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Abstract

Prevention of COVID‐19 on a global scale will require the continued development of

high‐volume, low‐cost platforms for the manufacturing of vaccines to supply

ongoing demand. Vaccine candidates based on recombinant protein subunits remain

important because they can be manufactured at low costs in existing large‐scale pro-

duction facilities that use microbial hosts like Komagataella phaffii (Pichia pastoris). Here,

we report an improved and scalable manufacturing approach for the SARS‐CoV‐2 spike

protein receptor‐binding domain (RBD); this protein is a key antigen for several

reported vaccine candidates. We genetically engineered a manufacturing strain of K.

phaffii to obviate the requirement for methanol induction of the recombinant gene.

Methanol‐free production improved the secreted titer of the RBD protein by >5X by

alleviating protein folding stress. Removal of methanol from the production process

enabled to scale up to a 1200 L pre‐existing production facility. This engineered strain is

now used to produce an RBD‐based vaccine antigen that is currently in clinical trials and

could be used to produce other variants of RBD as needed for future vaccines.

K E YWORD S

COVID‐19, genetic engineering, microbial engineering, Pichia pastoris, recombinant protein,
subunit vaccine

1 | INTRODUCTION

As new variants of severe acute respiratory syndrome coronavirus 2

(SARS‐CoV‐2) emerge, continued development of diagnostics,

vaccines, and reagents remains essential to address the COVID‐19

pandemic. The SARS‐CoV‐2 spike protein is an essential reagent for

serological assays, and a component of several protein‐based

vaccines (Guebre‐Xabier et al., 2020; Tian et al., 2021). Vaccine candi-

dates based on protein subunits are also important ones for enabling

interventions for the pandemic in low‐ and middle‐income countries due

to existing large‐scale manufacturing facilities and less stringent tem-

perature and storage requirements for distribution (Dai et al., 2020). We
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and others have reported vaccine designs based on the receptor‐binding

domain (RBD) of the spike protein (Dalvie et al., 2021). In these designs,

the RBD can be produced independently, and subsequently, displayed

on protein or lipid nanoparticles for enhanced immunogenicity (Cohen

et al., 2021; Walls et al., 2020). The 201 amino acid RBD is an especially

promising antigen for accessible vaccines because it can be manu-

factured at low cost and with high volumes in microbial hosts (Chen

et al., 2020; Pollet et al., 2021). Here, we report an engineered yeast

strain with enhanced secretion of the SARS‐CoV‐2 RBD from the

circulating variants of Wuhan Hu‐1, B.1.1.7, and B.1.351 strains of the

virus. This engineered host has been successfully deployed at a 1200 L

scale to produce a vaccine component currently in clinical trials.

The methylotrophic yeast Komagataella phaffii (Pichia pastoris) is

routinely used for the production of therapeutic proteins at large

volumes because of its high‐capacity eukaryotic secretory pathway

(K. R. Love et al., 2018). Another key advantage of this production

host is the strong, tightly regulated, methanol‐inducible promoter,

PAOX1, used for the expression of the recombinant gene (Ahmad

et al., 2014). This promoter enables outgrowth to high cell densities

with inexpensive feedstock like glycerol before induction of the re-

combinant gene with methanol feed. Methanol can pose challenges,

however, in large‐scale facilities, including high heat generation

during fermentation and flammability concerns while in storage

(Potvin et al., 2012). The impact of these challenges is that facilities

require specific designs or modifications to handle methanol. This

requirement could limit the number of manufacturing facilities

available for the production of vaccine components like the RBD

antigens in K. phaffii in a pandemic. We sought to reduce or eliminate

the requirement for methanol for efficient secretion of the RBD.

We previously reported the production of the SARS‐CoV‐2

RBD (Wuhan‐Hu‐1 sequence) in an engineered variant of K. phaffii

(Brady et al., 2020; Dalvie et al., 2021). To assess the feasibility of

methanol‐free production, we cultivated the strain expressing RBD

regulated under the native AOX1 promoter, and induced expression

of the recombinant gene with varying amounts of methanol

(Figure 1a). Interestingly, the approximate secreted titers of RBD

increased as the concentrations of methanol were reduced. We also

induced protein production with a combination of methanol and

sorbitol—a supplementary carbon source that does not repress

PAOX1 expression—and observed a further increase in titer.

Given our observation of improved productivity with reduced

quantities of methanol in batch cultivations, we hypothesized that we

could achieve or maintain productive secretion of the RBD in

the absence of methanol with suitable engineering of the strain. The

expression of genes regulated by PAOX1 in wild‐type K. phaffii in the

absence of methanol is inconsistent, even with nonrepressive carbon

sources like sorbitol (Vogl et al., 2018). Several studies, however, have

demonstrated that constitutive overexpression of activating transcrip-

tion factors likemit1 andmxr1 can lead to consistent activation of PAOX1

without methanol (Shi et al., 2019; Vogl et al., 2018). To test the pro-

duction of RBD without methanol, we integrated additional copies of

the endogenous transcription factors mit1 and mxr1 into the K. phaffii

genome under a glycerol‐repressible promoter (Dalvie et al., 2019). We

cultivated these strains for protein production by feeding with only

sorbitol (Figure 1b). We observed a >threefold increase in specific

productivity in all strains, particularly with a strain containing only one

extra copy of the transcription factor mit1 (>fivefold).

To assess the potential source of improved productivity, we per-

formed a comparison of the methanol‐fed base strain and the modified,

sorbitol‐fed mit1+ strain. We observed no intracellular accumulation of

RBD protein in either strain (Figure S1a). Next, we examined the tran-

scriptomes of the methanol‐fed initial strain and the modified, sorbitol‐

fed mit1+ strain by RNA‐sequencing. The sorbitol‐fed mit1+ strain

appeared to produce less RBD transcript than the methanol‐fed base

strain, but the difference was not significant (unpaired t‐test, p = 0.06)

(Figure S1b). We analyzed the variations in gene expression by gene set

enrichment analysis (GSEA; Figure 1c). We observed significantly higher

expression of genes associated with protein folding stress in the

methanol‐fed condition compared to the sorbitol‐fed mit1+ condition

(family‐wise error p= 0.003). These results suggest that sorbitol‐fed

mit1+ may improve productivity by mitigating protein folding stress

associated with RBD production.

To determine whether the observed reduction in protein folding

stress was due to the sorbitol feed or the mit1+ engineering, we

cultivated themit1+ strain with different feed conditions (Figure S1c).

We observed that the specific productivity of secreted RBD was

F IGURE 1 Improved productivity and decreased stress in methanol‐free RBD expression. (a) Approximate titers of secreted RBD from
individual cultures of the base strain in 3‐ml plate culture, measured by reverse‐phase liquid chromatography. (b) Performance of three
engineered strains in 3‐ml plate culture. Error bars represent the standard deviation of three biological replicates. (c) Enriched gene sets between
the base strain (orange) and the mit1+ strain (purple). RBD, receptor‐binding domain; v/v, volume per volume

658 | DALVIE ET AL.



reduced in 5% methanol feed, even with the mit1+ engineering. The

improvement in specific productivity, therefore, can be primarily at-

tributed to the elimination of methanol as a carbon source. This

observation is consistent with previous transcriptomic studies about

methanol metabolism in K. phaffii (Lin et al., 2021; Vanz et al., 2012).

Further studies are warranted to determine the interplay between

the transcript level and types and quantities of carbon source on

productivity.

After comparing the specific productivity of the methanol‐free

strain (mit1+) to the methanol‐induced (base) strain, we assessed the

production of RBD using both strains on InSCyT, a continuous,

automated, perfusion‐based manufacturing platform (Crowell

et al., 2018). The base strain exhibited low titers (∼30mg/L) in per-

fusates and significant cell lysis after ∼120 h of fermentation in

perfusion (Figure 2a,b). In contrast, the mit1+ strain maintained

protein secretion at >50mg/L/day for the duration of a >200 h

campaign. RBD purified from the perfusates produced by the base

strain also contained more host‐related impurities than RBD from

the mit1+ campaign (Figure 2c). These results from the sustained

production of RBD, including the cell lysis observed in the base

strain, are consistent with the observations for increased cellular

stress relative to the mit1+ strain, and suggest the transcriptional

changes observed also translated into variation in protein expression

as well.

From these data for the improved production of RBD in bior-

eactors with the modified strain without methanol, we then gener-

ated a mit1+ strain that expressed RBD with a C‐terminal fusion of

SpyTag, a short peptide that can mediate a transpeptidation reaction

with a cognate SpyCatcher polypeptide, which can be presented on

protein nanoparticles for example (Reddington & Howarth, 2015). We

expressed and purified the RBD‐Spytag from this strain in a 200ml

shake flask culture. We also transferred this mit1+ strain encoding

RBD‐SpyTag, to a facility for good manufacturing practice manu-

facturing in a 1200‐L fed‐batch process. In this process, the strain

produced 21mg per liter of fermentation of purified, clinical quality

RBD‐SpyTag, or approximately >1 million doses from a single reactor

batch, assuming a vaccine formulation with 25 µg of RBD‐SpyTag per

dose. The two purified products from each production scale were

similar by sodium dodecyl sulphate–polyacrylamide gel electrophor-

esis (SDS‐PAGE), and exhibit nearly identical glycan profiles, indicat-

ing consistency in the quality attributes of the molecules produced

at these two scales with this modified strain for methanol‐free

production (Figure 3).

We next sought to assess whether or not this modified mit1+

strain could improve the production of sequence variants for other

circulating SARS‐CoV‐2 virus strains as well. We generated strains

expressing RBD‐B.1.1.7 and RBD‐B.1.351 in both the base and mit1+

strain backgrounds, and evaluated their specific productivities in

different media for production (Figure 4). In all strains, reduced

methanol feed improved productivity. For all RBD variants, only

mit1+ engineered strains maintained improved productivity in the

absence of methanol. This result demonstrates that the engineered

mit1+ strain could facilitate new cell lines for manufacturing other

RBD variants without methanol for seasonal vaccine boosters or

next‐generation vaccine candidates for emerging variants.

In conclusion, we report here a strain that enables the

manufacturing of SARS‐CoV‐2 RBD variants without methanol.

This strain exhibits improved secreted productivity due to a

reduction in protein folding stress. We demonstrated sustained

productivity from the strain in a perfusion process, and scale‐up to

a large‐scale, methanol‐free fed‐batch process to produce a

vaccine component currently in clinical trials. In this case, manu-

facturing at the 1200 L scale was possible with the elimination of

the requirement for methanol in the medium. Strains engineered

for use without methanol and increased productivity could

facilitate the manufacturing of RBD and other antigens for vaccine

candidates at large volumes and low costs to enable accessible and

affordable vaccines for global use.

F IGURE 2 Sustained productivity of the methanol‐free strain in perfusion fermentation. (a) Reduced SDS‐PAGE of upstream reactor
samples for the duration of each campaign. (b) Upstream reactor titer of RBD. (c) Host cell protein concentrations in purified pools of
RBD, measured by ELISA. Error bars represent the standard deviation of three technical replicates. ELISA, enzyme‐linked immunoassay;
PPM, parts per million; RBD, receptor‐binding domain; SDS‐PAGE, sodium dodecyl sulphate–polyacrylamide gel electrophoresis
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2 | MATERIALS AND METHODS

2.1 | Yeast strains

All strains were derived from wild‐type K. phaffii (NRRL Y‐11430).

The base strain was described previously (Brady et al., 2020). The

gene containing the RBD was codon‐optimized, synthesized

(Integrated DNA Technologies), and cloned into a custom vector.

The RBD vector was transformed as described previously

(Dalvie et al., 2019). Transcription factors mit1 and mxr1 were

integrated into the genome near genomic loci GQ67_02967 and

GQ67_04576, respectively, using a markerless CRISPR‐Cas9

system described previously (Dalvie et al., 2019). Both mit1 and

mxr1 were under the control of the PCAT1 promoter from K. phaffii.

Sequences for PCAT1, mit1, and mxr1 were amplified from the

K. phaffii genome. All plasmid sequences are included in the

Supporting Information.

2.2 | Cultivations

Strains for initial characterization and titer measurement were grown

in 3ml culture in 24‐well deep‐well plates (25°C, 600 rpm), and

strains for protein purification were grown in 200ml culture in 1 L

shake flasks (25°C, 250 rpm). Cells were cultivated in Rich Defined

Media, described previously (Matthews et al., 2018). Cells were in-

oculated at 0.1 OD600, outgrown for 24 h with 4% glycerol feed,

pelleted, and resuspended in fresh media with methanol or sorbitol

feed to induce recombinant gene expression. Supernatant samples

were collected after 24 h of production, filtered, and analyzed. In-

SCyT bioreactors and purification modules were operated as de-

scribed previously (Crowell et al., 2018; Dalvie et al., 2021).

2.3 | Analytical assays for protein characterization

Purified protein concentrations were determined by absorbance at

A280 nm. SDS‐PAGE was carried out as described previously

(Crowell et al., 2018). Supernatant titers were measured by reverse‐

phase liquid chromatography (LC) as described previously (Dalvie

et al., 2021), and normalized by cell density, measured by OD600.

Intact mass spectrometry was performed as described previously

(Dalvie et al., 2021) but with the following modifications: LC gradient

of 5%–95% solvent B over 4min at a flow rate of 0.8 ml/min, and

250 V fragment or voltage.

2.4 | Transcriptome analysis

Cells were harvested after 18 h of production at a 3ml plate scale.

RNA was extracted and purified according to the Qiagen RNeasy Kit

(cat #74104) and RNA quality was analyzed to ensure RNA quality

number >6.5. RNA libraries were prepared using the 3′‐digital gene

expression method and sequenced on an Illumina Miseq to generate

F IGURE 3 RBD‐SpyTag produced at lab scale and GMP scale. (a) Reduced SDS‐PAGE of RBD‐SpyTag in crude shake flask supernatant,
purified from shake flask cultivation, and purified from a fed‐batch process. (b) Intact mass spectra of purified RBD‐SpyTag from each
manufacturing process. Overlayed spectra are before and after treatment with PNGase. GMP, good manufacturing practice;
RBD, receptor‐binding domain; SDS‐PAGE, sodium dodecyl sulphate–polyacrylamide gel electrophoresis

F IGURE 4 Methanol‐free production of RBD variants in 3‐ml
culture. Error bars represent standard deviation across three
biological replicates. Significance was determined by multiple t‐tests
with Holm Sidak correction. ns, not significant; RBD, receptor‐binding
domain. *p < 0.01, ****p < 0.000001
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paired reads of 20 (Read 1) and 72 bp (Read 2). Sequenced messenger

RNA transcripts were demultiplexed using sample barcodes and

polymerase chain reaction duplicates were removed by selecting one

sequence read per unique molecular identifier using a custom python

script. Transcripts were quantified with Salmon version 1.1.0 (Patro

et al., 2017) and selective alignment using a target consisting of the K.

phaffii transcripts, the RBD, and selectable marker transgene se-

quences, and the K. Phaffii genome as a selective alignment decoy.

Expression values were summarized with tximport version 1.12.3

(Soneson et al., 2016) and edgeR version 3.26.8 (McCarthy

et al., 2012; Robinson et al., 2009). Expression was visualized using

log2(Counts per Million + 1) values. GSEA was performed with GSEA

4.1.0 using Wald statistics calculated by DESeq. 2 (M. I. Love

et al., 2014) and gene sets from yeast gene ontology slim

(Subramanian et al., 2005).
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