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Abstract

The phenomenon of drug resistance has been a hindrance to therapeutic medicine since the late 1940s. There is a
plethora of factors and mechanisms contributing to progression of drug resistance. From prokaryotes to complex cancers,
drug resistance is a prevailing issue in clinical medicine. Although there are numerous factors causing and influencing the
phenomenon of drug resistance, cellular transporters contribute to a noticeable majority. Efflux transporters form a huge
family of proteins and are found in a vast number of species spanning from prokaryotes to complex organisms such as
humans. During the last couple of decades, various approaches in analyses of biochemistry and pharmacology of
transporters have led us to understand much more about drug resistance. In this review, we have discussed the structure,
function, potential causes, and mechanisms of multidrug resistance in bacteria as well as cancers.
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Introduction
Paul Ehrlich introduced us to the terms- “chemotherapy”
and “the Magic bullet”, where he explained the idea of a
therapy that would kill the microbe and leave the
affected individual harmless. He then went on to develop
a drug against Treponema pallidum (a bacterium that
causes syphilis) which was the only available treatment
option against bacterial infections for the next 20 years
[1]. Sir Alexander Fleming discovered the antibiotic
penicillin from the fungi Penicillium notatum, which
changed the course of medical science. The success of
this discovery was seen in World War II as it helped
millions of soldiers who used antibiotics to fight against
the “invisible enemy” [2]. The history of medicine cata-
logs numerous similar episodes that involves antibiotics.
It was not until recently that we have experienced the
phenomenon of drug resistance. As a fact of the matter,
World Health Organization (WHO) said that drug re-
sistance is one of the three serious challenges of public
health of the twenty-first century [3].
Bacterial antibiotic resistance is a continuing and

increasing concern in clinical science. Owing to a
shorter lifespan, bacteria are more susceptible to genetic

variation and evolution than other eukaryotic organisms.
Escherichia coli has a unique identity in the microbial
world as it is also an essential gut bacterium as well as a
harmful pathogen. The inquilinity of E. coli with various
mammals allows it to cause infections ranging from mild
diarrhea to severe colitis. E. coli exhibits a wide range of
resistance against drugs such as β-lactams, ampicillin,
cephalosporin, quinolones, aminoglycosides, and several
other antibiotics [4]. A similar resistance spectrum is
shown by methicillin resistant Staphylococcus aureus
(MRSA), Mycobacterium tuberculosis, Pseudomonas
aeruginosa, Acinetobacter baumanii and a few other
gram-negative bacteria. Multidrug resistance is mainly
observed in bacteria due to a build-up of drug-resistance
plasmids (R) or transposons that encode drug resistant
genes, by drug efflux pumps or by both of these mecha-
nisms [5]. Moreover, the target-protein modification that
results in making the bacteria less susceptible to the
drug can also aid in drug resistance. For example, the
erm gene methylates the adenine at position 2058 of the
50s rRNA resulting in drug resistant bacteria [6]. Add-
itionally, the drug resistance mechanism against natur-
ally originating antibiotics is generally observed due to
enzymatic inactivation of the drug, of which, enzymatic
phosphorylation, adenylation, acetylation and hydrolysis
lead to drug resistance. One of the most intriguing
causes of drug resistance is the horizontal gene transfer
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from the same or different species of bacteria [7].
Horizontal gene transfer (HGT) is a process of transfer
of a part of genetic material to a cell that is not its
progeny, and it can be attained by the activity of either
plasmids or transposons.
Chemotherapy has been one of the leading therapeutic

regimens for cancer patients. However, clinical oncolo-
gists observe that patients develop cancer resistance
against drugs that they have never been exposed to. This
essentially deteriorates the effectivity of chemotherapy.
In many research studies, cells in vitro are exposed to
such chemotherapeutic drugs and a similar pattern of
drug resistance is seen, just like in vivo. This
phenomenon of resistance to multiple drugs is known as
multidrug resistance (MDR), and it may be passed on to
the daughter cells from the parent cancer cells. Alter-
ations or mutations in MDR proteins [mostly adeno-
sine triphosphate (ATP)-binding cassette (ABC)
transporters] is a common mechanism for develop-
ment of drug-resistance. This affects the normal cel-
lular functions like signal transduction, uptake of
extracellular materials, cellular transport and excre-
tion, secretion of proteins or hormones, lipid trans-
port and prevention of harmful xenobiotics, to name
a few (Fig. 2). However, there is not a clear idea as to
how the mechanism of MDR in vivo is responsible.
Research from the past few years have concluded that
P-glycoprotein (P-gp/ABCB1) is one of the major
causes of MDR in cancers; although, studies about
different transporters are in progress. The dynamics
of P-gp are such that it can recognize multiple

substrates. In this review, a few members of the ABC
superfamily of transporters are described.

Antibacterial drug-resistance mechanisms
The bacteria develop drug resistance via multiple mech-
anisms. This can be either genetic or mechanistic or
both. These mechanisms include acquired resistance
through horizontal gene transfer or through xenobiotic
transfer, protein modification of target or receptor,
through drug efflux pumps or by preventing drug influx.
Figure 1 gives a brief representation of drug resistance

mechanisms observed in bacteria. Transposons or
“jumping genes” produce enzymes that facilitate the
movement of genes to another locus of deoxyribonucleic
acid (DNA) in either same genome or in another organ-
ism. Moreover, for drug resistance, an integral factor
other than evolution is the acquisition of genes that con-
fers antibiotic resistance, especially via HGT. It can
cause large-scale changes in a bacterial genome without
causing mutations and thus it is a highly effective drug-
resistance mechanism [8]. Furthermore, the evolution of
resistance to β-lactam antibiotics is a consequence of
HGT [9]. Mutations in genes that encode for target pro-
teins may lead to drug resistance as the drug can no lon-
ger bind to the target protein. Most instances of drug
resistance arise from genes present on R plasmids.
Moreover, these genes are transferred to a vulnerable
bacterium in a distinct conjugation episode. At the time
of discovery of R plasmids, it was found that many of
these resistance genes against common antibiotics such
as tetracycline, chloramphenicol, sulfonamides, and

Fig. 1 Drug resistance in bacteria. Target protein alteration. Certain modifications lead to impermeability of the cell membrane and thus decrease
drug uptake. Target modification leads to a demoted drug binding. Integron Operon network. Integrons help insert a resistance gene at a pre-
decided site downstream of a promoter (Example- Tn21). Anthropogenic activities. Release of toxic chemicals into the environment provides a
selection and survival pressure which leads to variation and ultimately, evolution. Horizontal gene transfer. Transfer of genes from other species or
from same species, but not parental cells is called HGT. Evolution of β-lactam antibiotic resistance genes is one of the results of HGT. Transposons.
“Jumping genes” produces enzymes that aid in HGT. Mutation in porin genes. It can lead to decreased drug influx or increased drug efflux with
the help of ion motive force, as compared to ATP hydrolysis by transporters

Patel et al. Molecular Biomedicine            (2021) 2:27 Page 2 of 19



aminoglycosides were already present. However, their
discovery came to light just recently as a consequence of
the sequencing studies [5]. The recent discovery of inte-
grons has also revealed a gene encoding an integrase en-
zyme that helps insert a resistance gene at a pre-decided
site downstream of a promoter. The integron has a
unique 59 bp 3′-sequence tag and the resistance gene
gets marked by the tag as soon as it is integrated. After
this, the gene becomes integrated into another integron,
conceivably containing a completely diverse batch of re-
sistance genes (it may contain up to eight resistance
genes). It is thought that this insertion into integrons
and organization into distinct operons is how resistance
genes obtain high mobility. This operon will conclusively
have the same transcription direction under a strong
promoter which is provided by the integron framework.
Tn21 is one such example of large, complex, and mul-
tiple composite transposons which consists of resistance
genes against mercury, sulfonamide (sul1) and aminogly-
coside (aadA1) [10–12]. Many integrons also haul en-
zymatic machinery to transpose the complete integron
framework to other loci in the genome [13]. It was not
until recently that various integrons were discovered to
be associated with a downstream structure known as in-
sertion sequences – common region(s) element (ISCR).
The ISCR element mainly functions as a recruiter and a
transporter to the integron framework, which results in
assembly of more resistance genes [14]. Anthropogenic
activities contribute a reasonable amount in conferring
drug resistance to bacteria. The amount of toxic wastes,
chemicals, antibiotics, metals, intermediates, and numer-
ous xenobiotics released into the environment is immeas-
urable; and it brings upon ceaseless selection pressure and
the maintenance of genome to populations of resistant
strains in almost all the environments.
Mutations in porin genes can sometimes lead to drug

efflux outside the cell. In addition, drug efflux pumps
extrude drug molecules outside the cells. The majority
of the activity of drug efflux pumps in bacteria occurs
through the activity of ion motive force; however, many
pumps use ATP hydrolysis as a driving factor as well.
Some of the major drug efflux transporter families are
major facilitator superfamily (MFS), small multidrug re-
sistance (SMR) family, resistance/nodulation/division
(RND) superfamily, multi antimicrobial extrusion (MATE)
family, and ATP-binding cassette transporters (ABC)
superfamily.

Bacterial efflux pumps
In the last few decades, various bacterial drug transporters
were discovered and classified (Table 1). Prokaryotic efflux
transporters are often referred to as half transporters. To
form a functional unit, these transporters either homodi-
merize with themselves or heterodimerize with other

transporters [48]. The normal function of a conventional
MDR protein is to uptake and secrete a wide range of sub-
strate(s) including both small molecules such as amino
acids, xenobiotics, vitamins, sugars; and complex polymers
such as oligopeptides, proteins, and polysaccharides. MDR
proteins have an extensive uptake spectrum, allowing them
to participate in a variety of cellular processes such as up-
take of nutrients, cellular excretion of waste and debris,
xenobiotic protection, immunity against foreign bodies,
bacterial virulence, osmosis, lipid transport, and biogenesis
[55–57]. The primary structure contains four domains: two
nucleotide binding domains (NBDs) and two transmem-
brane domains (TMDs), all of which are encoded by four
independent genes or by a blend of the genes or by one
single gene that encodes the entire transporter [58]. Along
with these four domains, there may be an extracellular sub-
strate binding domain that transfers the substrate to the
permease domain [59, 60].
MFS superfamily consists of numerous drug efflux

transporters which catalyze uniport, symport (solute:cat-
ion), antiport (solute:solute) or a combination of these
processes, although, most of the members probably
operate via H+ antiport. Some of the members contain
14 transmembrane segments (TMS) and others contain
12 TMS [26]. QacA and QacB fall into the category of
MFS superfamily with 14 TMS and contains several
acidic amino acid residues. These pumps mainly extrude
biocides and dyes such as benzalkonium chloride, cetyl
trimethyl ammonium bromide and ethidium bromide.
QacA additionally transports out dicationic biocides
such as chlorhexidine and pentamidine isethionate. The
difference between these two transporters lies in the
TMS10 of QacA, which aids in removal of dicationic
compounds [15]. Another example of MDR transporter
is EmrB of E. coli, which confers resistance against
carbonyl cyanide m-chlorophenylhydrazone and anti-
biotics such as nalidixic acid and thiolactomycin.
EmrA is a periplasmic adapter protein that connects
the pump to TolC, an outer membrane channel that
helps extrude the drugs directly outside the cell.
EmrA and EmrB both are encoded by a chromosomal
gene [15, 18]. MFS pumps containing 12 TMS in-
cludes pumps like NorA, NorB, NorC, LmrP, LmrCD,
MdfA, AcrB, and many more. NorA is resistant to
fluoroquinolones in Staphylococcus aureus, other cat-
ionic dyes and cationic inhibitors (Table 1) [17]. NorB
and NorC are two other homologs of NorA in S. aur-
eus that produces a similar phenotype [61]. However,
all the three pumps are inhibited by reserpine [62].
Lactococcus lactis possesses LmrP, a secondary trans-
porter of MFS family [63] that acts as a “vacuum
cleaner” of the cell membrane and pumps out cat-
ionic dyes, daunomycin, tetracycline and macrolides
[64]. MdfA from E. coli extrudes cationic dyes,
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chloramphenicol, fluoroquinolones when overex-
pressed in mutants lacking a constitutive RND pump
called AcrB [20].

The SMR family proteins are hydrophobic in nature,
with four TMSs, consist of some of the smallest trans-
porters and are a part of drug/metabolite transporter

Table 1 Bacterial efflux transporters

Name/
Gene
name

Other
names

Organism Family/Sub-
family

Polypeptide
chain length
(aa)

Confers resistance to References

qacA QacA Staphylococcus
aureus

DHA2 family
(MFS)

514 Benzalkonium chloride, Cetyl-trimethyl ammonium bromide, Eth-
idium bromide, Chlorhexidine, Pentamidine isethionate

[15, 16]

norA – Staphylococcus
aureus

TCR family
(MFS)

388 Fluoroquinolones [17]

emrB – Escherichia coli EmrA family
(MFS)

512 2,4-dinitrophenol, Nalidixic acid, CCCP, thiolactomycin, m-
chlorophenylhydrazone

[15, 18, 19]

mdfA cmlA,
cmr

Escherichia coli MdfA family
(MFS)

410 Ethidium bromide, Tetraphenylphosphonium, Rhodamine,
Daunomycin, Benzalkonium, Rifampicin, Tetracycline, Puromycin,
Chloramphenicol, Erythromycin, Fluoroquinolones, extreme
alkaline pH resistance

[20–25]

setA yabM Escherichia coli SET family
(MFS)

392 Sugar efflux, Sugar detoxification (non-metabolizable) [26]

sugE – Escherichia coli SMR family
(DMT)

105 Guanidinium, Cetylpyridinium, Cetyldimethylethyl ammonium,
Cetrimide cations

[27–29]

emrE mvrC Escherichia coli SMR family
(DMT)

110 DDAC, Ethidium, Methyl viologen, Acriflavine,
Tetraphenylphosphonium, Benzalkonium, Propidium,
Dequalinium, Streptomycin, Tobramycin

[30–32]

qacE – Klebsiella
pneumoniae

SMR family
(DMT)

110 Quaternary ammonium compounds [33]

qacC QacSau Staphylococcus
aureus

SMR family
(DMT)

107 Quaternary ammonium compounds, Ethidium bromide [33]

yvdS – Bacillus subtilis SMR family
(DMT)

114 [33]

acrB acrE,
AcrAB-
TolC

Escherichia coli RND family 1049 Tetracycline, Puromycin, Chloramphenicol, Erythromycin,
Rifampicin, Fusidic acid, Acriflavine, Bile salts, Cephalosporins,
Crystal violet, Ethidium bromide, Fluoroquinolones, SDS,
Triclosan, Triton X-100

[34–37]

mmpL7 – Mycobacterium
tuberculosis

MmpL sub-
family (RND)

920 Phthiocerol dimycocerosate, Isoniazid [38–40]

czcA – Ralstonia
metallidurans

RND family 1063 CZC- Cobalt, Zinc and Cadmium resistance [41]

mexB – Pseudomonas
aeruginosa

RND family 1046 tetracycline, chloramphenicol, ciprofloxacin, streptonigrin,
dipyridyl

[42]

norM vcmA Vibrio cholerae MATE family 457 Norfloxacin, Ciprofloxacin, Ofloxacin, Daunomycin, Doxorubicin,
Streptomycin, Kanamycin, Ethidium bromide, Acriflavine

[43–45]

yeeO – Escherichia coli MATE Family 547 Exports peptides- pepA, pepB, pepD, pepN and flavins- FMN,
FAD

[46, 47]

lmrA – Lactococcus
lactis

LmrA family
(ABC)

590 Various antibiotics [48, 49]

bmrA yvcC Bacillus subtilis ABC
superfamily

589 Hoechst-33,342, Ethidium bromide, Doxorubicin [26, 50]

macB – Escherichia coli Macrolide
Exporter
family (ABC)

648 Macrolides [51–53]

msrA – Staphylococcus
epidermidis

ABC
superfamily

488 Erythromycin, B-streptogramins [26]

drrAB – Streptomyces
peucetius

Drug exporter
1 family

330 Daunorubicin, Doxorubicin [26, 54]

CCCP Carbonyl cyanide m-chlorophenylhydrazine, DDAC Dodecyl dimethyl ammonium chloride, SDS Sodium dodecyl sulfate, FMN Flavin mononucleotide, FAD
Flavin adenine dinucleotide
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(DMT) superfamily. These are cation-specific multidrug
efflux pumps and the model example is EmrE of E. coli
(about 110 amino acids in length) [30]. Moreover, the
SMR family of transporters were first found in S. aureus
plasmids and later, were also found in gram-negative
bacteria. They transport quaternary ammonium biocides
such as dodecyl dimethyl ammonium chloride (DDAC) or
ethidium bromide [27, 30]. Some of the well-studied trans-
porters include EmrE, QacC, QacE, SugE (Table 1) [27].
The RND superfamily is very well studied as trans-

porters from this family play a vital role of drug resist-
ance in gram-negative bacteria. A general structure for
the members can be demarcated as a chain consisting of
one TMS at the N-terminal linked to a comparatively
hefty extracytoplasmic domain followed by six TMSs
linked to another extracytoplasmic domain and finally
five TMSs at the C- terminal. These transporters get
linked with two other classes of proteins- TolC of E. coli,
one of the outer membrane factor (OMF) family mem-
bers [65]; and AcrA of E. coli, a periplasmic adapter pro-
tein of the membrane fusion protein (MFP) family [66].
This network of proteins allows them to directly trans-
port the drugs out into the medium instead of the peri-
plasmic space. Once transported outside, the drugs will
need to tread through the outer membrane barrier
which is majorly made of lipopolysaccharide, in order to
enter the cell. However, this complex works harmoni-
ously with the outer membrane and effectively prevents
this entry of the drug [67]. Some of the RND family
pumps exhibit a wide range of substrate specificity, for
example, AcrB of E. coli can not only pump out lipo-
philic antibiotics but also dyes, detergents and solvents
such as acriflavine, bile salts, chloramphenicol, cephalo-
sporins, crystal violet, ethidium bromide, fluoroquino-
lones, sodium dodecyl sulphate, tetracyclines, triclosan,
Triton X-100, etc. [34, 35]. AcrD, a homolog of AcrB
can pump out aminoglycosides in E. coli. The original
function of AcrB seems to be transport of bile salts as it
has highest affinity to bile salts [68]. In nosocomial in-
fections of Pseudomonas aeruginosa, increasing fluoro-
quinolone resistance is observed with the help of MFP
family of pumps along with probably an OMF compo-
nent [69]. In Mycobacterium tuberculosis, MmpL7 pump
extrudes a complex, non-polar lipid- phthiocerol dimy-
cocerosate [38].
The MATE family of transporters include NorM of

Vibrio parahaemolyticus, which contains 12 transmem-
brane helices [43]. The members are about 450 aminoa-
cyls long and they operate by an uncommon mechanism
of drug: Na+ antiport. It extrudes fluoroquinolones and
ethidium and in turn, influxes Na+ ions [26, 44].
ABC transporters have a limited role in bacterial drug

resistance [70]. Both uptake and drug efflux systems
have been found in this superfamily that uses energy

from ATP hydrolysis, and usually both systems are local-
ized together. The members of this superfamily contain
at least two integral membrane domains (~membrane
spanning domains (MSD)) and two cytoplasmic domains
(~NBD), which can be found as homodimers or hetero-
dimers. In Gram-negative bacteria, the uptake domains
are found in periplasm while in Gram-positive bacteria,
they are either present as lipoproteins on the outer sur-
face of the cell membrane, or as cell-surface associated
proteins [26]. It is important to note that many ABC
transporters in bacteria have shown a homology to
human ABC transporters. However, the uptake systems
are not observed in mammalian ABC transporters. For
instance, LmrA of L. lactis is homologous to a half of
the P-gp protein of mammalian origin [48, 49]. Biochem-
ical studies showed that the drug resistance mechanism is
mainly a combination of drug extrusion and ATP hydroly-
sis [71]. Other examples of ABC transporters in bacteria
include BmrA in Bacillus subtilis [72, 73] and MacB in E.
coli. Interestingly, MacB is expressed with a periplasmic
adapter protein MacA (in a similar fashion to AcrA of
MFP family) which helps in providing resistance to
macrolides when overexpressed [53].

Mammalian MDR proteins
According to the sequence homology and domain
organization, there are seven ABC transporter subfam-
ilies [74, 75] named from “A” to “G”, i.e. ABCA to
ABCG, into which 49 ABC transporters have been clas-
sified [76]. The general structure of these transporters is
comparable to those found in bacteria. Mammalian
MDR proteins contain at least two NBDs (cytoplasmic)
and TMDs (also called membrane-spanning domains –
MSDs; analogous to TMS in bacteria). The cytoplasmic
NBD has a similar function i.e., serving as a source of
energy to produce hydrolyzed ATP, whereas the TMD is
very heterogeneous in function and dynamic in nature
and its functions support the binding of a drug, trans-
port channel, dimerization/oligomerization, and traffick-
ing [77]. This heterogeneity allows the transporter to
recognize a wide range of substrates and use ATP as an
energy source, irrespective of the established concentra-
tion gradient [78]. Recent updates confirm that ATP
provides energy for substrate transport as well as for
continuous conformation changes that allow the trans-
porters to identify a range of substrates [79].
The cellular levels of ions, lipids, hormones, xenobi-

otics, and other small molecules are regulated by ABC
transporters by hauling them in and out across the
plasma membrane. Thus, contributing a considerable
role in physiological aspects like regulating the organ-
elles (mitochondria, lysosome, endoplasmic reticulum
(ER), Golgi apparatus) [80–83]. Transporters such as P-
glycoprotein (P-gp/ABCB1), multidrug resistance protein
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1 (MRP1/ABCC1) and breast cancer resistance protein
(BCRP/ABCG2) transports substances across the cell
membrane, thereby conferring excretory and defensive
physiological activities. At the blood-brain barrier,
blood-testis barrier and blood-placental barrier, the
entry of foreign, exogenous molecules is inhibited [84,
85]. Notably, the normal functions of ABC transporters
also have a significant effect on pharmacokinetics of
drugs: absorption, distribution, metabolism, excretion,
and toxicity.

Genetic and mechanical aspects of MDR
What happens if something goes wrong genetically or
mechanistically? A germline mutation can lead to a loss-of-
function in a single ABC transporter and can be associated
to diseases other than cancer like cystic fibrosis, pseudox-
anthoma elasticum, Stargardt macular degeneration,
Tangier disease, sitosterolaemia and harlequin ichthyosis
[86]. However, these genetic anomalies can be rehabilitated
by mRNA stabilization, ribosomal readthrough, correction
of folding and trafficking errors, allosteric activation,
modulation of protein interactions, regulation of post

translational modifications, improving of protein degrad-
ation pathways and initiation of other compensatory mech-
anisms [87–95].
Resistance to anti-cancer drugs can be roughly de-

scribed as complications in drug delivery to tumor cells
or problems of impaired drug sensitivity within the can-
cer cells themselves as a result of genetic/epigenetic al-
teration. Complications in drug delivery can arise from
poor absorption of oral drugs, elevated metabolism, or
increased excretion. As a result, there will be lower level
of drug in the blood. This means that a proper amount
of drug is not reaching the tumor mass (Fig. 2) [96, 97].
Furthermore, irregular pressure gradient along with
tumor vasculature was also reported to affect drug deliv-
ery [98]. Besides these factors, tumor geometry and
composition of the extracellular matrix have been ob-
served to participate in drug resistance [96, 99, 100].
Drug resistance is again observed when the cellular tar-
get of a drug is altered in conformation or geometry; or
if there is increased DNA maintenance activity in tumor
cells. The phenomenon of cross resistance to other
structurally and mechanistically irrelevant drugs, after

Fig. 2 Mechanisms by which drug resistance is conferred in cancer. (In clockwise manner starting with defective apoptotic pathway) (1) the
apoptotic pathway (p53 pathway) might be defective, which leads to various downstream resistance mechanisms like upregulation of Nrf2
expression, MGM2 upregulation, increased cell proliferation, etc.; (2) drug resistance is seen when there is increased or defective immune system
function where hypersensitivity is observed; (3) a plethora of epigenetic factors play roles in conferring drug resistance in cancer; (4) when the
detox systems (ROS, homeostasis) are activated, there is a detox of the drug from the cancer cell; (5) drug delivery problems: too low
concentration or higher molecule size than required; (6) drug alteration by intrinsic enzymes or other proteins; (7) transporters of the cell
membrane exhibit increased drug efflux or decreased influx; (8) even if the drug enters the cell and affects the genetic machinery, there is an
increased intrinsic DNA repair mechanisms; (9) drug resistance is also seen during increased metabolism in liver
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resistance to a single drug is attained, is categorized as
MDR [101]. Drug resistance is descried by decreased
drug uptake. The transporters and carrier molecules that
are used for nutrient uptake are abused as “ferry” mole-
cules by water-soluble drugs, or by the process of endo-
cytosis. This is illustrated by drugs such as methotrexate,
5-fluorouracil (5-FU), 8-azaguanine and cisplatin [102,
103]. Activation of organized mechanisms from detoxifi-
cation systems such as DNA-repair and cytochrome
P450 oxidases can also lead to multidrug resistance, as
seen in P-gp and CYP3A coordinated induction [104].
Besides these, other systems include superoxide dismut-
ase, catalase, glutathione peroxidase, and antioxidants.
Induction of malignancy in cancers can result in mutant
or non-functional p53; however, malignancy can also be
a repercussion of chemotherapy. For example, fluctu-
ation of ceramide levels or alteration of cell-cycle ma-
chinery may activate apoptotic checkpoints, thereby
allowing cancer cells to avert apoptosis (Fig. 2) [105].
One of the most important genetic aspects influencing

drug response is single nucleotide variants, however, in-
sertions, deletions, repeats, and copy number variants can
also have consequences in efficacy of therapy [106–108].
These mutations and variations are observed in genes re-
sponsible for the production of drug metabolizing en-
zymes, drug efflux genes, drug targets, DNA maintenance
machinery, apoptotic machinery, and alleles related to the
immune system [109–117]. DNA maintenance machinery
reinstates genomic stability to maintain homeostasis and
prevent cancer development. However, mutations and
variations cause loss of normal function in DNA mainten-
ance mechanisms, which leads to carcinogenesis, acceler-
ated tumor evolution and resistance to drugs that attack
DNA such as platins, nitrogen mustards, and chloroethyl
nitrosoureas. The mechanism includes the formation of a
DNA adduct that interferes with active DNA replication
in cancer cells [118]. The generation of replication stress
in a cell drives it towards apoptosis. DNA lesions, single-
strand breaks or double-strand breaks are usually repaired
by various DNA damage repair pathways such as base ex-
cision repair, nucleotide excision repair, homologous re-
combination, non-homologous end joining, mismatch
repair, trans lesion synthesis and the Fanconi anemia
pathway [119–122]. Epigenetic factors also have a vital
role in various cancers. DNA methylation, one of the most
common epigenetic alteration, which is carried out by
DNA methyltransferases (DNMTs) that covalently attach
a methyl group to cytosine triphosphate of the CpG
islands in the genome [123, 124]. However, inhibition of
DNMTs can cause the reversal of DNA methylation and
revive the expression of the silenced genes [125]. Further-
more, other important histone modifications such as
acetylation, phosphorylation, ubiquitination, sumoylation
and adenosine di-phosphate (ADP) ribosylation can all

lead to gene silencing. Cell differentiation and cell prolifer-
ation pathways such as mitogen-activated protein kinase
(MAPK), Wnt, vascular endothelial growth factor (VEGF),
p53 signaling, etc. are some of the most affected pathways
due to aberrant epigenetics in respective genes [126, 127].
Additionally, micro RNAs (miRNAs) are a broadly con-
served class of RNAs found mostly in intronic regions that
are roughly 20–25 bases long polynucleotides and do not
express any protein. The main function of miRNA is to
downregulate gene expression at a post-transcriptional
level, but it can also activate mRNA translation on rarer
occasions. The network of miRNAs is so complex that
each miRNA can regulate several different mRNAs and
the same mRNA can be targeted by several different
miRNAs as well [128]. The importance of miRNAs lies in
the expression of the MDR efflux transporters of the ABC
superfamily, since miRNAs regulates the post-
transcriptional activity of MDR efflux transporters in sev-
eral different tumors (Fig. 2) [129]. For instance, there has
been a report of downregulation of ABCB1/MDR1 encod-
ing for P-gp by several miRNAs such as miR-331-5p and
miR-27a in lymphocytic and myeloid leukemia, miR-let-7
in ovarian cancer, miR-200c and miR-195 in breast cancer,
miR-30a in gastric cancer and miR-9-3p in CML, thereby
reversing the phenomenon of drug resistance [130–135].
Moreover, miR-326 regulation of ABCA2 in pediatric
acute lymphoblastic leukemia has been reported to have
an impact on drug resistance mechanisms. Along with,
miRNAs can modulate the induction of apoptosis [136].
Drug-drug interactions (DDI) are observed commonly

in patients suffering from cancer, due to multiple admin-
istrations of different drugs, adjuvants, and medications
to treat additional co-morbidities [137]. A classic ex-
ample of pharmacokinetic DDI is the absorption of tyro-
sine kinase inhibitors (TKIs). Altered intra-gastric pH
values and the activity of intestinal enzymes as well as
drug transporters influence TKI absorption substantially.
Most of the TKIs are weak bases, protonated and most
soluble in the acidic setting. Consequently, an increase
in pH values, such as with proton pump inhibitors,
greatly decreases their solubility [138, 139]. It has been
reported that about 30% of cancer patients take proton
pump inhibitors (PPIs), H2-antagonists or anti-acids to
relieve gastro-esophageal reflux and dyspepsia symp-
toms. PPIs are some of the most commonly prescribed
drugs along with TKIs [140, 141]. Apart from that, there
can be synergistic, antagonistic, or additive responses as
well.

The ABC superfamily of transporters
During the past years, various drug transporters pertaining
to human cancers were identified and some of the latest
are summarized in Table 2. ABCB1/MDR1 (also called P-
gp) transporter was the first multi-drug transporter to be
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discovered as a surface phospho-glycoprotein that trans-
ports drugs and phospholipids across the membranes
(Fig. 3). It is found on chromosome 7p21 and has 170 kDa

of molecular weight [142, 143]. The structure of P-gp
comprises of two homologous NBDs and two homologous
TMDs with at least three sites for the binding of

Table 2 ABC transporters in human cancers

Name/
Gene
name

Other
Names

Genomic
Location

Organ/tissue localization MW
(kDa)

Resistance conferred to Modulators References

MDR1/
ABCB1

P-gp,
GP170,
CLCS,
ABC20

7p21 Blood-brain barrier, Bone marrow,
Placenta, Gut mucosa, Liver,
Kidney

170 Taxanes, Epipodophyllotoxins,
Vinca Alkaloids, Anthracyclines,
BCR-ABL TKIs, EGFR TKIs, ALK TKIs
(Crizotinib, Ceritinib)

Sapitinib, Ibrutinib,
RN486, Erlotinib,
Lapatinib, Tariquidar,
Elacridar, Zosuquidar

[101, 142–
160]

BCRP/
ABCG2

ABCP,
MXR1,
CD338,
ABC15

4q22.1 Placental syncytiotrophoblasts,
Small intestine, Epithelial tissue of
colon, Canalicular membrane in
the liver, Microvessel endothelium
of human brain, in the veins and
blood vessels

72 Nucleoside analogs,
Anthracyclines, Flavopiridols,
Methotrexate, Methotrexate
polyglutamates, E217βG,
Camptothecin-derived topoisom-
erase I inhibitors, GSK1070916,
Tivantinib, Pevonedistat, Tozaser-
tib, Barasertib

Erlotinib, Lapatinib,
Icotinib

[153, 159,
161–176]

PRP/
ABCB6

DUH13,
PSHK2,
ABC14

2q35.5 Brain, Retina, Testis, Gall bladder,
Intestine

93.8 Paclitaxel, 5-FU, Epirubicin, Cyclo-
phosphamide, Daunorubicin, SN-
38, Vincristine

Verteporfin, Tomatine
HCl, Benzethonium
chloride

[177–182]

MRP1/
ABCC1

GS-X,
ABC29

16p13.1 Placenta, BBB, Lungs, Testis,
Skeletal/Cardiac muscles, Kidney,
Intestine

171.6 Anthracyclines, Vinca alkaloids,
Epipodophyllotoxins,
Camptothecins, GSH conjugates,
Methotrexate, Mitoxantrone,
Imatinib, Arsenite, Colchicine,
Flutamide, Betulin, Saquinavir,
Ritonavir, Indinavir

Everolimus,
GSK1904529A,
Rapamycin, Tipifarnib,
TAK-733, Delavirdine,
Indomethacin,
Verapamil

[145, 183–
194]

MRP2/
ABCC2

cMOAT,
cMRP,
ABC30

10q24.2 Placenta, BBB, Lungs, Kidney, Liver,
Intestine

174.2 LTC4, E217βG, GSH, Taxanes,
Anthracyclines, Vinca alkaloids,
Methotrexate, Mitoxantrone,
Etoposide, Irinotecan, Cisplatin, SN-
38, Saquinavir, Ritonavir, Lopinavir,
Indinavir

Curcumin, Piperine,
Rhinacanthin-C,
Probenecid

[59, 195–
202]

MRP3/
ABCC3

cMOAT2,
MOATD,
MLP2,
ABC31

17q21.33 Placenta, Colon, Prostate, Kidney,
Liver, Small intestine

169.3 Glutathione, Bile salts, LTC4,
Glucuronide conjugates, DNP-SG,
Vincristine

Fidaxomicin, Suramin,
Lamivudine, Tenofovir

[203–208]

MRP4/
ABCC4

MOAT-B,
ABC32

13q32.1 Blood, Pancreas, Adrenal gland,
Prostatea, Kidneya, Livera

149.5 cAMPb, cGMPb, Loop diuretics,
Cephalosporins, Topotecan,
Imatinib, PMEA, 6-MP, 6-TG,
Methotrexate, Plant polyphenols,
Resveratrol, Quercetin, Adefovir,
Ganciclovir, Tenofovir, Zidovudine

Micafungin,
Rofecoxib,
Indomethacin,
Verapamil

[194, 209–
217]

MRP5/
ABCC5

SMRP,
MOATC,
ABC33

3q27.1 Brain, Testis, Skeletal/Cardiac
Muscles

160.6 cAMPb, cGMPb, Folates, 6-MP, 5-
FU, Methotrexate, Stavudine

Zaprinast,
Benzbromarone,
Sulfinpyrazone,
Sildenafil,
Sulfinpyrazone

[216, 218–
222]

MRP6/
ABCC6

MLP1,
MOAT-E,
ABC34

16p13.11 Kidney, Liver 164.9 Cyclopentapeptide BQ123,
Etoposide, Teniposide,
Doxorubicin, Daunorubicin, LTC4,
n-ethylmaleimide-glutathione

Indomethacin,
Benzobromarone

[194, 223–
225]

MRP7/
ABCC10

SIMRP7 6p21.1 Brain, Lungs, Testis, Blood,
Prostate, Ovary, Kidney

161.6 Taxanes, Vinca alkaloids, 2′,3′-
dideoxycytidine, AraC, PMEA,
Epothilone B, LTC4, E217βG

Nilotinib, Lapatinib,
Tandutinib, PD-
173074, Tariquidar

[211, 226–
237]

MRP8/
ABCC11

EWWD,
CFTR

16q12.1 Placentaa, Braina, Livera 154.3 DHEAS, E1S, E217βG, LTC4, DNP-
SG, AraC, 5-FU, Methotrexate,
PMEA, 2′,3′ − dideoxycytidine,
Adefovir

[194, 238–
242]

aIndicates low levels of expression
bIndicates that inhibition of MRP4 results in impaired cAMP and cGMP transport
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substrates/inhibitors. Interestingly the overexpression of
P-gp alone confers drug-resistance to a huge number of
neutral and cationic hydrophobic chemotherapeutic sub-
strates including taxanes, epipodophyllotoxins, vinca alka-
loids, anthracyclines, BCR-ABL TKIs, and epidermal
growth factor receptor (EGFR) TKIs [101, 144–152].
ABCG2/BCRP (Breast cancer resistance protein) is a

72 kDa MDR transporter with the gene located on
chromosome 4q22.1, consisting of one TMD and one
NBD, sometimes also called a “half transporter” [161,
162]. It gets activated upon homodimerization or
oligomerization with itself or with other MDR trans-
porters; a very similar mechanism to that of bacterial
drug efflux transporters [153, 163, 243, 244]. It is one of
the most widely distributed transporters and its expres-
sion is seen on the plasma membrane, highly expressed
in placental syncytiotrophoblasts, the apical surface of
small intestines, epithelial tissue of colon, canalicular
membrane in the liver, microvessel endothelium of hu-
man brain and in the veins and blood vessels [164–167].
ABCG2 confers resistance to nucleoside analogs, anthra-
cyclines, flavopiridols, methotrexate, organic dyes, and
anionic conjugates, TKIs and camptothecin-derived
topoisomerase I inhibitors [163, 168, 169].
ABCB6/PRP (P-gp related protein) is a 93.8 kDa pro-

tein with its gene located on chromosome 2q35.5. It is a
mitochondrial transporter that can import heavy metals
and regulate porphyrin biosynthesis and hence plays a
role in cell cycle progression [177]. It is localized in
mitochondria, ER and golgi apparatus. It has been re-
ported that ABCB6 confers resistance to camptothecin
and camptothecin-11 (CPT-11) in A549 lung cancer
cells [178]. It also confers resistance to paclitaxel/FEC
(5-FU, epirubicin, and cyclophosphamide) in breast can-
cer [179], daunorubicin in acute myeloid leukemia [180],
and 5-FU, SN-38, and vincristine in Arsenic resistant
KB-3-1 cells (KAS cells) [181].

ABCC1/MRP1 was first observed in anthracycline-
resistant cell lines H69AR and HL60/Adr [183–185]. It
is a 171.6 kDa protein with its gene located on chromo-
some 16p13.1. ABCC1 has three MSDs and two NBDs
with an unusual MSD0 domain. It has a low degree of
similarity with ABCB1 (15%), however, the resistance
profile is quite comparable [186]. The normal function
of MRP1 is xenobiotic detoxification of intermediates of
phase II enzymatic reactions [245]. It confers resistance
to drugs by ATP- and GSH-dependent export, however,
it hydrolyzes ATP with a lower efficiency. ABCC1 has
resistance against anthracyclines, vinca alkaloids,
epipodophyllotoxins, camptothecins, methotrexate, and
mitoxantrone [145, 187–189]. However, ABCC1 does not
confer resistance to taxanes.
BCR-ABL TKIs- Breakpoint cluster regions- Abelson

tyrosine kinase inhibitors; EGFR TKIs- Epidermal
growth factor receptor TKIs; ALK TKIs- Anaplastic
lymphoma kinase TKIs; E217βG- Estradiol 17 β-D
glucuronide; 5-FU- 5-Fluorouracil; LTC4- Leukotriene
C4; GSH- Glutathione; PMEA- 9-(2-phosphonyl meth-
oxyethyl) adenine; 6-MP- 6-Mercaptopurine; 6-TG- 6-
Thioguanine; cAMP- Cyclic adenosine monophosphate;
cGMP- Cyclic guanosine monophosphate; DHEAS- De-
hydroepiandrosterone 3-sulfate; DNP-SG- S-(2,4-dinitro-
phenyl) glutathione.
ABCC2/MRP2 gene is located on the chromosome

10q24.2. It encodes for MRP2 protein, which is found to
be 174.2 kDa in molecular weight. It consists of two
NBDs, two membrane spanning domains (MSDs), an
NH2 terminal MSD0 with five transmembrane helices,
and an intracellular linker segment L0. This kind of
structural organization is also observed in MRP1, − 3, −
6 and − 7; while the MRP4, − 5, − 8 and − 9 do not have
the MSD0 domain [185, 195, 246, 247]. MRP2 is also
known as canalicular multi-specific organic anion
transporter (cMOAT), named after its function of

Fig. 3 ABCB1 transporter (as a representative example of ABC superfamily of transporters). Normal functions of ABC transporters. (structure from RCSB PDB)
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transporting amphipathic anionic conjugates of phase II
conjugation reactions into the bile [245]. It is principally
expressed at hepatocyte canalicular membrane, epithelial
cells of the gall bladder, and in apical membranes of the
proximal tubule in human kidneys [59, 196, 248]. MRP2
administers resistance against a wide spectrum of drugs
like glutathione, glucuronates and sulfates [195]. It con-
fers resistance to cisplatin as well [197].
ABCC3/MRP3 plays a crucial role in conferring multi-

drug resistance to cancer cells. It is a 169.3 kDa protein
with gene located on chromosome 17q21.33 and it bears
58% structural similarity with MRP1 (highest similarity)
with three TMDs and two NBDs [206, 207]. MRP3 is an
organic anion transporter with a higher affinity for GSH
conjugates and it may also play an important role in bile
circulation. It provides resistance against leukotriene C4
(LTC4), S-(2,4-dinitrophenyl) glutathione (DNP-SG),
glutathione sulfate and glucuronide conjugates [203]. It
has been found that ABCC3 expression is correlated
with doxorubicin resistance in Lung cancer patients
[204, 205].
ABCC4/MRP4 is one of the shortest members of the

ABC-superfamily of transporters; with only 1325 amino
acids in its polypeptide sequence. The gene encoding
MRP4 is located on chromosome 13q32.1 and the trans-
lated protein weighs about 149.4 kDa [209]. MRP4 has a
typical structure containing two NBDs and two MSDs;
and each MSD consists of six TMDs [216]. MRP4 fur-
ther regulates the synthesis and efflux of prostaglandins
and thereby play a role in inflammation [249]. Substrates
of MRP4 include cyclic adenosine monophosphate
(cAMP), cyclic guanosine monophosphate (cGMP), adefo-
vir, ganciclovir, loop diuretics, cephalosporins, topotecan,
PMEA, 6-mercaptopurine (6-MP), 6-thioguanine (6-TG),
etc. [210–212, 214]. Recent updates added a few more nat-
ural products like plant polyphenols, resveratrol, and
quercetin that are transported by MRP4 [213].
ABCC5/MRP5 weighs 160.6 kDa and the gene is

found on the chromosome 3q27.1. This transporter is
highly localized in brain, heart, skeletal muscles, and
lungs [209, 220]. It is similar to MRP4, except, it is
devoid of MSD0 and contains a 90 aminoacyl long
hydrophilic extension in the sixth TMD [218–220].
MRP5 is an organic anionic transporter, which can trans-
port nucleotides and nucleotide analogs like cAMP, cGMP,
6-MP, 5-FU, and antifolates like methotrexate [221].
ABCC6/MRP6 has a 41% structural similarity with

MRP1 and is comprised of two NBDs and three MSDs
with five, six and six TMDs, respectively. It is 164.9 kDa
in molecular weight and its gene is located on chromo-
some 16p13.11 [223, 250]. It is mainly localized in kid-
ney and liver and has low or miniscule levels in other
tissues [223]. It functions as a calcium transporter to
regulate tissue calcification. It confers resistance against

cyclopentapeptide BQ123, low resistance against etopo-
side, teniposide, anthracyclines and cisplatin. It can also
expel out glutathione (GSH) conjugates like LTC4 and
n-ethylmaleimide-glutathione [224, 225].
ABCC10/MRP7 gene is found on chromosome 6p21.1

and is a 161.6 kDa protein. It consists of three MSDs
and two NBDs [226, 251, 252]. It is found to be
expressed in tissues like skin, testes, spleen, stomach,
colon, kidney, heart, and brain (sparse proportions)
[226]. Although, its expression in the pancreas, liver, pla-
centa, and spleen is much higher [227]. MRP7 is a lipo-
philic anion transporter with functions in transporting
GSH conjugates and glucuronides, and tissue detoxifica-
tion. Substrates of MRP7 include glucuronides (17-β-D
glucuronide) and the glutathione conjugate of LTC4
[228]. HEK293 cells with overexpression of ABCC10
confers resistance to taxanes, vinca alkaloids, 2′,3′-dide-
oxycytidine, 9-(2-phosphonyl methoxyethyl) adenine
(PMEA), and epothilone B [211, 226, 228–235, 253].
ABCC11/MRP8 is another transporter similar to

MRP4 and MRP5, holding two MSDs, two NBDs and 12
TMDs. It weighs 154.3 kDa and the gene is located on
chromosome 16q12.1. It is broadly apportioned through-
out the body with high levels in breast, brain, liver, pla-
centa, and testes [238]. It is found that MRP8 is an
important part of central and peripheral nervous system
as it transports dehydroepiandrosterone 3-sulfate (DHEA
S), a neuromodulatory steroid [239]. MRP8 is associated
with cellular transport of DHEAS, E1S, estradiol 17 β-D
glucuronide (E217βG), some nucleotide analogs, lipophilic
anions like LTC4 and DNP − SG, AraC, 5-FU, methotrex-
ate, PMEA and 2′,3′ − dideoxycytidine [240–242].
In addition to ABC transporters, there are extracellular

vesicles (EVs) present in the cells that can carry out drug
efflux. EVs are about 30–1000 nm sized particles
enclosed by a phospholipid bilayer, which cannot repli-
cate [254, 255]. EVs were conventionally addressed as
exosomes, microparticles, apoptotic bodies, microvesi-
cles, etc. depending on their biogenesis, size, and content
[256]. Interestingly, ABC transporters like P-gp, MRP1
and BCRP are associated with EVs [254, 257]. It is highly
probable that the direction of these transporters might
be reversed in some but not all EVs, such that there is
an influx of drugs into the EVs. Influx of drugs into the
EVs will lead to a decreased drug concentration inside
the cell, resulting in drug resistance [257–259].

Discussion
This review provides a brief overview and updates on
the biochemistry and pharmacology of drug resistance in
bacteria and cancer cells. Extensive research of over four
decades has now culminated in the identification of
thousands of ABC ATPases [260] and it is quite indisputable
that all the three phyla of life share the ABC superfamily
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genes in some variation [55–57, 59, 261–268]. For instance,
LmrA and EmrE found in bacterium Lactococcus lactis are
structurally and functionally comparable to P-gp in humans
(Fig. 4). The structure of MsbA of bacterial origin is also
structurally comparable to inward facing conformation of
mammalian P-gp [49, 269]. MDR in bacteria constitutes a
huge, mutual reservoir of resistance determinants to most
families of antimicrobial agents across numerous higher
species, including humans. Modifications in cell membrane
and its associated proteins lead to many causes of MDR in
bacteria. Although, recent advances in imaging and
organizational studies of MDR proteins have led us to better
understand the molecular mechanisms of multidrug trans-
port. The contribution of man-made activities like release of
toxic chemicals into the ecosystem has built up an evolu-
tionary survival pressure on bacteria. Both bacteria and can-
cer have similar ways to circumvent the phenomenon of cell
death: a simpler way for bacteria is to swim away from the
cytotoxic environment, which corresponds to metastasis in
tumors. Another course of action is the formation of bio-
films, where the bacterial colony creates a survivable sur-
rounding, which corresponds to formation of altered tumor
microenvironments including a vasculature. Although, these
approaches of drug resistance are quite reversible in nature.
Furthermore, while comparing the causalities of intrinsic or
acquired resistance in bacteria and cancers (comparing
Figs. 1 and 2), it is found that the basic idea behind the
various mechanisms is supported by the DNA repair mecha-
nisms. For instance, homologous recombination, DNA
mismatch repairs, cell cycle regulation, etc. are very much

similar mechanisms of MDR in both bacteria and cancer.
These causalities lead to heritable resistances in both parties
along with pre-existing genetic variations within the popula-
tion and the origination of de novo mutations. The intrinsic
or acquired resistance to drugs are more of a permanent na-
ture as compared to previous reversible approaches [270].
Lambert et al. [270] discusses about stress-induced muta-
genesis, which is usually advantageous to the whole popula-
tion. The survival pressure exerted on bacteria promotes
adaptive mutations. These adaptive mutations generally ori-
ginate from point mutations, and in addition, external oxida-
tive stress recurrently affects the accuracy of DNA
transcription. Subsequently, it will lead to the production of
mutant protein with a non-permanent alteration to the
DNA template; also known as transcriptional mutagenesis
[271]. However, in cancer, the occurrence is often, and it is
referred to genetic instability. Conversely, it is safe to assume
that genetic instability is an organized tactic to speed up
adaptation which will finally be beneficial to malignancies.
Genetic heterogeneity of cancer cells in a single popu-

lation is acquired by exposure to various chemothera-
peutic drugs. Thus, in any cell population of a tumor
mass already exposed to chemotherapy, there may be
multiple mechanisms of MDR observed, which is termed
as multifactorial MDR [101]. Additionally, the normal
functions of the ABC transporters discussed above have
a consequential effect on the pharmacokinetics of drugs
through their absorption, distribution, metabolism, ex-
cretion, and toxicity. Inhibition of these transporters
produces changes in the pharmacokinetics, toxicities,

Fig. 4 Comparative representation P-gp and EmrE. a ABCB1 (P-gp) transporter, one of the most frequently overexpressed transporters in human
cancers. ABCB1 confers resistance to anthracyclines, vinca alkaloids, epipodophyllotoxins, camptothecins, methotrexate, mitoxantrone, etc. b EmrE
transporter of Escherichia coli, belonging to SMR family of drug efflux transporters. EmrE confers resistance to dodecyl dimethyl ammonium
chloride (DDAC) or Ethidium bromide
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DDIs, and other complexities [272]. DDIs are preemi-
nent in patients who have been prescribed drugs with a
narrow therapeutic index and inherent toxicity, bringing
about poor patient compliance and therapeutic decline.
Since the activity of ABC transporters in MDR is not
readily identified, it is necessary to develop a reliable dis-
covery system. A reliable discovery system would help
researchers determine the optimal combination of
drug(s) and inhibitor(s), which in turn would aid clini-
cians in using the ABC transporters as clinical targets
and cancer biomarkers.
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