to Affymetrix U133-Plus 
2.0 arrays, and scanned signals were processed 
through GC-RMA. We used the limma package 
in R software to normalize the raw data (https://
www.r-project.org/). The differentially expressed 
mRNA and lncRNAs were identified by the linear 
models for microarray analysis (Limma) meth-
od [15]. The gene expression among 24 normal,  
14 CIN1 lesions, 22 CIN2 lesions, 40 CIN3 lesions, 
and 28 cervical cancer samples with thresholds of 
|log FC| > 1.5 and p < 0.001 were identified to be 
differentially expressed. Hierarchical cluster analy-
sis of differentially expressed mRNAs and lncRNAs 

was performed using CLUSTER 3.0, and the hierar-
chical clustering heat map was visualized by Tree 
View [16].

LncRNA classification pipeline

Previous studies indicated many mRNA mi-
croarray datasets including many long non-coding 
RNAs probes. In this study, we screened differently 
expressed lncRNAs in cervical cancer progression 
by applying a  pipeline reported by Zhang et al. 
[17]. Briefly, first, the GPL570 platform of Affyme-
trix Human Genome U133 Plus 2.0 Array (Affyme-
trix Inc., Santa Clara, California, USA) probe set 
ID was mapped to the NetAffx Annotation Files 
(HG-U133 Plus 2.0 Annotations, CSV format, re-
lease 31, 08/23/10). The annotations included the 
probe set ID, gene symbol, and Refseq transcript 
ID. Second, the probe sets that were assigned with 
a Refseq transcript ID in the NetAffx annotations 
were extracted. In this study, we only retained 
those labeled as “NR_” (NR indicates non-coding 
RNA in the Refseq database). Finally, 2448 anno-
tated lncRNA transcripts with corresponding Affy-
metrix probe IDs were generated. LncRNAs having 
fold changes ≥ 2 and p < 0.05 were selected as of 
significantly differential expression.

GO and KEGG pathway analysis

To identify functions of DEGs in cervical cancer, 
we performed GO function enrichment analysis in 
3 functional ontologies: biological process (BP), 
cellular component (CC) and molecular function 
(MF). KEGG pathway enrichment analysis was also 
performed to identify pathways enriched in smok-
ing related lung cancer using the DAVID system 
(https://david.ncifcrf.gov/). The p-value less than 
0.05 was considered as significant.

Construction of PPI network and module 
analysis

In order to predict protein interactions, which 
included physical and functional associations, the 
present study used the Search Tool for the Re-
trieval of Interacting Genes (STRING) to construct 
the PPI network for DEGs (minimum required in-
teraction score > 0.4) [18]. The interaction rela-
tionships of the proteins encoded by DEGs were 
searched by STRING online software, and the 
combined score > 0.4 was used as the cut-off 
criterion. In addition, Cytoscape software version 
3.4.0 (http://cytoscape.org/download_old_ver-
sions.html) was used for visualization of the PPI 
networks [19]. Following the construction of the 
PPI network, a  module analysis of the network 
was performed using the MCODE plug-in (degree 
cut-off ≥ 2 and the nodes with edges ≥ 2-core) 
[20]. Additionally, the Network Analyzer was used 
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to compute the basic properties of the PPI net-
work, including average clustering co-efficient 
distribution, closeness centrality, average neigh-
borhood connectivity, node degree distribution, 
shortest path length distribution, and topological 
coefficients [21].

Co-expression network construction and 
analysis

In this study, the Pearson correlation coefficient 
of DEG-lncRNA pairs was calculated according to 
their expression value. The co-expressed DEG-ln-
cRNA pairs with the absolute value of Pearson 
correlation coefficient ≥ 0.75 were selected and 
the co-expression network was established using 
Cytoscape software. Cytoscape MCODE plug-in 
(Version 3.4.0, available online: http://www.cy-
toscape.org/) was applied for visualization of the 
co-expression networks.

Statistical analysis

All statistical analysis of this research was 
carried out using SPSS 18.0 statistical software. 
Statistical comparisons between groups of nor-
malized data were performed using the t-test or 
Mann-Whitney U-test according to the test condi-
tion. A p < 0.05 was considered statistically signif-
icant with a 95% confidence level.

Results

Identification of differentially expressed 
mRNAs and lncRNAs in cervical cancer 

In the present study, we analyzed the GSE63514 
dataset to identify differentially expressed genes 
in cervical cancer progression. The gene expres-
sion with |logFC| > 1 and p < 0.05 among 24 nor-
mal samples, 14 CIN1 lesions, 22 CIN2 lesions, 40 
CIN3 lesions, and 28 cervical cancer samples was 
identified to be differently expressed. A  total of 
4799 mRNAs were identified as cervical cancer 
progression related genes. Among these mRNAs, 
3021 mRNAs were up-regulated and 1605 mRNAs 
were down-regulated in cervical cancer progres-
sion. The top up-regulated and down-regulated 
10 mRNAs involved in cervical cancer progression 
are listed in Tables I and II. As shown in Figure 1 A,  
hierarchical clustering analysis was performed to 
show the DEGs in the progression of cervical can-
cer from normal to cancer.

Here, we found that GSE63514 provided a good 
platform to evaluate the functional roles of lncRNAs 
in cervical cancer tumorigenesis. After applying the 
lncRNA classification pipeline reported by Zhang 
et al., 3687 lncRNA probes were found in the 
GSE63514 dataset. We then compared the lncRNA 
expression patterns between normal and all grades 

of lesions. We for the first time found that 278 ln-
cRNAs were associated with cervical cancer pro-
gression. Among these lncRNAs, 172 lncRNAs were 
up-regulated and 106 lncRNAs were down-regulat-
ed in the cervical cancer progression. Of note, sev-
eral lncRNAs, including TUG1, MEG3 and XIST, had 
been reported to be associated with cervical can-
cer proliferation and metastasis. The top up-regu-
lated and down-regulated 10 lncRNAs involved in 
cervical cancer progression are listed in Tables III  
and IV. Hierarchical clustering analysis of the ln-
cRNAs in cervical cancer is shown in Figure 1 B.

Construction of PPI networks for 
differentially expressed mRNAs in cervical 
cancer 

We constructed the protein-protein interaction 
network analysis for 4799 differently expressed 
mRNAs by using the STRING database. We then 
used the Mcode plug-in to identify key networks 
with degree cut-off ≥ 2 and the nodes with edges 
≥ 2-core in the total PPI network. The top 5 up-reg-
ulated hub-networks and top 3 down-regulated 
hub-networks are shown in Figure 2. 

Co-expression network analysis  
of differently expressed lncRNAs  
in cervical cancer progression

We next constructed the gene co-expression 
network between lncRNAs and mRNAs in cervi-
cal cancer progression. We performed the cor-
relation analysis for mRNAs and lncRNAs by cal-
culating the Pearson correlation coefficient in all 
samples and selected lncRNA-mRNA pairs with  
|R| > 0.65 for co-expression network construction. 
As shown in Figure 3, a total of 278 lncRNAs and 
786 mRNAs were included in this network. Inter-
estingly, we observed many antisense lncRNAs 
co-expressed with sense mRNAs, including the 
MFI2-AS1-MFI2 pair, PSMB8-AS1-PSMB9 pair, and  
HOXB-AS3-HOXB6 pair (Figure 3 A). Several well-
known lncRNAs, such as MALAT1 and DLEU2, were 
also revealed to play important roles in cervical 
cancer progression (Figure 3 B). Among these ln-
cRNAs, lncRNA RP11-173B14.4, RP11-308D16.4, 
LOC100630918, and RP13-270P17.3 were identi-
fied as key lncRNAs in this network by regulating 
about 190 mRNAs (Figure 3 C).

GO and KEGG analysis of differentially 
expressed lncRNAs in cervical cancer 
progression

Furthermore, we performed GO and KEGG 
analysis for differentially expressed lncRNAs (Fig- 
ures 4 A–C). GO analysis showed that differen-
tially expressed lncRNAs were mainly involved in 
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regulating transcription, cell division, DNA repair, 
mRNA splicing, via spliceosome, cellular response 
to DNA damage stimulus, DNA replication, G2/M 
transition of mitotic cell cycle, regulation of the 
cell cycle, sister chromatid cohesion, and dou-
ble-strand break repair. 

KEGG pathway analysis revealed that cervical 
cancer progression related lncRNAs were primarily 
enriched in pathways associated with the cell cy-
cle, focal adhesion, RNA transport, Wnt signaling 
pathway, RNA degradation, lysosome, pancreatic 
cancer, VEGF signaling pathway, colorectal cancer, 
and glycosaminoglycan biosynthesis (Figure 4 D).

Functional prediction of key lncRNA-mRNAs 
network

In this study, we observed 2 key lncRNA-mRNAs’ 
co-expression network. In order to predict the 
function of three key lncRNA-mRNA networks, the 
intersection mRNA was analyzed by the Cytoscape 
plug-in ClueGo and DAVID. Our results showed 
that hub lncRNA-mRNAs network 1 was involved 
in regulating the cell cycle, cellular response to 

DNA damage stimulus, chromosome organization, 
nucleic acid metabolic process, immune response 
and the G-protein coupled receptor signaling 
pathway (Figure 5 A). Hub lncRNA-mRNAs net-
work 2 was involved in regulating Th1 and Th2 cell 
differentiation, the Wnt signaling pathway, glycos-
aminoglycan biosynthesis and protein O-linked 
glycosylation (Figure 5 B). 

Discussion

Cervical cancer is one of the most common 
types of cancer in females [1]. However, the mo-
lecular mechanisms underlying the initiation and 
progression of cervical cancer remained to be 
further explored. In this study, we analyzed the 
GSE63514 dataset to identify differentially ex-
pressed genes in cervical cancer progression. We 
observed that 3021 mRNAs were up-regulated 
and 1605 mRNAs were down-regulated in cervi-
cal cancer progression. Meanwhile, we for the first 
time found that 172 lncRNAs were up-regulated 
and 106 lncRNAs were down-regulated in cervical 
cancer progression.

Figure 1. Identification of differentially expressed mRNAs and lncRNAs in cervical cancer. A – Hierarchical clustering 
analysis shows differential mRNAs expression in cervical cancer by using GSE63514. B – Hierarchical clustering 
analysis shows differential lncRNAs expression in cervical cancer by using GSE63514
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Previous studies had revealed that several pro-
teins were involved in regulating cervical cancer 
progression. For example, GADD45α increased 
cytoplasmic APE1 levels to sensitize cervical can-
cer cells to radiotherapy [22]. PD-L1 was found 
to promote glucose metabolism in cervical can-
cer [23]. However, there was still no system-wide 
identification of cervical cancer progression re-
lated genes. Here, we analyzed the GSE63514 
dataset, which included 24 normal samples,  
14 CIN1 lesions, 22 CIN2 lesions, 40 CIN3 lesions, 
and 28 cervical cancer samples. A  total of 3021 
mRNAs were up-regulated and 1605 mRNAs were 
down-regulated in cervical cancer progression. In 

order to explore the potential roles of these genes, 
we constructed PPI networks. Our results showed 
that several genes, including CDK1, OIP5, NCAPG, 
CCNA2, AURKB and HMMR, played key roles in cer-
vical cancer progression.

Recent studies showed lncRNAs played crucial 
roles in tumor proliferation, apoptosis, metastasis, 
and invasion. In cervical cancer, several lncRNAs 
were found to be dysregulated in tumor samples. 
For instance, lncRNA PCAT-1 regulated cervical 
cancer cell proliferation, metastasis and invasion 
[24]. Silencing HOXD-AS1 remarkably suppressed 
proliferation of cervical cancer cells by regulating 
Ras/ERK signaling [13]. LncRNA TUG1 promoted 

Figure 2. Construction of PPI networks for differentially expressed mRNAs in cervical cancer. The top 5 up-regulated  
hub-networks and top 3 down-regulated hub-networks
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Figure 3. Co-expression network analysis of differentially expressed lncRNAs in cervical cancer progression.  
The gene co-expression network between lncRNAs and mRNAs in cervical cancer progression. 278 lncRNAs and 
786 mRNAs were included in this network

A B

C



Li Jiang, Li Hong, Wenwu Yang, Yuzi Zhao, Aili Tan, Yang Li

762� Arch Med Sci 3, May / 2019

Figure 4. GO and KEGG analysis of differentially expressed lncRNAs in cervical cancer progression. A–C – GO 
analysis shows differentially expressed lncRNA associated biological processes (A), cellular component (B) and 
molecular function (C). D – KEGG pathway analysis shows differentially expressed lncRNAs associated pathways

cervical cancer progression by affecting the miR-
138-5p-SIRT1 axis [25]. Meanwhile, HOTAIR was 
reported to be an oncogene to promote cervical 
cancer growth and migration [26]. However, the 
roles of lncRNAs in cervical cancer progression re-
mained unclear. In this study, we identified 172 
lncRNAs that were up-regulated and 106 lncRNAs 
that were down-regulated in cervical cancer pro-
gression. Of note, several lncRNAs, including 
TUG1, MEG3 and XIST, had been reported to be 
associated with cervical cancer proliferation and 
metastasis [27, 28]. However, most of these ln-
cRNAs were never reported in human cancers. Our 
study for the first time comprehensively revealed 
cervical cancer progression related lncRNAs. 

The function roles of most lncRNAs remained 
largely unclear. Recently, gene co-expression net-
work analysis was widely used to evaluate poten-
tial roles of lncRNAs. For example, Du et al. [29] 
performed lncRNA-mRNA co-expression analysis 
in thyroid cancer and Li et al. [30] constructed ln-
cRNAs and circRNAs mediated co-expression and 
ceRNA networks in mouse germline stem cells. 
Here, we also performed co-expression network 
analysis of differentially expressed lncRNAs in 
cervical cancer progression. Interestingly, we ob-
served many antisense lncRNAs co-expressed with 

sense mRNAs, including the MFI2-AS1-MFI2 pair, 
PSMB8-AS1-PSMB9 pair, and HOXB-AS3-HOXB6 
pair. Bioinformatics analysis showed that these ln-
cRNAs played important roles in regulating the cell 
cycle, cell division, DNA repair, and mRNA splicing. 
Moreover, we identified two hub lncRNA-mRNA 
networks. Hub network 1 was involved in regulat-
ing the cell cycle, cellular response to DNA damage 
stimulus, chromosome organization, and the im-
mune response, and Hub l network 2 was involved 
in regulating Th1 and Th2 cell differentiation and 
the Wnt signaling pathway. 

In conclusion, we identified that 4799 mRNAs 
and 278 lncRNAs were differentially expressed in 
cervical cancer progression. Co-expression net-
work analysis showed that lncRNAs were widely 
co-expressed with cell cycle related genes in cervi-
cal cancer, implicating the important roles of these 
lncRNAs in cell proliferation regulation. Of note, 
we identified two hub lncRNA-mRNA networks. 
We believe that our analysis could provide novel 
insights to explore the potential mechanisms un-
derlying cervical cancer progression.
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Figure 5. Functional prediction of key lncRNA-mRNAs network. A – Hub lncRNA-mRNAs network 1 was involved in 
regulating Th1 and Th2 cell differentiation, Wnt signaling pathway, glycosaminoglycan biosynthesis and protein 
O-linked glycosylation. B – Hub lncRNA-mRNAs network 2 was involved in regulating cell cycle, cellular response to 
DNA damage stimulus, chromosome organization, and immune response
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