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Abstract

The latency of neural responses in the visual cortex changes systematically across

the lifespan. Here, we test the hypothesis that development of visual white matter

pathways mediates maturational changes in the latency of visual signals. Thirty-eight

children participated in a cross-sectional study including diffusion magnetic reso-

nance imaging (MRI) and magnetoencephalography (MEG) sessions. During the MEG

acquisition, participants performed a lexical decision and a fixation task on words

presented at varying levels of contrast and noise. For all stimuli and tasks, early

evoked fields were observed around 100 ms after stimulus onset (M100), with slower

and lower amplitude responses for low as compared to high contrast stimuli. The

optic radiations and optic tracts were identified in each individual's brain based on

diffusion MRI tractography. The diffusion properties of the optic radiations predicted

M100 responses, especially for high contrast stimuli. Higher optic radiation fractional

anisotropy (FA) values were associated with faster and larger M100 responses. Over

this developmental window, the M100 responses to high contrast stimuli became

faster with age and the optic radiation FA mediated this effect. These findings sug-

gest that the maturation of the optic radiations over childhood accounts for individ-

ual variations observed in the developmental trajectory of visual cortex responses.
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1 | INTRODUCTION

Electrophysiological responses in visual cortex are subject to a high

degree of variability. It is known that these responses reliably differ

among individuals and change over development (Allison, Hume,

Wood, & Goff, 1984; Onofrj, Thomas, Iacono, D'Andreamatteo, &

Paci, 2001). Being able to account for these variations will improve

our understanding of the brain circuits and their developmental

Received: 3 May 2021 Revised: 23 August 2021 Accepted: 27 August 2021

DOI: 10.1002/hbm.25654

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2021;42:5785–5797. wileyonlinelibrary.com/journal/hbm 5785

https://orcid.org/0000-0003-3667-5061
mailto:caffarra@stanford.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/hbm


trajectories in health and disease. One possible source of variability in

electrophysiology lies in structural properties of the white matter

tracts (Kanai & Rees, 2011; Wandell, 2016), which carry signals to the

cortex. In the last two decades, novel neuroscientific tools (including

tractography) have opened the possibility to address this question and

explore the relation between functional and structural properties of

the brain (Jeurissen, Descoteaux, Mori, & Leemans, 2019;

Wandell, 2016). In this study, we combine diffusion magnetic reso-

nance imaging (dMRI) and tractography with magnetoencephalogra-

phy (MEG), to examine the variability of visual responses during

childhood. We asked whether developmental differences in visual

response properties are the result of the maturation of the white mat-

ter pathways carrying visual signals. Specifically, we test the hypothe-

sis that developmental variations of visual pathways mediate age

effects on electrophysiological responses.

In neurologically healthy individuals, any visual input elicits elec-

trophysiological responses roughly 100 ms after stimulus presenta-

tion, though the precise timing varies by as much as 50 ms among

individuals (Allison et al., 1984; Kolb, Fernandez, and Nelson, 2005;

Odom et al., 2004; Spear, 1993; Vialatte, Maurice, Dauwels, &

Cichocki, 2010). These visually evoked responses can be recorded

over the occipital part of the scalp and have their neural source in the

early visual cortex. There is consistent evidence that the latency of

visual responses change substantially across the lifespan, with a speed

increase of 10 ms per decade within the first 20 years of age and a

symmetrical slow down after 60 years of age (Allison et al., 1984;

Armstrong, Slaven, & Harding, 1991; Onofrj et al., 2001; Spear, 1993).

The nature of these latency changes is still poorly understood, but

clinical research suggests that the structural properties of visual white

matter pathways can play a crucial role in determining the latency of

visual signals. Studies on patients with demyelinating lesions of the

visual tracts have shown that white matter diffusion properties (such

as fractional anisotropy, FA, or mean diffusivity, MD) predict delays in

the electrophysiological responses of the visual cortex (Alshowaeir

et al., 2014; Berman et al., 2020; Kolbe et al., 2012; Lobsien

et al., 2014; Naismith et al., 2010; M. Y. Takemura et al., 2017). For

instance, patients with lower FA or higher MD of the optic radiations

(the tract connecting the lateral geniculate nucleus to the primary

visual cortex; Figure 1) showed slower visually evoked responses.

These results suggest that the demyelination of visual pathways

(reflected by altered diffusion properties) accounts for conduction

delays of visual signals that are carried from the eyes to the visual cor-

tex, and ultimately explains the latency variability of evoked responses

recorded on the scalp in patient populations.

The relation between visual white matter properties and electro-

physiology has recently been reported in one study of healthy adults

(H. Takemura, Yuasa, & Amano, 2020). This suggests that there may

be sufficient variability in the organization of the optic radiations

among typical adults that the structural differences affect signaling

properties in the visual system. Moreover, three additional studies

have reported a similar structural-functional relationship in the infant

(1–4 months, Dubois et al., 2008; 1–6 months, Adibpour, Dubois, &

Dehaene-Lambertz, 2018), and in the aging brain (18–88 years, Price

et al., 2017). Despite these new findings, the amount of evidence

showing links between electrophysiological responses and white mat-

ter properties is still scarce, and mainly related to clinical populations.

In addition, the age range from 1 to 18 years old remains fully

unexplored.

Childhood represents a crucial developmental phase where many

visual circuits reach maturity (Allison et al., 1984; Gilmore,

Knickmeyer, & Gao, 2018; Onofrj et al., 2001; Siu & Murphy, 2018).

Moreover, this is a developmental window where white matter path-

ways are still rapidly changing and approaching maturity (Lebel

et al., 2012; Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008;

F IGURE 1 Schematic representation of an MEG experimental trial, the experimental conditions, and the visual pathways. On each trial, the
stimulus was shown at a high or low level of contrast (HC or LC), and at a high or low degree of noise (HN or LN). The task required a button press
whenever the fixation dot turned red (fixation task) or whenever a pseudoword was presented (lexical decision task). Visual information is received
by the eyes and carried through the visual pathways (including the optic nerve, the optic tract [OT] and the optic radiation [OR]) to the visual cortex,
where visually evoked responses can be recorded through MEG sensors. A magnetic evoked response peaking around 100 ms (M100 response,
dotted line) from a participant in the present study (S172: male, 9 years old) is displayed here as a representative example of visually evoked response
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Yeatman, Wandell, & Mezer, 2014). However, the potential relation-

ship between these structural and functional maturational variations

is yet to be described. The present study links the structural and func-

tional properties of the visual system in childhood by combining dMRI

with MEG. We show that the maturational differences of the optic

radiations observed during childhood mediate age effects on visually

evoked responses.

2 | MATERIALS AND METHODS

2.1 | Participants

Forty-six children participated in a cross-sectional study including a

dMRI and an MEG session. All the data were manually inspected for

quality of the MEG recordings and artifacts in the dMRI data, and

eight participants were excluded leaving a final sample size of

38 (17 females, mean age: 9.5 years, SD: 1.6, age range: 7–12 years,

between-sessions time gap: 0–35 dd; only two participants had a time

gap different from zero and this time difference did not affect the

main results reported here, see Supporting Information S3). All partici-

pants had normal or corrected-to-normal vision, and no history of

neurological, psychiatric, or sensory disorder. All parents (or legal

guardians) signed a written informed consent, and all participants gave

their verbal assent. The study was conducted in accordance with the

guidelines of the University of Washington Subjects Division and was

approved by the Institutional Review Board. Participant recruitment

met Human Brain Mapping expectation of inclusivity other than as

required scientifically.

Based on the average of the correlations reported in a previous

study of healthy adults using a similar methodology (ravg = .48;

H. Takemura et al., 2020), the present sample size ensures a statistical

power of at least 0.87 (Hulley et al., 2001).

2.2 | MEG materials and experimental design

The MEG data analyzed here came from a previous study on automa-

ticity in the brain's reading circuitry (Joo, Tavabi, Caffarra, &

Yeatman, 2021). In the present study we focused on early MEG

responses evoked by the visual stimuli. The M100 response was the

focus of our analysis given its large amplitude and its high signal-to-

noise ratio (Allison et al., 1984; Onofrj et al., 2001), which makes it a

prominent early visual response that can be reliably measured in chil-

dren. Visual words were presented at two contrast levels (high and

low: HC and LC) and two noise levels (high and low: HN and LN). Two

hundred and forty images of four-letter English words were rendered

in Courier font. Visual stimuli had a Weber contrast of 7.8% or 100%.

In addition, each visual stimulus was mixed with a different percent-

age of noise (20% or 80%), corresponding to the phase-scrambled ver-

sion of the original image. This procedure led to the creation of

readable (20% of noise, LN) and unreadable experimental stimuli (80%

of noise, HN).

The images were presented in four separate runs and repeated

twice (eight runs in total; 60 experimental stimuli per run). Two differ-

ent tasks were carried out in alternating runs on the identical set of

stimuli: a fixation task and a lexical decision task. In order to make

these tasks possible, a colored fixation dot was added at the center of

the screen and a small set of pseudowords (n = 11) was presented for

each run together with the rest of the experimental stimuli. In the fix-

ation task, participants had to press a response button when a fixation

dot turned red. In the lexical decision task, participants had to press a

response button when a pseudoword was presented.

During each MEG experimental trial, a visual stimulus appeared

on the screen for 1 s and was followed by a blank with a random dura-

tion between 620 and 840 ms (see Figure 1). A colored fixation dot

was always present in the center of the screen and changed its color

every 500 ms (among the following options: green, blue, yellow, cyan,

or red). The stimuli were presented on a gray background (50 cd/m2)

and subtended 2.7� at a viewing distance of 1.25 m.

2.3 | MEG acquisition and pre-processing

MEG data were recorded in a magnetically shielded room (Maxshieldł,

Elekta Oy, Helsinki, Finland) using an Elekta-Neuromag MEG device

(including 102 sensors with two planar gradiometers and one magne-

tometer each). MEG recordings were acquired continuously with chil-

dren in sitting position, with a bandpass filter at 0.01–600 Hz and a

sampling rate of 1.2 kHz. Head position inside the helmet was contin-

uously monitored using head position indicator coils. The location of

each coil relative to the anatomical fiducials (nasion, and left and right

preauricular points) was defined with a 3D digitizer (Polhemus

Fastrak, Colchester, VT). About 100 head surface points were

digitized.

MEG data were analyzed using MNE-Python (Gramfort

et al., 2013). The signal was subjected to noise reduction using the

Maxwell filter function and data were individually corrected for head

movements using the average of participants' initial head positions as

a reference. The temporally extended signal space separation method

was applied with a correlation limit of .98 and a segment length of

10 s (Taulu & Hari, 2009; Taulu & Kajola, 2005). Bad channels were

substituted with interpolated values. An Independent Component

Analysis (ICA) was applied to the down-sampled and filtered MEG

continuous signal (each fifth data point was selected, Gramfort

et al., 2013). Downsampling was only used for the ICA analysis and

it was not applied in the subsequent preprocessing steps. Indepen-

dent components corresponding to the heartbeat and ocular arti-

facts were automatically identified and removed from the filtered

MEG signal based on cross-trial phase statistics with the ECG and

EOG channels (Dammers et al., 2008). The average number of

rejected components was 3 (SD: 1.7). MEG epochs were obtained,

including 0.6 s before and 1.6 s after the visual presentation onset.

Residual artifacts exceeding a peak-to-peak amplitude of 1000e�12

fT/cm for gradiometers and of 4000e�14 fT for magnetometers

were automatically rejected. On average, 6% (SD: 8.4) of trials were
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rejected, with no significant difference across conditions

(F(7,296) = 0.09, p = .99).

To obtain evoked related fields (ERFs), artifact-free trials were

low-pass filtered (firwin method was used with upper passband edge

of 40 Hz, filter length: 331 ms), averaged and baseline corrected

(�0.6 to 0 s). ERFs were calculated for each condition and each partic-

ipant and they were quantified by computing the root mean square of

the two gradiometers in each pair.

For each main effect (contrast, noise, and task; 240 trials per con-

dition), ERFs were statistically compared using a nonparametric

cluster-based permutation test (Maris & Oostenveld, 2007). Specifi-

cally, t-statistics were computed for each sensor and time point during

the 0–800 ms time window, and a clustering algorithm formed groups

of channels over time points based on these tests. In order for a data

point to become part of a cluster, a threshold of p = .05 was used

(based on a two-tailed t-test, only vertices with data values more

extreme than t >8 were included in the cluster). The sum of the t-

statistics in a sensor group was then used as a cluster-level statistic,

which was then tested with a randomization test using 1,000 runs.

The M100 peak was identified for each participant as the highest

amplitude fluctuation within the spatio-temporal cluster previously

identified by the cluster-based permutation (8 occipital sensors, 80–

150 ms; see Figure 2). The M100 latency was estimated as the time

point at which the M100 amplitude reached 50% of the peak value

(this relative criterion represents one of the most accurate methods to

estimate the latency of evoked responses and it ensures higher statis-

tical power compared to absolute criteria, Kiesel, Miller, Jolicœur, &

Brisson, 2008). The M100 amplitude at the half peak latency was also

extracted for each participant.

Any significant ERFs effect was reconstructed in the source

space. A cortical MEG source space was constructed using dipoles

with 3 mm spacing. These were constrained to be normal to the corti-

cal surface using Freesurfer (Dale, Fischl, & Sereno, 1999). A forward

solution was calculated to map dipole currents in the source space to

the sensor space (Mosher, Leahy, Shattuck, & Baillet, 1999). Dipole

currents in this whole-brain source space were estimated from the

evoked MEG response. A minimum-norm linear estimation (MNE)

approach was employed (Dale et al., 1999; Hämäläinen &

Ilmoniemi, 1994; Hämäläinen & Sarvas, 1989) with sensor noise

covariance estimated from 100 ms epochs prior to each trial onset.

Source localization data were then mapped to an average brain

(freesurfer averaged brain) using a non-linear spherical morphing

F IGURE 2 ERFs panel: ERFs responses to different levels of contrast, noise, and task over an occipital cluster of sensors (displayed beside the
title panel). The yellow box represents the time window where the main effect of contrast reached its maximum (80–150 ms). Topographic
distribution of each effect at 100 ms (calculated as the difference within each condition pair) is displayed on the right side. TFRs panel: TFRs of
power and intertrial coherence for occipital sensors. Only HC and LC conditions are represented here. Power values are expressed as the relative
change (logratio) from a baseline interval between �0.4 and �0.2 ms. Source activity panel: the neural source of the M100 response is
represented for the HC and LC conditions
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procedure (20 smoothing steps) that optimally aligns individual sulcal–

gyral patterns (Fischl, Sereno, Tootell, & Dale, 1999).

To more completely describe the electrophysiological properties of

visually evoked responses, we characterized the M100 response within

the time-frequency domain. This method explores single MEG trials

within a narrow frequency band. By doing this, the amplitude of the

noise is considerably reduced as compared to single-trial evoked

responses (Herrmann, Rach, Vosskuhl, & Strüber, 2014). Also, the inter-

pretation of time-frequency properties can be better related to the

degree of synchronization of neural oscillatory activity (Z. Zhang, 2019).

Time–frequency representations (TFRs) of power and intertrial

coherence values were calculated using Morlet wavelets on the unfil-

tered data. Single-trial time-frequency values were decomposed

between 1 and 20 Hz (in steps of 1 Hz), with a width of the wavelets

equal to the half of the frequency under interest. The resulting values

were averaged across trials for each condition and each participant. Our

visually evoked responses were evident also in the time-frequency

domain as the most prominent power and intertrial coherence modula-

tion over occipital sensors around 100 ms after stimulus presentation

(see Figure 2). Maximum values of M100 power and intertrial coher-

ence were extracted for each subject using a similar spatio-temporal

cluster employed for the ERFs values extraction (8 occipital sensors, 0–

200 ms, 1–8 Hz; this was the result of a cluster-based permutation

analogous to the one performed for the ERFs).

2.4 | MRI acquisition and pre-processing

Imaging data were recorded using an 8-channel phased-array SENSE

head coil on a 3 T Phillips Achieva scanner (Philips, Eindhoven, the

Netherlands) at the University of Washington Diagnostic Imaging Sci-

ences Center with a 32-channel head coil. A whole-brain anatomical vol-

ume at 0.8 � 0.8 � 0.8 mm resolution was acquired using a

T1-weighted MPRAGE sequence (TR 15.22 s, TE 3 ms, matrix size

320 � 320, field of view 240 � 256 � 169.6, 212 slices). Head motion

was minimized by an inflated cap, and participants were monitored

through a closed-circuit camera system. Diffusion-weighted magnetic

resonance imaging (dMRI) data were acquired with a spatial resolution

of 2.0 mm3 and full brain coverage (phase encoding direction: anterior–

posterior). A diffusion-weighted imaging (DWI) scan was acquired with

64 noncollinear directions (b-value = 2,000 s/mm2) with a TR of

7,700 ms and a TE of 85 ms. The DWI scan also contained four volumes

without diffusion weighting (b-value = 0). In addition, one scan with six

nondiffusion-weighted volumes with a reversed phase encoding direc-

tion (posterior–anterior) was collected to correct for echo-planar imag-

ing distortions related to inhomogeneities in the magnetic field.

The T1-weighted (T1w) images were corrected for intensity non-

uniformity (INU) using N4BiasFieldCorrection (Tustison et al., 2010,

ANTs 2.3.1), and used as T1w-reference throughout the workflow.

The T1w-reference was then skull-stripped using antsBrainExtraction.

sh (ANTs 2.3.1), using OASIS as target template. Spatial normalization

to the ICBM 152 Nonlinear Asymmetrical template version 2009c

(Fonov, Evans, McKinstry, Almli, & Collins, 2009) was performed

through nonlinear registration with antsRegistration (ANTs 2.3.1,

Avants, Epstein, Grossman, & Gee, 2008), using brain-extracted ver-

sions of both T1w volume and template. Brain tissue segmentation of

cerebrospinal fluid (CSF), white-matter (WM), and gray-matter

(GM) was performed on the brain-extracted T1w using FAST (FSL

6.0.3, Y. Zhang, Brady, & Smith, 2001).

Preprocessing and reconstruction were carried out using QSIprep

0.11.5 (https://qsiprep.readthedocs.io/, based on Nipype 1.5.0;

Cieslak et al., 2021; K. Gorgolewski et al., 2011; K. J. Gorgolewski

et al., 2018), which included topup distortion, motion and eddy cur-

rent correction (Andersson, Skare, & Ashburner, 2003; Andersson &

Sotiropoulos, 2016; Smith et al., 2004). Multi-tissue fiber response

functions were estimated using the dhollander algorithm as

implemented in MRtrix3 (Tournier et al., 2019). Fiber orientation dis-

tributions (FODs) in each voxel were estimated via constrained spheri-

cal deconvolution (CSD, Tournier, Calamante, Gadian, &

Connelly, 2004; Tournier et al., 2008) using an unsupervised multi-

tissue method (T. Dhollander, Mito, Raffelt, & Connelly, 2019; Thijs

Dhollander, Raffelt, & Connelly, 2016). FODs were intensity-

normalized using mtnormalize (Raffelt et al., 2017). Probabilistic

tractography was carried out using the default parameters

implemented in QSIprep (10 M streamlines, minimum length: 30 mm,

maximum length: 250 mm). The left and the right optic radiations

were identified using vistasoft (https://github.com/vistalab/vistasoft)

based on two endpoint regions of interest (ROIs) corresponding to the

primary visual cortex and the central part of the thalamus including

the lateral geniculate nucleus (defined based on the AICHA atlas,

Joliot et al., 2015; minimum distance 3 mm). To further clean the tract

from crossing fibers (Fan et al., 2016; Sherbondy, Dougherty, Napel, &

Wandell, 2008), three exclusion ROIs were also used (temporal pole,

and occipital pole from the AICHA atlas, and the posterior portion of

the thalamus based on the brainnetome atlas; minimum distance

3 mm, Fan et al., 2016; Sherbondy et al., 2008). All ROIs were defined

in a MNI template and transformed to each participant's native space

using QSIprep. A final cleaning step was carried out to remove outlier

fibers based on streamline average length and mean Gaussian dis-

tance from the bundle core (threshold of 3 SD, streamlines were res-

ampled to four nodes during the outlier cleaning phase; Yeatman,

Dougherty, Myall, Wandell, & Feldman, 2012). The optic radiations

were clipped at the endpoint ROIs (minimum distance: 3 mm) to avoid

potential partial volume effects at the white matter/gray matter bor-

der (see Supporting Information S1 for a schematic representation of

the bundle segmentation pipeline). The diffusion data were then fitted

with the tensor model using a standard least-squares algorithm. Diffu-

sion metrics were projected onto the previously identified optic radia-

tions and FA was mapped onto each tract. FA values along the tract

were weighted based on each streamline's distance from the core of

the tract (Yeatman et al., 2012). For each participant, the FA values of

the left and right optic radiations were averaged.

A similar approach was taken to identify the optic tract. A first end-

point ROI corresponded to the central part of the thalamus used for the

optic radiations (minimum distance 3 mm). A second waypoint ROI (mini-

mum distance 3 mm) was manually defined at the center of the optic
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chiasm of each participant (5 mm sphere; mean coordinates of the cen-

ter: 0,+3,�16). The tract was further cleaned by removing outlier fibers

based on streamline average length and mean distance from the bundle

core (threshold of 2 and 3 SD, respectively). The average FA values of the

left and right optic tractswere calculated for each participant.

Two additional white matter tracts that were not part of the

visual system (left and right uncinate and corticospinal tract) were seg-

mented and average FA values were calculated using pyAFQ (https://

yeatmanlab.github.io/pyAFQ; Yeatman et al., 2012; Kruper et al.,

in press). These tracts were used as control pathways as they do not

carry visual input from retina to early visual cortex.

2.5 | Statistical analysis

Statistical analyses were carried out with R 4.0.0 (https://www.R-

project.org/). To test the relationship between structural properties of

the optic radiations and latency of visual responses, a Pearson correla-

tion between mean FA values and M100 latency was calculated. A

biweight midcorrelation was also added as a median-based measure

of similarity that is less sensitive to outliers and can be used as a

robust alternative to mean-based similarity estimates, such as Pearson

correlation (Langfelder & Horvath, 2012). To make sure that the FA

effect on electrophysiology held after accounting for developmental

differences, M100 latency was also analyzed using a linear regression

model including FA and Age as predictors. The effect of age on elec-

trophysiological responses was further examined using a causal medi-

ation analysis (as implemented in Tingley, Yamamoto, Hirose, Keele, &

Imai, 2014). Two linear regression models were initially specified: a

mediator model estimating the effect of age on FA, and an outcome

model estimating the effect of FA and age on electrophysiological

responses. The fitted objects of these two models were the inputs to

the mediate function of the mediation R package (Tingley et al., 2014),

which computed the average causal mediation effect (indirect effect

of age on electrophysiology that is related to the FA mediator) and

the average direct effect (effect of age on electrophysiology after par-

tialling out the effect of the FA mediator). The sum of these two

effects resulted in the total effect of age on electrophysiology. A

bootstrap using 1,000 simulations was used to calculate the uncer-

tainty estimates of these mediation results (Efron & Tibshirani, 1994).

Secondary analyses concerned the other properties of the M100

response. Similar FA-M100 correlations, regressions and mediation

analyses were carried out with additional electrophysiological proper-

ties of the M100 response (M100 amplitude, power, and intertrial

coherence) to further understand the relation between structural and

functional properties of the visual brain network.

3 | RESULTS

3.1 | Behavioral results

Participants paid attention to the visual stimuli, as shown by the

intermediate-to-high levels of accuracy in the fixation task (median

accuracy: 81% correct, IQR: 35; median RT: 547 ms, IQR: 124). The

lexical task showed lower accuracy and slower responses as a result

of children's variable reading skills (median: 17%, IQR: 15; median RT:

880 ms, IQR: 391). No significant correlation was observed between

these behavioral performances and the structural or functional brain

measures described below (all ps >.05).

3.2 | MEG results

The M100 responses showed substantial modulations based on the

contrast of the image (see Figure 2) and did not change based on

image noise or cognitive task. In accordance with previous electro-

physiological studies (Abdullah, Aldahlawi, Rosli, Vaegan, &

Maddess, 2012; Gebodh, Isabel Vanegas, & Kelly 2017; Maddess,

James, & Bowman, 2005), high contrast stimuli elicited larger and faster

M100 responses as compared to low contrast stimuli (p <.001). The

response was 8 ms faster and 57% larger for high contrast compared to

low contrast stimuli. The M100 contrast effect was centro-posteriorly

distributed (Figure 2, left panel) and its source was localized bilaterally in

the early visual cortex (Figure 2, right panel). A precise hemispheric

characterization of the M100 responses was not possible due to spa-

tial leakage issues in MEG analysis (Hauk, Stenroos, & Treder, 2019).

For this reason, the M100 individual responses analyzed here are the

result of the average between left and right sensors. No other main

effects (noise or task) or interactions could be observed in the M100

response (ps >.05).

3.3 | Linking MEG responses to visual white
matter pathways

High contrast stimuli elicited sharper and more reliable evoked

responses in the visual cortex (reliability measures calculated by corre-

lating individual MEG measures of two halves of randomized trials:

high contrast stimuli r = .70; low contrast stimuli r = .56). For this rea-

son, we mainly focus on the high contrast condition and results from

the low contrast stimuli are reported in Supporting Information S2.

Individual differences could be observed in M100 responses, with

some participants reaching the maximum response amplitude at

shorter latencies than others (Figure 3, left panel). Similarly, individual

variability could be also appreciated in the optic radiations FA values

(Figure 3, middle panel). Despite these FA variations, participants con-

sistently showed higher FA values in the left optic radiation. This

hemispheric difference is in line with previous literature reports

(e.g., diffusivity 7% higher in the right hemisphere; Dayan et al., 2015;

Levin, Dumoulin, Winawer, Dougherty, & Wandell, 2010; Sherbondy

et al., 2008; Xie et al., 2007) and may be related to the different pat-

terns of crossing fibers in the two hemispheres.

FA values of left and right optic radiations were averaged

together so that they could be correlated with individual M100

responses (which were also averaged across left and right sensors).

M100 latency correlated with optic radiations FA values

(r = �.35, p = .02; robust r = �.32, p = .03); children with higher FA
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had faster M100 responses than children with low FA (see Figure 3,

right panel). This effect remained significant after accounting for age

(β = �338, SE = 193, t(35) = 1.8, p = .04, adjusted R2: .12; for a sum-

mary of all statistical results see Supporting Information S3). Optic

radiation mean diffusivity measures did not show a clear relationship

with electrophysiology after correcting for age (see Supporting

Information S4). In addition, the relationship between optic radiations

FA values and electrophysiology was not observed for white matter

tracts that do not carry visual information from retina to early visual

cortex (uncinate: r = �.21, p = .10; corticospinal tract: r = �.10,

p = .27; Supporting Information S5 and S6 for additional control

tracts).

M100 responses and FA values for the optic radiations showed

age effects between ages 7 and 12. With greater age, M100

responses were faster (r = �.31, p = .03) and FA values were higher

(r = +.30, p = .03, see Figure 4). Optic radiations FA values mediated

the effect of age on electrophysiological responses (average causal

mediation effect: β = �.07, CI [�0.20; �2.0e�3], p = .04; percentage

of age effect that is due to the FA mediator: 28%, p = .02). The effect

of age on M100 latency was not significant after adding FA as a medi-

ator (average direct effect: β = �.19, CI [�0.42; +0.08], p = 0.14),

indicating that maturational variations of optic radiations FA fully

mediated age effects on M100 latency to high contrast stimuli.

Similar FA correlations were found with the other M100 electro-

physiological properties (amplitude: r = +.29, p = .04, robust

r = +.35, p = .02; power: r = +.34, p = .02, robust r = +.34, p = .02;

intertrial coherence: r = +.29, p = .04, robust r = +.29, p = .04). Chil-

dren with high values of optic radiations FA showed higher M100

amplitude, power and intertrial coherence (see Figures 3 and 4). After

correcting for age, the FA effects on M100 amplitude and power

remained significant (amplitude: β = 3.1e�11, SE = 1.8e�11,

t(35) = 1.8, p = .04, adjusted R2: .03; power: β = 3.0, SE = 1.6,

t(35) = 1.9, p = .03, adjusted R2: .08; intertrial coherence: β = 1.7,

SE = 1.3, t(35) = 1.3, p = .2, adjusted R2: .08). Finally, FA mediation

effects were confirmed for M100 amplitude and power (amplitude:

β = 6.5e�15, CI [+4.2e�17; +1.8e�14], p = .04; power: β = 6.3e�4,

CI [+2.4e�5, +1.6e�3], p = .04; intertrial coherence: β = 3.6e�4, CI

[�7.4e�5; +1.1e�3], p = .13).

F IGURE 3 The relation between structural and functional properties of the visual pathways. M100 panel: Individual waveforms to high
contrast stimuli from a central occipital sensor pair. ERFs, power, and intertrial coherence average values (between 1 and 8 Hz) are displayed over
time. The occipital responses of two representative subjects (S210: female, 7 years old; and S227: male, 11 years old) are marked in green to
highlight individual differences. The dot and the cross green markers correspond to the faster and the slower individual, respectively. OR FA panel:
Violin plot of the individual FA values from the left and right optic radiations. Green markers correspond to the FA values of the same two
representative subjects. Sagittal and axial views of the optic radiations for the two representative participants are overlaid on each subject's
structural image. M100-OR FA correlations panel: Correlations between MEG measures and optic radiations FA mean values. Shaded areas
represent 95% confidence intervals for the regression estimate, which is estimated through bootstrapping. Data points of the two representative
participants are marked with a green dot and a green cross. Low contrast stimuli showed similar, although weaker, findings for amplitude, power,
and intertrial coherence (see Supporting Information S2)
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3.4 | Does maturation of the optic tract account
for additional variance in electrophysiology?

We next ask whether other stages of the visual pathway additively

predict variance in visual responses. The correlation between M100

latency and optic tracts FA was not significant (r = �.20, p = .12).

Adding the optic tracts FA to a regression model including the optic

radiations FA did not improve the model fit to the M100 latencies

(nested model comparison: F(1)= 0.13, p = .72; adjusted R2 of the

base model: .10; adjusted R2 after adding the optic tract: .08). Similar

results were obtained with the other electrophysiological features

(amplitude: r = �.14, p = 0.20, F(1) = 3.31, p = .08, adjusted R2: .06,

adjusted R2 after adding the optic tract: .04; power: r = +.14, p = .19,

F(1) = 5e�4, p = .98, adjusted R2: .09, adjusted R2 after adding the

optic tract: .07; intertrial coherence: r = +0.15, p = 0.19, F(1) = 0.04,

p = .85, adjusted R2: .06, adjusted R2 after adding the optic tract: .03).

Moreover, we did not find a significant correlation between optic

tracts FA and age (r = +.11, p = .25). These findings suggest that indi-

vidual differences in the optic tracts do not account for additional var-

iance in M100 responses.

3.5 | Task and stimulus effects

To examine whether the relationship between M100 responses and

optic radiations diffusion properties changed as a function of the stim-

ulus or task, we compared different linear mixed effects (LMEs)

models where M100 latency was the dependent variable. We started

with a simple model with by-subject random intercepts, including the

factors image contrast, optic radiations FA, and their interaction. We

found a significant main effect of image contrast indicating that low

contrast images produce later M100 responses than high contrast

images (β = 5.29, SE = 0.95, t(265) = 5.54, p <.001), and a significant

FA by contrast interaction indicating that FA only predicted M100

latency for high contrast images (β = 121.12, SE = 70.82, t

(264) = 1.71, p = .04; marginal R2: .10). We progressively added the

factors task, noise, and their interactions with the other factors. None

of these more complex models improved the original model fit (nested

model comparison: all χ2 < 14, all ps >.10; marginal Rs2 <.15) and none

of the fixed effects reached significance (all ps >.06). This was true

also for M100 amplitude (all χ2 <12, all ps >.19; marginal Rs2 <.23) and

power (all χ2 <12, all ps >.17; marginal Rs2 <.16). In the models of

intertrial coherence adding the factor noise and its interactions

slightly improved the model fit (all χ2(8) = 36.6, all p <.001; marginal

Rs2 before and after adding noise: 0.30 and 0.34), but follow-up ana-

lyses just confirmed the main effect of the optic radiations FA

(β = 2.26, SE = 1.01, t(36) = 2.25, p = .03). Overall, these results do

not provide evidence for an effect of stimulus type (e.g., words and

noise patches) or cognitive task (e.g., color judgment and lexical deci-

sion) on the structural-functional link of the visual pathways

observed here.

4 | DISCUSSION

This study describes the link between structural and functional prop-

erties of children's visual pathways and how they change during child-

hood. We combined dMRI and MEG to measure properties of

children's visual white matter tracts (optic radiations and optic tracts),

as well as electrophysiological properties of their visually evoked

responses (M100 responses). The data showed that: (a) the structural

properties of the optic radiations (indexed by FA values) vary among

children and part of this variability is accounted for by age; (b) the

electrophysiological properties of the responses in the visual cortex

are highly variable in childhood and part of this variability is also

explained by age; (c) there is a relationship between the age-related

differences observed in visual white matter pathways and those

observed in electrophysiology. Specifically, the maturation of the optic

F IGURE 4 (a,b) Age effects in M100 latency and optic radiations FA values. (c) The results of the causal mediation analysis are summarized
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radiations during childhood mediates the changes observed in electro-

physiological responses of the visual cortex.

These findings complement previous research linking diffusion

and electrophysiological properties of the visual pathways in clinical

and healthy adult populations (Alshowaeir et al., 2014; Berman

et al., 2020; Kolbe et al., 2012; Lobsien et al., 2014; Naismith

et al., 2010; M. Y. Takemura et al., 2017; H. Takemura et al., 2020).

This study not only shows that there is a relationship between struc-

tural and functional properties of the visual system, but also that this

relationship helps us better understand the development of response

properties in the visual cortex during childhood. Between 5 and

12 years of age the visual system undergoes a large range of transfor-

mations, allowing several visual skills to reach their full maturity

(e.g., spatial acuity, contrast, and orientation sensitivity; Garey, 1984;

Siu & Murphy, 2018). Part of these developmental differences are

reflected by a greater structural coherence and myelination of the

visual pathways (with a consequent increase of FA values) and by

faster visually evoked responses (Armstrong et al., 1991; Barnea-

Goraly et al., 2005; Dayan et al., 2015; Onofrj et al., 2001). This study

revealed that these two types of maturational variations are interre-

lated and likely, that there is a directional connection that goes from

structural to functional developmental changes. Future longitudinal

work can establish the temporal sequence of structural and functional

changes in the developing brain.

The relationship between electrophysiology and diffusion proper-

ties was evident for FA values, and weaker for MD values. This is in

line with a trend in the literature that is consistently reporting FA

measures as a correlate of electrophysiological responses (Dubois

et al., 2008; Gao et al., 2017; Kemmotsu et al., 2012; Lobsien

et al., 2014; Price et al., 2017; Shin et al., 2019; Taddei, Tettamanti,

Zanoni, Cappa, & Battaglia, 2012; H. Takemura et al., 2020; Westlye,

Walhovd, Bjørnerud, Due-Tønnessen, & Fjell, 2009; Whitford

et al., 2011). Why these effects are more consistent for FA than other

diffusion measures such as MD is not clear. FA changes can reflect

variations in a myriad of properties including axonal density, size, spa-

tial organization, myelination, as well as changes in glial cells structural

properties (De Santis, Silvia, Bells, Assaf, & Jones, 2014; Jeurissen,

Leemans, Tournier, Jones, & Sijbers, 2013). Further research on differ-

ent diffusion-based measures (e.g., axon diameter, quantitative esti-

mate of T1 relaxation) will increase the biological specificity of our

brain tissue estimates and improve our understanding of the relation-

ship between white matter microstructure and electrophysiology

(Horowitz et al., 2015; Huber, Henriques, Owen, Rokem, &

Yeatman, 2019).

We could further characterize the link between brain structure

and function by examining different visual tracts, stimuli, and tasks.

The diffusion properties of the optic radiations and optic tracts were

examined and a difference in their developmental trajectories

emerged. Age-related differences in FA were evident for the optic

radiations, but not for the optic tracts. This suggests that the struc-

tural properties of the optic radiations continue maturing during late

childhood (Dayan et al., 2015). The optic tracts seemed to be largely

stable within this age range. Another possibility is that the optic tract

is more affected by partial volume effects (due to its small size). Thus,

the signal to noise ratio might be lower for the optic tracts than for

the optic radiations making aging effects more evident in the latter

ones. As a consequence, developmental differences in electrophysiol-

ogy were mainly explained by the variation of optic radiations diffu-

sion properties, and no additional variability was explained by the

optic tracts. These findings suggest that not all the visual pathways

account for visual signal delays over childhood, and that the optic

radiation is the best candidate to account for electrophysiological vari-

ability in the visual cortex during this developmental window. How-

ever, the differences in developmental trajectories between different

visual pathways deserves further examination in a larger sample.

By employing different visual stimuli and tasks we examined the

extent to which structural-functional connection observed here could

be generalized to distinct experimental conditions. LMEs models

showed that children's M100 modulations depended on the optic

radiations properties, and on the level of image contrast. Other exper-

imental factors such as the level of noise of the image and the type of

task performed did not have a significant impact on the M100, or on

the M100-FA relationship. This suggests that the diffusion properties

of the optic radiations predict a wide range of electrophysiological

responses, which can be observed with different visual stimuli (read-

able and unreadable) and tasks (fixation and lexical decision tasks).

Moreover, this structural-functional connection is particularly evident

when high contrast stimuli are employed to evoke a highly reliable

M100 response.

The present findings also allowed us to expand the functional sig-

nificance of white matter diffusion properties by relating them to a

number of electrophysiological characteristics beyond latency (ampli-

tude, power, intertrial coherence). Past studies have consistently pro-

posed the latency of visually evoked responses as the most likely

functional correlate of white matter structure (Adibpour et al., 2018;

Alshowaeir et al., 2014; Berman et al., 2020; Dubois et al., 2008;

Kolbe et al., 2012; Lobsien et al., 2014; Naismith et al., 2010; Price

et al., 2017; M. Y. Takemura et al., 2017; H. Takemura et al., 2020).

This choice is based on the assumption that the structural integrity of

white matter tracts (and therefore, their related diffusion properties)

has a great impact on the conduction velocity of neural signals

(Alshowaeir et al., 2014; Berman et al., 2020; Horowitz et al., 2015;

Kolbe et al., 2012; Lobsien et al., 2014; Naismith et al., 2010; M. Y.

Takemura et al., 2017). Evoked response latency is partially related to

conduction velocity at the cellular level (Joynt, 1989; Siivola, 1980;

Simons, Carvell, Kyriazi, & Bruno, 2007) as it mainly reflects the timing

of synchronized post-synaptic activity from cortical pyramidal cells

(Bressler & Ding, 2006). However, ERFs latency can be related to a

range of phenomena at the neural level. Changes in ERFs latency can

be due to changes in speed of signal propagation, as well as to an

increase of temporal dispersion of the neural signal (within and across

trials) resulting in a less synchronized neural activity. Our results based

on time frequency measures seem to suggest that white matter struc-

tural variations are related to a wide range of electrophysiological

changes, which do not only include evoked response latency, but also

the degree of coherence of neural signals. The correlation between
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time frequency and diffusion properties suggests that structural-

functional relationships in the visual system depend on the coherence

with which white matter fibers can deliver neural signals (hence, the

level of synchrony of neural oscillations recorded on the scalp). This

might depend on myelination (as mainly suggested from previous clini-

cal works), as well as other structural properties such as the homoge-

neity of axonal organization, coherence, spatial orientation and

density. Additional research on the relation between white matter dif-

fusion properties and time frequency estimates is needed in order to

uncover the mechanisms underpinning the functional-structural rela-

tionship observed here. Note that, time frequency measures present

some advantages as compared to ERFs measures (latency, amplitude).

First, they usually show a reduced noise when single trials are ana-

lyzed within narrow frequency bands (Herrmann et al., 2014). Second,

they better represent the degree of synchronization of oscillatory

activity from large populations of neurons (even when it is not phase-

locked to the stimulus onset, David, Kilner, & Friston, 2006; Herrmann

et al., 2014; Z. Zhang, 2019). These peculiarities of time frequency

measures might facilitate the detection of correlations with diffusion

properties and provide new insights on their functional interpretation.

For example, future studies with larger samples could examine the

coherence between signals among multiple brain regions in relation to

the tissue properties of the tracts that carry these signals.

In summary, these findings suggest that the maturation of visual

white matter pathways over childhood accounts for variations in elec-

trophysiological responses of the visual cortex. This structural-

functional relationships is specific to the optic radiations and can be

observed across different tasks, levels of visual noise, and electro-

physiological properties of the visual responses. The present findings

are an example of how relating white matter properties to functional

aspects of the brain can help us reach a more nuanced understanding

of the link between development of brain connectivity and changes in

electrophysiology.
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