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Abstract: The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP)
regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are
mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the
current techniques available for real-time cGMP measurements with a specific focus on live cell
imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP
compartmentation in the cardiovascular system.
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1. cGMP Signaling in the Cardiovascular System

The ubiquitous second messenger cyclic guanosine 3′,5′-monophosphate (cGMP) plays an
important role in the cardiovascular system [1–4]. Since its discovery more than 50 years ago [5],
a lot of research has been done on cGMP signaling which still represents an actively studied
topic [6]. In the cardiovascular system, cGMP signaling is essential to several cell types, including
cardiomyocytes (CMs), vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and cardiac
fibroblasts (CFs) [1,7–10].

1.1. cGMP Synthesis

cGMP is generated from guanosine triphosphate (GTP) by specialized enzymes called guanylyl
cyclases (GCs). There are at least two different pathways for cGMP formation—one stimulated by
nitric oxide (NO) and another triggered by natriuretic peptides (NPs) [11,12].

In mammalian cells and tissues, GCs exist in two different forms. The soluble guanylyl cyclase
(sGC) is a haem-containing enzyme, consisting of two subunits (α and β, the latter contains a haem
binding domain). The particulate guanylyl cyclase (pGC) is a single-chain haem-free transmembrane
protein. Both GCs are involved in cGMP signaling [12–15]. sGCs are stimulated by NO [16–18],
whereas pGCs are stimulated by NPs [19,20].

There are at least seven pGCs (GC-A to GC-G). However, thus far, ligands for only three of them
(GC-A, GC-B, and GC-C) have been identified, whereas the other pGCs are supposed to act as orphan
receptors [19,21]. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are the natural
ligands for GC-A. C-type natriuretic peptide (CNP) is the ligand for GC-B [9,21–24]. pGCs are localized
to cell membranes [25].

sGC consists of two subunits and is typically found as a heterodimer composed of a larger α

subunit and a smaller β subunit. sGCα1β1 heterodimer is the most prevalent sGC isoform, although
homodimers of these subunits can also be formed [1,13,15,26]. Indeed, sGC has also been shown
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to be targeted to caveolin-rich membrane domains together with NO-producing synthases (NOS).
For example, the co-localization with caveolin-1 [27], heat shock protein 90, and endothelial NO
synthase (eNOS) was demonstrated in aortic ECs [28], as well as the membrane association of sGCα2β1

in rat brain [14].
cGMP concentrations can be also modulated by stimulation with acetylcholine (ACh). There are

two major types of ACh receptors (AChRs), the muscarinic AChRs (mAChRs) and the nicotinic AChRs
(nAChRs). [29–31]. ECs, smooth muscle cells, as well as CMs are known to express both, mAChRs and
nAChRs [32–37]. Studies in the early 1990s could already show that stimulation of blood vessels with
ACh leads to an endothelium-dependent relaxation of the vascular smooth muscle which is mediated
through the formation of an endothelium derived relaxing factor (EDRF) which has been identified as
NO [38,39]. EDRF can be produced by NOS enzymes in ECs upon ACh stimulation of the muscarinic
M3 receptors, this pathway leads to an increase cGMP levels of vascular smooth muscle by stimulation
of sGC [40–42]. In the heart, muscarinic M2 receptors expressed in atrial CMs play a crucial role in
the regulation of heart rate and arhythmogenesis [43], which is mediated by ventricular CMs, since
they are partially innervated by the parasympathetic nervous system [44]. Interestingly, nAChRs are
also expressed in myocardium and can mediate protection of the heart from ischemia reperfusion
injury [45].

1.2. cGMP Effector Activation

There are at least three classes of presently known cGMP effector proteins. First, cGMP-dependent
protein kinases (PKGs, also known as cGKs), are important downstream targets of cGMP in the
cardiovascular system. Three PKG isoforms have been identified (PKG-type Iα (PKG Iα), PKG-type
Iβ (PKG Iβ), and PKG-type II (PKG II)), whereby PKG Iα and PKG Iβ are splice variants originating
from alternative splicing of one single gene. In the cardiovascular system, PKG I is the major
isoform—PKG Iα and PKG Iβ are expressed in VSMCs—while ECs express PKG Iβ, and CMs express
PKG Iα [1,26,46–50]. Second, cyclic nucleotide-gated (CNG) channels, nonselective cation channels,
can be activated by the binding of cGMP or cyclic adenosine 3′,5′-monophosphate (cAMP). They play
a central role in the signal transduction pathways of vision and olfaction, as well as in the regulation
of sinus node function and cardiac pacemaking [51–53]. Finally, activity of some phosphodiesterases
(PDEs) can be regulated by cGMP as described below.

1.3. cGMP Catabolism by Phosphodiesterases

Cyclic nucleotide PDEs hydrolyze cyclic nucleotides, e.g., cGMP and cAMP to inactive
monophosphates guanosine monophosphate (GMP) and adenosine monophosphate (AMP),
respectively. Therefore, they are involved in the regulation of the cellular levels of the second
messengers cAMP and cGMP [13,25,50,54–56].

At least 21 genes encoding for PDEs have been described. PDEs can be subdivided into 11 families
(PDE1–PDE11) [57,58]. In the heart, seven PDE families have been investigated (PDE1, PDE2, PDE3,
PDE4, PDE5, PDE8, and PDE9). While PDE1, PDE2, PDE3, PDE10, and PDE11 are dual-substrate
specific and can hydrolyze both cAMP and cGMP, PDE4, PDE7 and PDE8 are specific for cAMP,
whereas PDE5, PDE6 and PDE9 can only hydrolyze cGMP. Dual-substrate specific PDEs, especially
PDE2 and PDE3 lead to a crosstalk between cAMP and cGMP. PDE3 primarily hydrolyzes cAMP
(Vmax for cAMP 4–10 times higher than for cGMP [59]), but can be competitively inhibited by
cGMP. Therefore, it is often referred to as the cGMP-inhibited PDE. In that way, increasing cGMP
concentrations (which inhibit PDE3) can increase cAMP levels leading to the so-called positive
cGMP-to-cAMP cross-talk. PDE2 can be allosterically activated by cGMP and therefore, an increase
in cGMP level can negatively regulate cAMP levels via PDE2, creating the so-called negative
cGMP-to-cAMP cross-talk [54,59–62].
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2. Live Cell Imaging of cGMP

Since a lot of research is done on cGMP signaling, the development of techniques to measure
cGMP concentrations in living cells and tissues has become essential. Up to now, several techniques
to measure cGMP concentrations have been developed and applied in numerous studies [6,63,64]
(Table 1).

Traditional biochemical methods such as immunohistochemistry [65], radioimmunoassays,
enzyme-linked immunoassays (ELISA) [66,67] or Western blot analysis [64] are quite sensitive and
specific methods to detect cGMP or its downstream effector function. However, they all represent
cell-destructive type of assays which can measure only total cGMP levels with low spatial resolution
instead of physiologically relevant free cGMP localized in subcellular microdomains. In addition,
they often require PDE inhibition to obtain adequate sensitivity, thereby ignoring tight regulation of
local cGMP by these enzymes [64,68]. In sharp contrast, development of real-time detection methods
during the last two decades has enabled studies of cyclic nucleotide dynamics and compartmentation
in living cells with high temporal and spatial resolution in real time [64] (Table 1).

The first real-time detection of cGMP in living cells was done by electrophysiological recordings
of CNG ion channels. For their experiments, Trivedi and Kramer [69] used an exogenously expressed
CNG channel that was engineered to be especially sensitive and selective for cGMP in neoblastoma
cells [69,70]. CNG measurements were also used in adult rat CMs [71]. For this purpose, the rat
olfactory CNG channel α-subunit was expressed in adult rat CMs, and recordings of the respective
cGMP-gated current (ICNG) was done [69,71]. The use of CNG channels for live cell measurements
offers the advantage of high temporal resolution. However, electrophysiological measurements
are technically challenging and time consuming and their temporal resolution is rather limited to
subsarcolemmal microdomains [72].

Förster resonance energy transfer (FRET) microscopy has become a useful tool to monitor and
quantify real-time dynamics of protein–protein interactions and biochemical processes [73]. FRET is
the radiationless transfer of excited-state energy from an initially excited fluorescent donor to an
acceptor fluorophore molecule [74–76]. Up to now, several FRET sensors to measure cGMP dynamics
have been described and used in multiple cell types (Table 1).

Table 1. Techniques to measure cGMP in living cells and tissues.

Method Advantages/Disadvantages References

Traditional biochemical methods
Immunohistochemistry Quite sensitive and specific

[64–67]
Radioimmunoassays Cell destructive assays

Enzyme-linked immunoassays Only measure total cGMP levels
Immunoblots for PKG substrate

phosphorylation
Often require PDE inhibition to obtain

adequate sensitivity

Real-time cGMP detection

Electrophysiological recordings of
CNG ion channels

High temporal resolution
Technically challenging and time consuming

Temporal resolution limited to
subsarcolemmal microdomains

[69–71]

Förster resonance energy transfer
(FRET) based cGMP sensors

CGY-Del1
Cynget-1/2

cGES-DE2/5
cGi-500/3000/6000

red cGES-DE5

High temporal and spatial resolution
Sensitivity for cGMP measurements in some cell

types challenging
cGMP/cAMP selectivity important

[77,78]
[68,79]
[77,80]
[81–83]

[63,84,85]

Non-FRET based cGMP sensors Good cGMP sensitivity
[86,87]FlincG1-3 Relatively low cGMP/cAMP selectivity
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The sensor CGY-Del1 was one of the first cGMP sensors developed for FRET imaging. It consists
of tandem fusion proteins of enhanced cyan (ECFP), PKG I α∆1–47, and enhanced yellow fluorescent
protein (EYFP). However, despite very good sensitivity (cGMP EC50 value of 20 nM), it has a low
cGMP/cAMP selectivity and is not usable in adult CMs which have high cAMP levels [77,78].
Another cGMP FRET sensor developed at the same time was the Cynget-1/2 sensor. It consists
of a PKG (with N-terminally deleted residues 1–77), flanked between cyan and yellow fluorescent
proteins. With a much better cGMP/cAMP selectivity than the CGY-Del1 sensor, this sensor has
been used in neonatal CMs, however it is not usable in adult CMs due to a very low sensitivity
(EC50 = 1.5/1.9 µM) [68,79]. The use of these sensors (CGY and Cygnets) is limited by either low
specificity or sensitivity and low temporal resolution [77].

Two other types of cGMP FRET sensors with faster kinetics and moderate cGMP/cAMP selectivity
have been developed based on cGMP binding regulatory domains of PDEs or cGMP binding domains
of PKG. One is the cGES-DE2/5 FRET sensor. It consists of a PDE2A GAF-B domain or PDE5A GAF-A
domain fused to ECFP and EYFP [77,80]. Another group of constructs are the cGi-FRET sensors
(cGi-500/3000/6000). In these sensors, both cGMP-binding domains from PKG I are sandwiched
between ECFP and EYFP [81–83]. However, with cGMP EC50 = 0.9/1.5 µM for cGES-DE2/5, and cGMP
EC50 = 500/3000/6000 nM for cGi-500/3000/6000 (cAMP EC50 values are in the range of 100–500 µM),
neither is optimal for adult CMs because of relatively low sensitivity.

Because of very low cGMP concentrations in adult CMs, reliable cGMP measurements in these
cells have been challenging in the past [63]. With the development of the red cGES-DE5 FRET
sensor, consisting of a single cGMP-binding (GAF-A) domain from PDE5 fused to the fluorophores
T-Sapphire and Dimer2 and an EC50 of ~40 nM, cGMP FRET measurements in adult CMs became
possible [63,84,85].

It is important to mention that there is also a non-FRET type of cGMP sensors called FlincG1-3,
which can be used for cGMP measurements as well. FlincGs are composed of both cGMP binding
domains from PKG I fused to a circularly permuted GFP. However, despite a good sensitivity for
cGMP with EC50 = 0.17–0.89 µM, they have a relatively low cGMP/cAMP selectivity [86,87] (Table 1).

3. Compartmentation of cGMP Signaling in the Cardiovascular System

Caused by the lack of real-time cGMP detection methods in the past, spatial localization of
the cGMP signaling pathway components has long been poorly studied [6]. However, with the
development of methods for real-time cGMP detection, it became possible to analyze cGMP
compartmentation in intact cells of the cardiovascular system.

3.1. Compartmentation in Cardiomyocytes

In CMs, cGMP signaling is involved in the regulation of contractility [1]. Various studies have been
done, investigating the effects of NP/pGC/cGMP- and NO/sGC/cGMP-pathways on CM contractility.

CNP was shown to have a direct positive chronotropic [88] and dromotropic [89] effect in
anaesthetized dogs. Studies in cultured neonatal rat CMs showed negative inotropic effects caused by
CNP stimulation [90,91]. In rat papillary muscles, CNP exerted a positive lusitropic and a negative
inotropic effect [92]. In isolated working mouse hearts, CNP exerted positive inotropic and lusitropic
effects [93,94], followed by a delayed negative inotropic action [93].

ANP effects on CM contractility seem to be less clear. Some studies could show that ANP
decreases contractility in isolated CMs [95,96], whereas in other studies no effect of ANP on cardiac
mechanical function could be detected [89,92]. One study showed that ANP has no direct effects on
cardiac contractility in isolated working mouse hearts, but the chronic absence of its receptor, GC-A,
results in increased responsiveness to CNP [93].

The effect of NO on the heart has also been investigated by various groups. While some studies
found a negative inotropic effect of NO donors on force contraction in human atrial and ventricular
myocardium [97] and in isolated adult rat ventricular CMs [98], other studies could not observe any
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effects of NO donors in isolated cat and rat papillary muscles [99], or in atrial myocardium preparations
from rats, rabbits, guinea pigs, frogs, and humans [100].

One possible explanation for the different effects of NO donors in different studies was given
by Wegener et al. [101]. They showed that, in atrial and ventricular muscle strips, myoglobin
acts as intracellular scavenger of NO, preventing NO from reaching its intracellular receptors in
CMs. Therefore, the different NO effects seem to be—at least in part—dependent on the myoglobin
concentration in the particular preparations [101].

In 2006, a cell-based study provided the first evidence that the cGMP signaling pathways are
compartmentalized [71]. It was already known before from a previous report which used frog
ventricular myocytes to study the modulation of ICa by NO donors, that the NO-mediated signaling
remains in the local environment and is closely associated with local cAMP concentrations, implying
the formation of signaling microdomains [102]. The group around Rodolphe Fischmeister [71] tested
whether the different effects of NPs and NO donors on cardiac and vascular smooth muscle function
are due to an intracellular compartmentation of cGMP. In rat CMs, they monitored subsarcolemmal
cGMP signals by ectopically expressed rat olfactory CNG channel α subunit and real-time recordings
of the associated cGMP-gated current (ICNG). They could show that in rat CMs, the particulate
(ANP-stimulated) cGMP pool is readily accessible at the plasma membrane, whereas the soluble
(NO donor-stimulated) pool is not. Additionally, they showed that PDE5 controls the soluble but
not the particulate pool, whereas the latter is under the exclusive control of PDE2 (Figure 1) [71,103].
However, the study did not examine whether this compartmentation resulted in different PKG and/or
cellular functional response.
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Figure 1. cGMP compartmentation in CMs. There are at least two different cGMP pools: the NP/pGC/
cGMP pool formed at the plasma membrane, and the NO/sGC/cGMP pool which can be controlled
by the β3-adrenergic receptor (β3-AR) at the cell surface caveolae. pGC/cGMP is tightly controlled
by PDE2 and PDE9, while sGC/cGMP pool is predominantly regulated by PDE5 and PDE3. PKG I
is one of the major downstream targets for cGMP signaling. NO/sGC stimulated PKG I is known
to phosphorylate and inhibit PDE5. ANP/pGC stimulated PKG I can be recruited to the plasma
membrane and is assumed to modulate GC-A activity. Black arrows indicate enzymatic activity, dotted
arrows indicate protein action.

The effect of PKG on the different cGMP pools generated by pGC and sGC was investigated
some years later. In adult CMs, it was shown that PKG activation limits the accumulation of cGMP
induced by NO donors (via PDE5 stimulation) but increases that induced by NPs (by a still unknown
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mechanism, possibly by PKG-dependent modulation of GC-A). This indicates that PKG, via a feedback
control, is one of the key components in the modulation of subcellular microdomains [104].

There are also some hints that PKG is recruited to the plasma membrane, even though such
studies have not been done in CMs yet. It could be shown in a yeast two-hybrid system, that PKG can
directly interact with GC-A. In human embryonic kidney cells expressing GC-A, it is recruited to the
plasma membrane following ANP treatment. In this system, PKG translocation was ANP-dependent
but not NO dependent [105]. The same effect could also be shown in rat hepatocytes where ANP
promotes plasma membrane recruitment of PKG Iα through localized cGMP elevation [106].

Another study examined the functional significance of such cellular compartments which were
found by Liliana Castro and colleagues [71]. In an in vivo study, Takimoto and colleagues could
show that the regulation of cardiac β-adrenergic response by cGMP is linked to a NO-synthesis/
PDE5-hydrolyzed pool signaling via PKG. In contrast to that, NP stimulation achieved greater
detectable increases in cGMP but not PKG activity and did not modulate β-adrenergic response [107].

It was already known from cardiac function studies in adult mice that PDE5 regulation of the
adrenergic response depends upon NOS-induced cGMP/PKG and can be enhanced by sustained
low-level stimulation of sGC [108]. To investigate the cellular mechanisms for the modulation of the
β-adrenergic response by PDE5 inhibition, another study was done in adult mouse CMs. The authors
examined the role of PDE2 and PDE3, β3-adrenergic signaling, and PKG targeting of the contractile
apparatus for modulation of β-adrenergic response by PDE5 inhibitors. They could show that
anti-adrenergic effects of PDE5A inhibition are not modulated by PDE2 or PDE3, but rather require
β3-AR stimulation and PKG activation with a subsequent Troponin I phosphorylation [109].

With the development of the red cGES-DE5 FRET sensor it became possible to perform FRET
measurement in adult mouse CMs. Studies in transgenic mice with CM-specific expression of
this cytosolic FRET biosensor showed that PDE3 is the main PDE responsible for cytosolic cGMP
degradation [63]. In 2015, a study was presented which investigated the involvement of cGMP
degrading PDE9 in the heart [110]. The role of PDE5 as regulator of NO-generated cGMP was
already known [103], however PDEs controlling NP-generated cGMP were still uncertain at this time.
The authors could show that in adult mouse hearts and in isolated CMs, PDE9 regulates NP- rather
than NO-stimulated cGMP [110] (Figure 1).

Despite these several studies investigating cGMP compartmentation in CMs, yet there are still
many unresolved questions. For further studies of cGMP microdomains in adult CMs, targeted cGMP
FRET sensors-like those which already exist for cAMP [111,112]-would be especially useful.

3.2. Compartmentation in Other Cell Types

3.2.1. Compartmentation in Vascular Smooth Muscle Cells

In VSMCs, cGMP signaling is involved in cell proliferation and differentiation [1,113]. VSMCs are
the contractile cells of the blood vessels including the coronary arteries and veins [47] and it could
be shown that the NO/cGMP signaling cascade plays an essential role in vascular smooth muscle
relaxation [114,115].

In 2006, a study could show that several differences might exist between cGMP signaling in CMs
and VSMCs. The authors investigated the subcellular localization of cGMP signals by measuring
CNG channel activity in response to agonists for either pGC or sGC in human embryonic kidney cells
expressing GC-A as well as in VSMCs. They could show that cGMP signals are spatially segregated
and that the functional compartmentation of cGMP signals may underlie the unique actions of ANP
and NO [116]. Comparing the results from this study with the study from Castro et al. [71], it becomes
obvious that, in VSMCs, the relative increase in cGMP with NO-sGC stimulation exceeded that with
NP-pGC [116], which is the opposite to what was observed in CMs [71].

In another study, it was shown by the use of the cGMP-biosensor FincGs that, in unpassaged
adenoviral transfected VSMCs, global cGMP elevation was created to NO response. In contrast,
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local sub-membrane elevations were generated in response to ANP, which were converted to global,
more diffused ones after PDE5 inhibition [87] (Figure 2).
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pGC/cGMP pool, which is controlled by PDE5 and PDE3, and the sGC/cGMP pool, which is mainly
regulated by PDE3. Black arrows indicate enzymatic activity.

In human VSMCs transduced with adenoviral vectors to express mutants of rat olfactory CNG
channel-subunits, it could be shown by recording cGMP-gated currents (ICNG) that there are at least
two separate cGMP pools: one localized next to plasma membrane and controlled by PDE5 and PDE3,
and another localized to cytosol, regulated mainly by PDE3 [117] (Figure 2).

The development of transgenic cGMP FRET sensor mice, expressing the cytosolic cGi500
cGMP FRET sensor [82] in VSMCs offered new possibilities to study cGMP dynamics in these
cells [83]. The authors created two different cGi500 mouse lines-a smooth-muscle specific transgenic
line (SM22-cGi500 mice), expressing the cGi500 sensor under the control of the smooth-muscle-
specific SM22 α promoter, and the ubiquitous transgenic mouse line (R26-CAG-cGi500(L1)
mice), where a targeted knock-in of the cGi500 sensor was done into the Rosa26 locus of
Cre recombinase-activatable expression cassette driven by the ubiquitous cytomegalovirus early
enhancer/chicken β-actin/β-globin (CAG) promoter with a permanently active sensor transgene.
FRET measurements in isolated VSMCs of both mouse lines showed that both CNP superfusion,
and superfusion with the NO-releasing compound 2-(N,N-dethylamino)-diazenolate-2-oxide
dethylammonium salt (DEA/NO) generated clearly detectable cGMP increases. Additionally, FRET
measurements in VSMCs isolated form SM22-cGi500 mice showed that preincubation with the
nonspecific PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX) strongly potentiated NO-induced cGMP
signals, whereas the selective PDE5 inhibitor sildenafil hat a comparatively weak effect. This indicates
that cGMP levels in VSMCs are controlled by PDE5 and other PDEs. Additionally, differences in
response to ANP and CNP were also shown. Whereas CNP stimulation leads to robust increase in
cGMP concentrations, stimulation with ANP leads to weak but clearly detectable cGMP elevation [83]
(Figure 2).
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3.2.2. Compartmentation in Endothelial Cells

While cGMP signaling has been extensively studied in VSCMs and CMs, studies in ECs are only at
their beginning. In ECs, cGMP signaling is known to regulate cell motility, migration, and proliferation,
which are vital to angiogenesis and vascular permeability [1].

The role of cGMP signaling on endothelial permeability has long been controversial.
Surapisitchat et al. [118] hypothesized that the effect of cGMP on endothelial permeability is dependent
on cGMP concentration. In their studies, the authors could show that in human umbilical vein
endothelial cells (HUVECs), after slight elevation of cAMP with MPB-forskolin, low doses of
either ANP or NO donors potentiated the inhibitory effect of MPB-forskolin on thrombin-induced
permeability caused by inhibition of PDE3A at lower cGMP concentrations. However, this inhibitory
effect was reversed at higher doses of ANP and NO donor because cGMP at higher concentrations
activates PDE2A. These findings suggest that the result of cGMP signaling in endothelial cell
permeability is highly dependent on the concentration of intracellular cGMP [118] (Figure 3).
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Figure 3. cGMP compartmentation in ECs. These cells also contain pGC and a sGC-associated cGMP
pools. Both PDE2 and PDE3 are known to be involved in their regulation. The effect of cGMP signaling
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also localized to endothelial caveolae to regulate endothelial barrier function. Black arrows indicate
enzymatic activity.

Some years later, another study was done by Chen et al. [119] which extended the previous
findings by Surapisitchat et al. [118] that the effect of the cGMP signaling pathway in ECs is highly
dependent on the intracellular cGMP concentrations. By doing real-time FRET measurements in
HUVECs, the authors analyzed the effects on the regulation of submembrane versus cytosolic cAMP
levels by ANP stimulation, using the membrane-targeted cAMP sensor pmEpac2-camps [112] or the
cytosolic cAMP sensor Epac2-camps [120]. Whereas in resting HUVECs, ANP leads to an increase
in submembrane and cytosolic cAMP levels indicating inhibition of the cGMP inhibited PDE3A,
in HUVECs pretreated with TNF-α which induces PDE2 expression in these cells, ANP treatment
mediated a mild but clear decrease of submembrane cAMP level (which was PDE2A mediated) but
the effect of ANP on cytosolic cAMP level was unchanged. With these measurements, the authors
could show that the cGMP/cAMP cross-talk is compartmentalized in ECs. [119] (Figure 3).

Another study provided further evidence of compartmentation of sGC, PKG and protein kinase
A (PKA) in endothelial cell caveolae. It is known that, similar to CMs, in ECs, endothelial NO synthase
(eNOS) is localized to caveolae. Using endothelium-intact aortic rings, relaxation of pre-contracted
(with ACh) vessels by the sGC activator YC-1 and by 8-bromo-cGMP was impaired in the presence of
methyl-β-cyclodextrin—a chemical agent that disassembles caveolae by sequestering cholesterol from
the membrane [27]. This suggests that sGC/cGMP/PKG pathway compartmentation in caveolae is
required for the functional response of the vessels (Figure 3).
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3.2.3. Compartmentation in Cardiac Fibroblasts

CFs are the most abundant non-myocyte cell type in the heart. They help to maintain the
extracellular matrix (ECM) of the heart by producing ECM components such as collagen and fibronectin,
as well as promoting collagen degradation by secreting matrix metalloproteinases [7,121–123].
Even though CFs are the most abundant non-myocyte cell type in the heart, little is known about
cGMP compartmentation in these cells.

A quantitative analysis of the cardiac fibroblast transcriptome revealed that CFs express
components of the NO/cGMP signaling pathway—the α1 and β1 sGC subunits, and PKG I. Inhibition
of the proliferation of serum-treated CFs upon cGMP analog treatment indicates that PKG I mediates
the inhibitory effects of the NO/cGMP pathway on CF growth [124].

One study was done to investigate the effect of NO production on β-adrenergic response in adult
rat CFs. Upon immune response activation by IL-1β treatment, the inducible NO synthase (iNOS) is
upregulated, which increases NO and therefore cGMP production to attenuate cAMP accumulation
in response to isoproterenol or forskolin. By using of the broadband PDE inhibitor IBMX and the
PDE2 specific PDE inhibitor erythro-2-(2-hydroxy-3-nonyl)adenine, the authors could show that
cAMP attenuation is regulated via PDE2 stimulation caused by increased cGMP levels and not via an
inhibition of adenylyl cyclase by NO or via stimulation of PKG [125].

An outside-in-crosstalk between the ECM protein fibronectin and GC-A has been also recently
described. In cultured human CF, it could be shown that GC-A might transduce signals from ECM
to CF. CFs plated on fibronectin demonstrated an increase in cGMP production to BNP compared
to non-coated plates. This indicates that GC-A interacts with ECM components such as fibronectin
to enhance BNP activation of cGMP [122]. It could be also shown that both Arg-Gly-Asp (RGD)
attachment site containing ECM proteins and integrins may interact with BNP/GC-A to modulate
cGMP generation [126].

4. Conclusions

During the last decades, a lot of research has been done on cGMP signaling in the cardiovascular
system. However, there is still a plethora of unresolved questions. New imaging techniques
for real-time cGMP detection offer great possibilities to better understand the role of subcellular
compartmentation of cGMP signaling in living cells and tissues and until now, several interesting
studies have been done investigating the role of subcellular cGMP compartmentation in the
cardiovascular system.

Thus far, only a few studies focusing on subcellular cGMP compartmentation in adult CMs have
been performed, mostly limited by the availability of highly sensitive live cells imaging techniques. It is
known that in CMs there are at least two different cGMP pools: the NP/pGC/cGMP pool, controlled by
PDE2 and PDE9, and the NO/sGC/cGMP pool, predominantly regulated by PDE5 and PDE3. One of
the main downstream targets is PKG I, it is known to phosphorylate and inhibit PDE5. ANP/pGC
stimulated PKG I can be recruited to the plasma membrane and is assumed to modulate GC-A activity.
Several questions remain unresolved such as the role of GC distribution in the regulation of cGMP
compartmentation. For such studies, the development of targeted cGMP FRET biosensors (similar to
those which already exist for cAMP) would be very useful.

Studies in VSMCs showed the existence of two different cGMP pools: pGC/cGMP, controlled
by PDE5 and PDE3, and sGC/cGMP, mainly regulated by PDE3. Thus far, most of the studies have
been done using electrophysiological recordings of CNG channel activity, which are limited to the
subsarcolemmal microdomains. In ECs, only a few studies have been done to show that the effect of
cGMP signaling pathway is highly dependent on the intracellular cGMP concentrations. pGC- and
a sGC-associated cGMP pool have been identified and shown to be regulated and PDE2 and PDE3.
Recent reports suggest interesting PDE2/PDE3-mediated compartmentation of cGMP at the membrane
vs. other subcellular locations which should be further address using FRET biosensors.
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Although new imaging techniques for real-time cGMP detection offer great possibilities to
better understand the role of cGMP compartmentation, such studies remain challenging. Low cGMP
concentration and complexity of subcellular microdomains require special efforts and the development
of better techniques and biosensors, which is still ongoing. This is a challenging but important field of
research since a better understanding of cGMP compartmentation in the cardiovascular system could
offer novel pharmacological approaches for the treatment of multiple cardiovascular diseases.
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Abbreviations

ACh Acetylcholine
AChR Acetylcholine receptor
AMP Adenosine monophosphate
ANP Atrial natriuretic peptide
BNP Brain natriuretic peptide
CAG Cytomegalovirus early enhancer/chicken β-actin/β-globin
cAMP Adenosine monophosphate
CF Cardiac fibroblast
cGMP Cyclic guanosine 3′,5′-monophosphate
CM Cardiomyocyte
CNG Cyclic nucleotide gated channels
CNP C-type natriuretic peptide
DEA/NO 2-(N,N-dethylamino)-diazenolate-2-oxide dethylammonium salt
EC Endothelial cell
ECFP Enhanced cyan fluorescent protein
ECM Extracellular matrix
EDRF Endothelium derived relaxation factor
ELISA Enzyme-linked immunoassay
eNOS Endothelial NO synthase
EYFP Enhanced yellow fluorescent protein
FRET Förster resonance energy transfer
GC Guanylyl cyclase
GMP Guanosine monophosphate
GTP Guanosine triphosphate
HUVEC Human umbilical vein endothelial cell
IBMX 3-isobutyl-1-methylxanthine
mAChR Muscarinic acetylcholine receptor
iNOS Inducible NO synthase
nAChR Nicotinic acetylcholine receptor
NO Nitric oxide
NOS NO synthase
NP Natriuretic peptide
PDE Phosphodiesterase
pGC Particulate guanylyl cyclase
PKG cGMP-dependent protein kinase
PKG I cGMP-dependent protein kinase type I
PKG II cGMP-dependent protein kinase type II
RGD Arg-Gly-Asp
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sGC Soluble guanylyl cyclase
VSMC Vascular smooth muscle cell
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