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Macrophages originating from the yolk sac or bone marrow play essential roles in tissue
homeostasis and disease. Bone marrow-derived monocytes differentiate into Ly6Chi and
Ly6Clo macrophages according to the differential expression of the surface marker protein
Ly6C. Ly6Chi and Ly6Clo cells possess diverse functions and transcriptional profiles and
can accelerate the disease process or support tissue repair and reconstruction. In this
review, we discuss the basic biology of Ly6Chi and Ly6Clo macrophages, including their
origin, differentiation, and phenotypic switching, and the diverse functions of Ly6Chi and
Ly6Clo macrophages in homeostasis and disease, including in injury, chronic
inflammation, wound repair, autoimmune disease, and cancer. Furthermore, we clarify
the differences between Ly6Chi and Ly6Clo macrophages and their connections with
traditional M1 and M2 macrophages. We also summarize the limitations and perspectives
for Ly6Chi and Ly6Clo macrophages. Overall, continued efforts to understand these cells
may provide therapeutic approaches for disease treatment.
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INTRODUCTION

Macrophages contribute to homeostasis and disease through their extensive tissue distribution,
functional diversity and plasticity. Tissue-resident macrophages (TRMs) arise from two sources:
embryonic precursors and circulating monocytes (1–3). Embryonic macrophages contribute to self-
maintenance, tissue remodeling and genotoxic stress resistance (4, 5), whereas bone marrow
monocyte-derived macrophages act as short-lived effector cells contributing to various physiological
activities, such as atherosclerosis and fibrosis (6). Conventionally, macrophages with different
functions are described as M1 and M2 macrophage subsets (7). The M1 macrophages are known as
classically activated macrophages, which contribute to primary host defense against pathogens (8).
The M2 macrophages are known as alternatively activated macrophages, which heal tissue injury or
damage caused by M1 macrophages and are involved in stimulating antibody production in
adaptive humoral immunity (9). In addition, an increasing number of tumor-associated
macrophages (TAMs) have been identified, which execute diverse functions such as suppression
of antitumor immunity (10). The concept of M1 and M2 macrophage subsets is mainly derived
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from the in vitro polarization inducing assays, hence the M1 and
M2 classifications are more suitable to describe the activation
state of macrophages in vitro.

During the recent decade, the new classification of Ly6Chi and
Ly6Clo macrophages has been widely applied to investigate
monocyte-derived macrophages and to depict the precise state
of macrophages in an intricate internal microenvironment (11).
This classification system represents two different macrophage
populations that are distinct in phenotype, function and even
origin (12–14). Ly6C is a glycoprotein that is expressed on
macrophage/dendritic cell precursors during mid-stage
development. Differential Ly6C expression can identify
functionally distinct macrophage populations in the steady
state or disease (15, 16). In mice, the circulating monocytes
derived from bone marrow are composed of at least Ly6Chi and
Ly6Clo subsets . The CX3CR1midCCR2+Ly6Ch i and
CX3CR1hiCCR2-Ly6Clo phenotypes are functional equivalent
with CD14hiCD16lo and CD14loCD16hi phenotypes in humans
(17, 18). Recently, emerging studies have shown that the
continuum of macrophage phenotypes, not the two
circumscribed profiles originally proposed, plays important
roles in various diseases, including kidney injury (19), liver
fibrosis (13), rheumatoid arthritis (20), and breast cancer (21).
Here, we review the new classification and perspectives in
monocyte-derived macrophage research, including the origin,
heterogeneity, conversion, and function of Ly6Chi and
Ly6Clo macrophages.
BASIC BIOLOGY OF LY6CHI AND LY6CLO

MACROPHAGES

Origin, Development, and
Functional Heterogeneity
For half a century or more, the prevailing doctrine for tissue
macrophages has been that these cells originate from circulating
monocytes (22). Recently, it has become obvious that most tissue
macrophages originate during embryonic development (23).
TRM populations are mainly contributed by yolk sac (YS)-
derived macrophages, erythro-myeloid progenitors (EMPs),
and fetal hematopoietic stem cells (HSCs) (24, 25). In mice,
yolk sac- or fetal liver-derived macrophages are located in
different adult tissues, including the brain, epidermis and
kidneys, and contribute to tissue homeostasis independent of
bone marrow-derived monocytic precursors (5, 24, 25).
Embryonic- derived and monocytes-derived subsets contribute
to macrophage in adult tissues, including the gut and dermis
(26–29). In addition, in the heart and pancreas, the macrophage
population is a mixed population of yolk sac-derived
macrophages, fetal liver-derived monocytes and bone marrow-
derived monocytes (5).

Although tissues are populated with fetal macrophages,
monocyte-derived macrophages might replace TRMs to a
greater or lesser extent. Monocyte-derived macrophages are
classified as CD11BhiF4/80hiLy6Chi macrophages (namely,
Ly6Chi macrophages) and CD11Bhi F4/80hiLy6Clo macrophages
Frontiers in Immunology | www.frontiersin.org 2
(namely, Ly6Clo macrophages) based on the expression of Ly6C, a
cell-surface glycoprotein (14, 19). Ly6Chi macrophages develop
from recruited classical CCR2+CX3XR1loLy6Chi monocytes
(analogous to human CD14+CD16- monocytes) during
inflammation and are then converted into Ly6Clo macrophages.
With the development of techniques such as single-cell
sequencing and mass cytometry, new dimensions of the
richness and heterogeneity of macrophages have been mapped.
According to the latest single-cell analysis studies, four
subpopulations of Ly6Chi inflammatory macrophages have been
found to be present in kidney injury through relatively meticulous
research (3). Here, we focus on the two most unlike subsets,
Ly6Chi and Ly6Clo macrophages, to reveal the phenotypic and
functional differences between them.

The Ly6Chi and Ly6Clo subsets exhibit functional
heterogeneity, which is indicated by the high diversity in cell-
surface marker, cytokine release and transcriptional profiles (14,
30–32). Indeed, Ly6Chi macrophages derived from circulating
Ly6Chi monocytes are more enriched in the acute inflammatory
response and show a proinflammatory ability (3). They
exert proinflammatory and profibrotic functions mediated
through various inflammatory and secreted factors,
including tumor necrosis factor (TNF), interleukin (IL)-1b,
and transforming growth factor (TGF)-b (33, 34). In contrast,
Ly6Clo macrophages attract wide attention for their protective
roles in wound healing, anti-inflammatory processes, and
antifibrotic processes (14, 35, 36). Ly6Clo macrophages play
diverse roles in maintaining the stability of the endothelium,
regulating vasculogenesis, and transporting ions (3). They
supposedly derived from Ly6Clo monocytes which are known
to patrol endothelial cell of the blood vasculature (37). The
detailed functions of the two subsets are discussed
below (Table 1).

Conversion of Ly6Chi Macrophages Into
Ly6Clo Macrophages
Conversion of Ly6Chi macrophages into Ly6Clo macrophages
through phenotypic switching is an important source of tissue
macrophages (13, 14, 33), but the precise regulatory mechanism
underlying this process is still unclear. However, studies have
revealed the signals driving Ly6Chi/Ly6Clo monocyte conversion
and its molecular bases (55, 56). For example, it was proposed
that the conversion of Ly6Chi monocytes into Ly6Clo monocytes
might be a functional transition caused by loss of
microenvironmental signals that sustain the expression of
genes specific to Ly6Chi cells rather than a true developmental,
terminal differentiation program (57, 58). The transcription
factors Nr4a1 and Cebpb were reported to be master
regulators that promote the conversion of Ly6Chi monocytes
into Ly6Clo monocytes (56, 59, 60). Both Nr4a1−/− mice and
Cebpb−/− mice lack Ly6Clo monocytes (59, 61). In early studies,
macrophage colony-stimulating factor 1 (CSF-1) was shown to
promote the maturation of macrophages from bone marrow-
derived macrophage precursors accompanied by a rapid decrease
in Ly6C expression, which indicated the significance of CSF-1 in
phenotypic switching (62, 63). Apart from this, IL-4 and IL-10
May 2022 | Volume 13 | Article 901672
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were found to have the ability to promote liver-derived Ly6Chi

macrophage conversion into Ly6Clo macrophages, and a
synergistic effect was observed between these two cytokines
(13). Resolving D2, a specialized proresolving lipid mediator,
significantly improves muscle regeneration by promoting
Ly6Chi/Ly6Clo macrophage conversion (36). Phagocytosis by
Ly6Chi macrophages fosters Ly6Chi/Ly6Clo macrophage
conversion in the fibrotic liver through liposomal stimulation
(14). In addition, the CX3CR1-CX3CL1 signaling axis indirectly
regulates the phenotypic switch between Ly6Chi/lo macrophages
(38, 40, 43, 64). Since Ly6Clo macrophages are beneficial for
hepatic fibrosis resolution, the number of Ly6Chi macrophages
was significantly increased in CX3CR1-/- mice, followed by
chronic inflammation and increased hepatic fibrosis (40).
Moreover, neutrophils are involved in the Ly6Chi/Ly6Clo

macrophage switch by expressing reactive oxygen species
(ROS) to orchestrate liver repair (41) (Figure 1). Although the
master regulators involved in Ly6Chi/Ly6Clo macrophage
conversion are not fully understood, many investigations are
contributing to the answer.
LY6CHI AND LY6CLO MACROPHAGES IN
HOMEOSTASIS AND PATHOLOGY

Ly6Chi and Ly6Clo Macrophages
in Homeostasis
In the steady state, tissue-resident macrophages, such as
microglia, Langerhans cells, and Kupffer cells, exhibit a F4/
Frontiers in Immunology | www.frontiersin.org 3
80hiLy6Clo phenotype. These tissue-resident macrophages play
fundamental homeostatic roles in the clearance of apoptotic cells
and participate in tissue immune surveillance (42). They
maintain themselves locally and independently of circulating
precursors. For instance, the most important cardiac
macrophages in the steady state are F4/80hiLy6CloMHCIIhi and
F4/80h iLy6CloMHCII lo subsets . These subsets exist
independently of bone marrow-derived monocytes and are
renewed through in situ proliferation. They perform more
antigen sampling and efferocytosis than infiltrating Ly6Chi

macrophages (27). In contrast, Ly6Chi macrophages are rarely
involved in tissue homeostasis. Classical Ly6Chi monocytes do
not enter tissues on a large scale, and they intend to switch to a
Ly6Clo phenotype with time of residency. Ly6Chi monocytes
remain in an undifferentiated state instead of becoming
committed macrophages or DCs, which is different from the
differentiation of Ly6Chi monocytes into macrophages or DCs
during inflammation (23). However, when homeostasis is
disrupted, bone marrow-derived Ly6Chi monocytes are
recruited to the site of inflammation.

Ly6Chi/Ly6Clo Macrophages in Injury,
Chronic Inflammation and Wound Repair
The proinflammatory and profibrotic roles of Ly6Chi

macrophages has been reported in various diseases, among
which liver injury and fibrosis are typical models used to
investigate the function of the Ly6Chi subset. During acute liver
injury and chronic liver diseases such as liver fibrosis,
CCR2+Ly6Chi monocytes are recruited to the liver in a manner
dependent on the CCL2/CCR2 or CCL1/CCR8 chemokine-
TABLE 1 | The role of Ly6Chi/lo macrophages in disease.

Disease Ly6Chi/lo

subset
Tissue/organ/cell line Channel Conclusion Reference

Liver injury Ly6Chi M Liver CCL2, TNF, IL-1 Detrimental (32, 39)
Kidney injury Ly6Chi M Kidney TLR4-dependent inflammatory signaling pathways Detrimental (3)
Kidney injury Ly6Clo M Kidney Phagocytosis, regulation of angiogenesis Protective (3)
Kidney injury Ly6Clo M Kidney CCL-17, CCL-22, IGF-1, and PDGF-b Detrimental (15)
Colitis Ly6Chi M intestine IL-1b, TNF Detrimental (66)
Skeletal muscle
injury

Ly6Clo M Skeletal muscle Resolvin D2 Protective (36)

Sciatic nerve injury Ly6Clo M Sciatic nerve Efferocytosis Protective (47)
Myocardial
infarction

Ly6Clo M Heart TGF-b Protective (48)

Liver fibrosis Ly6Chi M Liver IL-1b, TNF,TGF-b Detrimental (14)
Liver fibrosis Ly6Clo M Liver MMP9, MMP12, MMP13, HGF, IGF, Mertk, Trem2 Protective (14)
Lung fibrosis Ly6Chi M Lung TGF-b Detrimental (68)
RA Ly6Chi M Joint IL-1b, IL-6, IL-8, and TNF-a Detrimental (20)
RA Ly6Clo M Joint Differentiate into inflammatory macrophages (M1) Detrimental (73)
RA Ly6Clo M Joint Through the mobilization of Treg cells Protective (74)
SLE Ly6Chi M Kidney CSF-1 Detrimental (76)
SLE Ly6Clo M Kidney MMPs Protective (77)
MS Ly6Chi M Central nervous system TNF-a, iNOS, p40, p19, IL-6 Detrimental (78)
Breast cancer Ly6Chi M Breast cancer CCL2-CCR2 axes Detrimental (84)
Leukemia Ly6Chi M Bone marrow TNF-a, IL-1b, IFN-g, CCL8–CCR1/CCR2 axes, CCL9/10–CCR1

axes
Detrimental (88, 89)

Breast cancer Ly6Clo M Mammary adenocarcinoma cell
line

iNOS, Cox2, IL-1b, IL-6 Detrimental (90)

Breast cancer Ly6Clo M Breast cancer A-FABP Detrimental (21)
Lung metastasis Ly6Clo M Lung IL-6 Detrimental (92)
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receptor interaction (39, 61). In the liver, these cells develop into
infiltrating Ly6Chi macrophages and exhibit a proinflammatory
phenotype. Ly6Chi macrophages express inflammatory genes,
including inducible nitric oxide synthase (iNOS) and TNF,
which aggravate the inflammatory response (65). In other
inflammatory diseases, such as acute lung injury (19) colitis
(66) and skin wound healing (28, 44, 67), the Ly6Chi subset is
the source of IL-1b and TNF, and Ly6Chi macrophage-targeted
therapies are useful for decreasing inflammation. Functionally,
Ly6Chi macrophages intensify the scarring occurring during liver
fibrosis by promoting hepatic stellate cell (HSC) survival via IL-
1b and TNF-induced NF-kB activation and TGF-b/PDGF-
mediated HSC transdifferentiation and proliferation (45, 46).
Inhibiting infiltrating Ly6Chi monocytes in CCR2-/- mice was
shown to relieve liver fibrosis (39). Similarly, the profibrotic
function of Ly6Chi macrophages in lung and kidney fibrosis has
been revealed (19, 43, 68). Mechanistically, Ly6Chi macrophages
with high S100a8 and S100a9 expression were found to have a
strong interaction with kidney-resident macrophages through the
S100a8/a9-Tlr4 axis, thereby initiating and amplifying the
inflammatory response during kidney injury (3) (Figure 1).

In contrast to Ly6Chi macrophages, Ly6Clo macrophages play
important roles in inhibiting inflammation, promoting wound
healing, improving regeneration and decreasing fiber deposition
during tissue injury and fibrosis (Figure 1). Taking liver fibrosis as
an example, the restorative Ly6Clo subset upregulates phagocytosis-
Frontiers in Immunology | www.frontiersin.org 4
related genes (Fcrls, Cd5l, Mertk, Trem2, and Axl), matrix
degradation-related genes (Mmp9, Mmp12, and Mmp13), and
growth factors (Hgf, Igf1 and Mif), which facilitate fiber
degradation, fibrosis resolution, and tissue protection (14). In
sciatic nerve injury, inflammation-resolving Ly6Clo macrophages
derived from Ly6Chi cells promote an anti-inflammatory milieu by
efferocytosis (47). In skeletal muscle injury, the proresolving lipid
mediator resolvin D2 increases Ly6Clo macrophages and improves
muscle regeneration (36). Ly6Clo macrophages express genes closely
related to the mitotic cell cycle and cell division and are involved in
various biological processes, including defense reactions and
responses to cytokine stimuli and viruses, after resolvin D2
treatment (36). In myocardial infarction, Ly6Clo macrophages
play crucial roles in postinfarct healing and optimal scar
formation by secreting immunoregulatory factors, such as TGF-b
(48). However, a destructive role for Ly6Clo macrophages has also
been reported. For example, bone marrow-derived Ly6Clo

macrophages worsen renal fibrosis by secreting various cytokines
that promote the transdifferentiation of fibroblasts into
myofibroblasts (69). This viewpoint is quite different from those
in previous reports, and the debate on this needs to be resolved.

Ly6Chi and Ly6Clo Macrophages in
Autoimmune Disease
The detrimental functions of Ly6Chi macrophages in
autoimmune disease has been revealed in various reports.
FIGURE 1 | The distinct functions of Ly6Chi and Ly6Clo macrophages in injury, chronic inflammation and wound repair. During the initial stage of inflammation,
Ly6Chi monocytes are recruited to the injury site via cytokines, including CC-chemokine ligand 1 (CCL1), CC-chemokine ligand 2 (CCL2), and fractalkine (CX3CL1),
wherein they develop into Ly6Chi macrophages. These cells express proinflammatory mediators, such as nitric oxide (NO), tumor necrosis factor (TNF) and
interleukin-1b (IL-1b), which exacerbate tissue injury. These Ly6Chi cells interact with kidney-resident macrophages through the S100a8/a9-Tlr4 axis, initiating and
amplifying the inflammatory response. During fibrosis, Ly6Chi cells promote this process through the effects of transforming growth factor-b (TGFb) on quiescent
hepatic stellate cell activation, platelet-derived growth factor (PDGF) on myofibroblast proliferation and TNF and IL-1b on activated hepatic stellate cells. Ly6Clo

macrophages accumulate via the recruitment of Ly6Clo monocytes or phenotype switching from Ly6Chi macrophages. Proresolution macrophages inhibit the
inflammatory response and T-cell function through anti-inflammatory factors and CD52-HMGB1 binding. They also engulf apoptotic T cells, which play anti-
inflammatory roles. During the phagocytic process, Ly6Clo cells produce matrix metalloproteinases (MMPs), such as MMP9, MMP12, and MMP13, accelerating
extracellular matrix (ECM) degradation and inhibiting fibrosis. During tissue repair and reconstruction, Ly6Clo cells secrete hepatocyte growth factor (HGF) and insulin-
like growth factor (IGF) to promote wound healing and tissue regeneration. Regarding the mechanism underlying phenotypic switching, various factors and
processes, including cytokines (CSF-1, IL-4, and IL-10), the CX3CR1-CX3CL1 axis, neutrophil-released ROS, phagocytosis, and Resolving D2, have been explored.
May 2022 | Volume 13 | Article 901672
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However, Ly6Clo macrophages show harmful or beneficial
functions in diverse pathological conditions and different
autoimmune disease types (Table 1). Rheumatoid arthritis
(RA) is a complex autoimmune disease influenced by both
genetic and environmental factors (70). Macrophages and
monocytes have been reported to play important roles in the
pathophysiology of RA (71). Ly6Chi macrophages have been
reported to aggravate the progression of RA. Decreases in Ly6Chi

macrophage numbers and chemokines are favorable markers for
clinical improvement with treatment (49). Infliximab was used to
improve RA in human TNF transgenic (hTNF-Tg) mice,
functioning mainly by inducing apoptosis in Ly6Chi

macrophages and inhibiting the recruitment of Ly6Chi

monocytes (49). Ly6Clo macrophages are believed to have
diverse functions in RA. Serum transfer-induced arthritis
(STIA) mice are good model for RA studies (72, 73).
Researchers revealed that Ly6Clo monocytes were recruited to
arthritic joints and developed into Ly6CloMHC-II+ and
Ly6CloMHCII-macrophages; among these cells, Ly6CloMHCII-
macrophages drove the development of joint pathology (73).
However, in contrast, Ly6Clo monocytes developed into Ly6Clo

macrophages, which resembled anti-inflammatory M2
macrophages and contributed to reducing joint inflammation
through the mobilization of regulatory T (Treg) cells (74).

Systemic lupus erythematosus (SLE) is a heterogeneous
systemic rheumatic disease with profound effects on multiple
organs (75). In a mouse model of lupus nephritis (MRL-Faslpr

mice), CSF-1 shifted circulating Ly6Chi monocytes toward
inflammatory Ly6Chi macrophages that induce apoptosis in
tubular epithelial cells, damaging the kidneys (76). A similar
study showed that the Ly6Chi subset increased notably and
secreted proinflammatory cytokines and chemokines during
SLE (77). However, Ly6Clo macrophages possess distinct
functions in SLE. At nephritis onset, Ly6Clo macrophages
upregulate the cell-surface marker CD11b, acquire cathepsin
and matrix metalloproteinase activity, and protect cells from
death. However, these changes reverse after the induction of
remission (77). Multiple sclerosis (MS) is a chronic autoimmune
disease mediated by a complex interaction between autoreactive
lymphocytes and myeloid cells in the central nervous system
(CNS) and is the most common inflammatory neurological
disease in young adults (78). Experimental autoimmune
encephalomyelitis (EAE), characterized by immune cell
infiltration of the CNS, is an ideal model for investigating MS
(79). Various studies in EVE models have revealed that
CCR2+Ly6Chi monocytes are required for the initiation and
progression of EVE (50, 51, 79). Ly6Chi macrophages derived
from Ly6Chi monocytes are essential for the maintenance of
chronic inflammation and the progression of EVE.
Acetylcholine-producing natural killer (NK) cells were shown
to be cytotoxic to Ly6Chi cells in EVE, acting by inhibiting the
production of proinflammatory cytokines and thereby
at tenuat ing CNS inflammat ion (80) . Auto immune
(noninfectious) uveitis is a group of intraocular inflammatory
diseases that target the neuroretina, and this disease can affect the
CNS (81). In mice, experimental autoimmune uveitis (EAU) is a
Frontiers in Immunology | www.frontiersin.org 5
model of organ autoimmunity in the eye. By using this model,
HSC-derived Ly6Chi and Ly6Clo macrophages with relatively
high MHC-II expression were found to be associated with EAU
through their antigen-presenting and CD4+ T cell-activating
activities (52).

Ly6Chi and Ly6Clo Macrophages in Cancer
Ly6Chi Macrophages in Cancer
Ly6Chi macrophages extensively enhance tumor initiation and
malignant progression. They build an inflammatory
microenvironment to promote tumor growth, invasion and
metastasis. The roles of CCL2/CCR2 signaling and Ly6Chi

monocyte recruitment have been implicated as poor prognostic
factors in multiple malignancies (53, 54, 82, 83). CCL2/CCR2
signaling was reported to foster metastasis and prolong the
survival of tumor-bearing mice, and CCL2 expression and
macrophage infiltration are correlated with a poor prognosis and
metastatic disease in human breast cancer (84). An anti-CCL2
antibody was found to inhibit the infiltration of Ly6Chi monocytes
and tumor metastasis (84). However, CCR2-independent pathway
also influenced recruitment under noninflammatory conditions
(85). CSF-1 signaling has been reported to determine monocyte
recruitment and differentiation in the tumor microenvironment.
CSF1R signaling blockade impairs the extravasation of tumor-
infiltrating Ly6Chi monocytes (86). In addition, Ly6Chi

macrophages are closely connected with immune resistance to
ablative radiotherapy in pancreatic ductal adenocarcinoma, as
depletion of this subset delays tumor growth after radiotherapy
(87). In leukemic mice, an increase in monocyte-derived Ly6Chi

leukemia-associated macrophages (LAMs) was detected in
extramedullary tissue. Ly6Chi LAMs differ from TAMs in their
gene expression profile and activation phenotype. They actively
express TNF-a and IL-1b, which contribute to sterile inflammation.
Ly6Chi LAMs have high migratory and phagocytotic potentials and
promote the extramedullary distribution of leukemia cells (88, 89).

Ly6Clo Macrophages in Cancer
The Ly6Clo macrophages also demonstrate detrimental roles during
tumor progression. They promote angiogenesis, exert
immunosuppressive effect, and are associated with poor
prognosis. The monocyte pool in tumors almost exclusively
consists of Ly6ChiCX3CR1lo monocytes, which renew TAM
subsets (90). These inflammatory monocytes undergo rapid
differentiation into TAMs and, in doing so, lose Ly6C expression
(87). TAMs are distinguished as normoxicM1-like Ly6CloMHC-IIhi

TAMs and hypoxic M2-like Ly6CloMHC-IIlo TAMs (90, 91).
Among TAMs, the Ly6CloMHC-IIlo subset was found to be the
main population involved in tumor growth, invasion andmetastasis
in the mammary adenocarcinoma TS/A model. Although the
Ly6CloMHC-IIlo subset exhibits weak antigen presentation, they
promote angiogenesis and suppress T-cell proliferation (90). The
differentiation of Ly6Chi monocytes into the Ly6CloMHC-IIlo subset
is facilitated by CSF1R signaling (86). In breast cancer, the
expression of adipocyte/macrophage fatty acid binding protein
(A-FABP) in TAMs, especially the Ly6CloMHC-IIlo subset, was
shown to facilitate tumor progression. A-FABP expression in the
May 2022 | Volume 13 | Article 901672
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Ly6CloMHC-IIlo subset promoted protumor IL-6/STAT3 signaling
through regulation of the NF-kB/miR-29b pathway (21). During
lung metastasis, tumor cell-released microparticles (T-MPs) foster
the recruitment of inflammatory monocytes, and these cells mature
into Ly6Clo macrophages. Ly6Clo cells not only produce IL-6 but
also trigger fibrin deposition, facilitating the growth and survival of
tumor-repopulating cells, thus setting the stage for lung metastasis
(92). As described above, Ly6Clo TAMs are associated with a poor
prognosis and tumor progression in multiple cancers. However, a
proinflammatory Ly6CloMHC-II+ macrophage subset was
confirmed to promote responsiveness to PD-L1 blockade instead
of resistance; thus, this subset may have a host-protective role in
immune checkpoint blockade therapies (93).
CORRELATION BETWEEN LY6CHI/LO

MACROPHAGES AND THE
M1/M2 PARADIGM

Macrophages with distinct functions are traditionally classified as
M1 macrophages (classically activated macrophages) and M2
macrophages (alternatively activated macrophages). Cells with the
M1 phenotype participate in host defense against pathogens and
antitumor immunity. However, those with the M2 phenotype
possess anti-inflammatory function and facilitate wound healing
and tumor progression (11). Strictly, M1 and M2 macrophages
represent only the states polarized by IFN-g/LPS and IL-4/IL-13 in
vitro, respectively (94). This taxonomic lineage clearly defines the
two extreme types of the macrophage spectrum, which is especially
beneficial for in vitro research. However, in a complex
microenvironment in vivo, such as that in CCL4-induced liver
fibrosis (14) or chronic alcoholic liver injury (95), macrophages
can exist along a continuous spectrum, and the simple M1/M2
paradigm cannot describe the state of macrophages. Therefore,
researchers have begun to focus on the Ly6Chi/lo phenotype
outside the M1/M2 classification and depict various roles in
homeostasis and pathology according to this classification system.
Ly6Chi/lo and M1/M2 macrophages have overlap in the gene
expression profile. Ly6Chi macrophages express some signature
M1 markers, including TNF, iNOS and IFN-g, and M2 markers,
including Chi3l3, TGF-b and IL-10. Ly6Clo macrophages upregulate
traditional M1 genes, such as CD16 and CD32, and express some
M2-specific markers, including CD206 and CD301 (14, 96).
Therefore, when the activation state of macrophages in vivo is
described, these cells can be defined more accurately through the
combination of macrophage origin, surface markers and factors
inducing the macrophage activation state.
Frontiers in Immunology | www.frontiersin.org 6
CURRENT RESEARCH GAPS AND
FUTURE PERSPECTIVES

In summary, macrophages are a key innate immune cell subset
that plays various roles in multiple biological processes. The
conventional M1/M2 paradigm is widely applied to describe the
state of macrophages. Owing to the limitations of the M1/M2
paradigm, the Ly6Chi/lo classification is increasingly used to
describe cells involved in various diseases because this precise
depiction is based on cell origin, stimuli, and identification
markers (94). Here, we summarize the indispensable functions
of Ly6Chi and Ly6Clo macrophages in homeostasis and
pathology. Recent study highlighted the importance of tissue
niches (blood vessels and nerves) to the two subsets (97). After
blood monocytes recruitment and differentiation, the two
distinct subsets preferentially reside within different, but
conserved, subtissular niches located adjacent to either nerve
fibers (Ly6CloMHCIIhi) or blood vessels (Ly6ChiMHCIIlo), which
demonstrate conserved niche-dependent funct ional
programming (97). In fact, whether these Ly6Chi and Ly6Clo

macrophage subsets interact with their respective surroundings
in function and metabolism needs to be further explored. New
genetic tools promote the disclosure of macrophage
heterogeneity. Recently, Kim et al. established a binary
transgenic split Cre system that allows differential targeting
and translatome analysis of CNS border-associated
macrophages (98). Genetics-based RiboTag translatome
profiling can be a valuable and complementary addition to
single cell transcriptomics and can be widely applied in
the future.
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