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ABSTRACT. Since its discovery the cellular prion protein (encoded by thePrnp gene) has been associated
with a largenumberof functions.Theproposed functions rank frombasic cellular processes suchas cell cycle
and survival to neural functions such as behavior and neuroprotection, following a pattern similar to that of
Moore’s law for electronics. In addition, particular interest is increasing in the participation of Prnp in
neurodegeneration. However, in recent years a redefinition of these functions has begun, since examples of
previouslyattributedfunctionswereincreasinglyre-associatedwithotherproteins.Mostofthesefunctionsare
linked to so-called“Prnp-flankinggenes” that are close to thegenomic locusofPrnpandwhich are present in
the genome of somePrnpmousemodels. In addition, their role in neuroprotection against convulsive insults
has been confirmed in recent studies. Lastly, in recent years a large number of models indicating the
participation of different domains of the protein in apoptosis have been uncovered.However, aftermore than
10 years ofmolecular dissection our view is that the simplestmechanisticmodel in PrPC-mediated cell death
shouldbeconsidered,asOckham’srazortheorysuggested.
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IS THERE PLENTY OF ROOM AT THE
BOTTOM OF PRPC?

“There’s Plenty of Room at the Bottom” was
a lecture given by physicist Richard Feynman
at the American Physical Society meeting at
Caltech in December 1959. He was particularly
interested in the possibility of increasing com-
puter circuitry especially in ultramicroscopes to
achieve higher resolution than the electron
microscopes of the time. In fact, Feyman�s talk
is considered for many researchers the starting
point of modern nanotechnology. The talk was
republished in the 1990s, 25 years after Gordon
Moore, director of research and development at
Fairchild Semiconductors and co-founder of
IBM, hypothesized in Electronics Magazine a
doubling every year in the number of compo-
nents per integrated circuit (later called
Moore’s Law). In fact, Moore’s view of elec-
tronics also expanded to molecular biology
when Rob Carlson predicted in 2003 a hypo-
thetical increase in DNA sequencing capabili-
ties (measured by cost and performance) with
similar doubling to that of Moore’s law (the
Carlson curve, published by The Economist,
August 31, 2006). However, Moore foresaw in
March, 2015 that the rate of circuit progress
would reach saturation: ”I guess I see Moore’s
law dying here in the next decade or so, but
that’s not surprising!.“ We have the same per-
ception, with the inclusion of new circuits in a
finite space reaching saturation point. In fact,
this saturation seemed to have started in 2011
(Fig. 1 obtained from https://commons.wikime
dia.org/wiki/User:Wgsimon). In addition, the
Carlson curve was rendered outdated in 2008
with the development of the new DNA
sequencing technologies.

Now, we need to move in this commentary
from theoretical electronics to neuroscience,
and in particular to prion biology. Numerous
manuscripts dealing with PrPC begin with sen-
tences similar to these: “The physiological
function of the prion protein is not yet known”
or “PrPC plays a key role in the pathogenesis of
prion diseases, but its physiologic function
remains unclear.” This occurs simply as a result
of the published descriptions, since we would
be astonished with the “terrific” number of

distinct cellular processes linked to the cellular
prion protein (a GPI-anchored protein with
a finite molecular space of 231 residues):
cell survival and differentiation,1,2 oxidative
stress,3,4 copper homeostasis,5,6 cell prolifera-
tion7,8 and cell-cell signaling9,10 are all fully
associated with or participated in by PrPC. In
fact, most of these functions were deduced or
supported by experiments using as experimen-
tal model one of first generated Prnpo/o mice:
the Zurich I mouse.11 Using this mouse, the
first studies were directed to clearly determine
that Prnp expression is mandatory to prion
infection and propagation (e.g.12). But the few
functional alterations initially described in
Zurich I were complemented by Edinburgh
Prnpo/o mice, the second model generated
around this time.13 However, since 1992,
sequentially published studies have identified
a large number of phenotypic effects of the
absence of Prnp including depressive-like
behavior,14,15 cognitive deficits,16 peripheral
myelin deficits,17 age-dependent behavioral
abnormalities,18 altered olfaction,19 altered
circadian rhythms,13 altered associational
learning,20 altered sleep recovery,21 altered
increased susceptibility to oxidative stress,3

increased excitotoxicity22-25 and altered neural
stem cell proliferation.1,26 The descriptions of
new functions almost followed the slope of the
Moore’s law but in some cases with contro-
versy (see refs. 27 and 28 for details) (see
Appendix for some examples). For a GPI-
anchored protein, the proposed list of func-
tions seemed to be at least disproportionate.
Relevantly, last year functional descriptions
reached a plateau and some functions started
to be re-assigned to other proteins after careful
re-evaluation of the role of PrPC in these pro-
cesses. In this respect, one putative explana-
tion is to consider that some of these functions
are not directly mediated by PrPC and might
depend on extracellular or intracellular part-
ners of the protein. This may be the case for
some functions, but while other extracellular
interactions and their physiological relevance
are well established (for example with adhe-
sion molecules,29,30 lipoprotein receptors,31

laminin receptor,32,33 amyloid proteins,34 and
metallic ions5), the intracellular partners linked
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to the GPI-binding protein PrPC are also
numerous: anti-apoptotic proteins,35 cytoskele-
tal proteins,36,37 enzymes,34 and synaptic pro-
teins.38,39 For some of them clear biological
relevance is still unknown, warranting further
study.27,40 Taking into account that “dubium
sapientiae initium,” as Descartes had it,
researchers cannot state the functions or the
particular role of a single protein in a specific
physiological event taking as information
source analysis of a transgenic mouse. In this
commentary, we will summarize the current
knowledge of some predicted functions of
PrPC, especially related to its putative partici-
pation in synaptic plasticity, neuroprotection,
and neurodegeneration.

Z €URICH I KNOCKOUT MICE AND
THEIR PITFALLS

Revealing evidence indicates that PrPC is not
the main actor for some of the above-men-
tioned functions in B6129 PrnpZrchl/Zrchl knock-
out mice. In fact, a number of Prnp-flanking
genes associated with the 129/Sv genotype in
B6129 mixed mice have been described in Zur-
ich I mice.41 A ratio of 60% to 2% of 129/Sv
specific markers between Prnp0/0 and PrnpC/C

mice was determined.42 These genes were
introduced during the generation of the trans-
genic mice and are retained in Prnpo/o progeny
of congenic B6.129 PrnpZrchl/Zrchl after numer-
ous (>10 –15) crosses of B6129 Prnp0/0 with

FIGURE 1. Evolution of Moore’s law from 1971 to 2011. Source: https://commons.wikimedia.org/
wiki/User:Wgsimon through Creative Commons Attribution-ShareAlike License (https://creative-
commons.org/licenses/by-sa/3.0/).
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C57BL/6 mice.26,41 In a recent study43 we
determined, using a commercially available
SNP analysis, that in backcrossed mice (5 to 6
rounds) enrichment of the C57BL/6-associated
SNPs increased from �60% to �93% in the
progeny. Thus, B6.129 PrnpZrchl/Zrchl wild type
and mutant mice may still differ at these (�6–
7%) additional 129 polymorphic loci (i.e.:
Mmu2 genomic region close to Prnp) acciden-
tally present in Prnp0/0.44,45 This presence and
parallel effects were suggested by Steele and
co-workers in a seminar review published in
this journal in 2007.28 But one of the first dem-
onstrations of the putative unwanted effects
due to the presence of polymorphic 129 regions
was indicated by A. Aguzzi’s lab in 2010,
when analyzing the effects ofMfge8 ablation in
prion infection and disease evolution in Prnpo/o

mice.46 In the study, the absence of Mfge8 in a
B6.129 background increases the appearance of
prion disease after inoculation, in contrast to
C57BL/6 Mfge80/0 inoculated mice.46 In addi-
tion, Calella and coworkers described quantita-
tively the changes in the relative percentage of
these loci after crossing.42 Three years later,
one identified gene, the signal regulatory pro-
tein a (SIRPa/, was described for the first time
as being responsible for a previously PrPC-
associated phagocytic function in macro-
phages.45 These masking functions associated
with this locus are especially relevant if we
take into account that Prnp-overexpressing
mice (Tg20) generated in mixed B6129
PrnpZrchl/Zrchl background carry several copies
of the polymorphic loci, since in most cases
they are also crossed with previously back-
crossed B6.129 PrnpZrchl/Zrchl mice.41 In this
scenario, it is reasonable to assume that the
data obtained using Prnpo/o or Tg20 in physio-
logical studies (from genomic to electrophysio-
logical) may render conflicting results, as
observed22,23,43,47-56 (see also28). However,
these side effects in an undetectable manner
might also occur in other mouse models with
overexpressed modified forms of PrPC using
the Prnp null-background of the Zurich I
mice.17,57,58,59 In fact, at the transcriptional
level, comparison of the mRNA expression
profile reported in 2 studies revealed that
B6.129 and FVB/N Prnp0/0 mice share only

very few overexpressed genes in the adult hip-
pocampus.54,55 This result, as suggested,55,60

might reflect, among other possibilities i) direct
transcriptional effects of the absence of Prnp
on different genetic backgrounds, or ii) a sum-
mation of changes linked to the deficiency of
functional PrPC together with the side effects
linked to the 129-associated loci in the strains
used in these studies: B6.129 Prnp0/0 (B6129
backcrossed with C57BL/6 mice for 15 genera-
tions54 and FVB/N mice (B6129 backcrossed
with FVB/N > 20 generations).55 In fact, some
of these 129-associated loci very close to Prnp
could be detected after �20 backcrossings
in B6.129 mice (A. Aguzzi personal
communication).

The number of these “Prnp-flanking gen-
es” in the B6129 knockout mouse compared
to C57BL6/J is large as demonstrated by A.
Aguzzi’s lab.41 Thus, a re-evaluation of the
published functional data concerning PrPC is
mandatory in order to clarify this and to
delineate PrPC functions in neural and non-
neural tissues. Alternatively, researchers may
study these putative functions in different
biological systems in more controlled models
far from the mixed mice. Indeed, in a
recently published study we dissected the
participation of these 129/Sv-associated
genes in neurotransmission and kainate-
induced cell death in different mouse strains
and in vitro.43

INVOLVEMENT OF PRPC IN
NEUROTRANSMISSION AND

NEURAL PLASTICITY: A PUZZLE
BEING CLARIFIED A STEP

AT A TIME

Different laboratories have described, in
several Prnp0/0 strains including congenic
B6.129 PrnpZrchl/Zrchl, enhanced sensitivity to
seizures after the administration of epilepto-
genic drugs such as kainic acid (kainate,
KA), N-methyl-d-aspartic acid (NMDA),
pilocarpine, and pentylenetetrazol (PTZ),
suggesting a neuroprotective role of PrPC

against excitotoxic convulsive insults (e.g.,22-
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FIGURE 2. (A) Domain organization of PrPC (mouse sequence). (B) Examples of some derived
truncated forms used in in vitro and in vivo studies. The effects of their transfection in cells are indi-
cated from (CC) strong effect to negligible (¡) effects in apoptosis. The examples of truncated
PrPC forms are summarized from.68,94,106,107 Results obtained in several studies reinforced data
obtained by D.R. Brown’s Lab in 2003.108(C) Epitope mapping of some antibodies used in cytotoxic-
ity studies. The name and recognized PrPC region is indicated in each case. Green antibodies indi-
cate that their use is non-cytotoxic in contrast to red antibodies.
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25,40,53). However, other studies have sug-
gested that PrPC is not involved in KA-medi-
ated excitotoxicity and that the observed
differences between wild type and Prnp-defi-
cient mice are associated with the genetic
background of the mice used in the experi-
ments.51,52 In addition, an electrophysiologi-
cal study indicated that PrPC-expressing
neurons in vitro are more resistant against 3
different convulsive treatments (including
PTZ).50 However, this last observation,
obtained using crossed B6129 C FVB mice,
was not expected based on previously pub-
lished data by the same group using B6129
Prnp0/0 mice.61

Can we determine the role of PrPC in KA-
mediated neurotoxicity in a region such us
the hippocampus by using different mice
strains? Our answer is affirmative, although
the cytotoxic effects of KA in the mouse
hippocampus are strongly strain-depen-
dent.62-67 Following intraperitoneal KA
administration, the large majority of pyrami-
dal neurons of the hippocampus die in the
FVB/N (FVB) mouse, while the pyramidal
neurons of the C57BL/6 strain remain
largely healthy.62-67 Thus it is reasonable to
consider that the intrinsic background might
play a role in the results reported by Ratte
and coworkers.50 Obviously these genetic
differences may mask or dilute the participa-
tion of Prnp in KA-mediated neurotoxicity.
In our study we were unable to identify spe-
cific participation of PrPC in KA-treated
FVB/N Prnp0/0 and FVB/N PrnpC/C mice.43

In contrast, in B6129 and B6.129 Prnp0/0,
KA-mediated effects (cell death, astrogliosis,
and increased presence of pro-inflammatory
molecules) were identifiable, as previously
reported23,53 and corroborated using 129/Ola
Prnp0/0 mice43 (whithout Prnp-flanking
genes). In addition, these genomic influences
do not explain per se the neuroprotective
properties of PrPC observed in KA-treated
neuroblastoma cell lines carrying different
dosages of the Prnp gene.43,53 In addition,
regulatory participation of PrPC in neuro-
transmission and neuroprotection, and in
other cellular functions, has also been dem-
onstrated with acute modulation of Prnp

expression in neural cell lines (see68) and in
other organisms (e.g., zebrafish).69 We
believe that functions of this protein in neu-
rotransmission and neuroprotection are cur-
rently supported by i) their binding to
glutamate receptor subunits (e.g.,, GluR6/7,
NR2D, GluR1/2, mGluR1/5),24,53,70,71 ii)
their binding to ion channels,49 iii) their reg-
ulation of GluR6/7- and NR2D-mediated sig-
naling,53 and iv) a recently published
observation indicating that PrPC and copper
cooperatively inhibit NMDA receptor
through S-nitrosylation enhancing neuropro-
tection.25 However, if we compare the num-
ber and level of the convulsive seizures
between B6129 and B6.129 Prnp0/0 mice, a
clear decrease in the seizure level can be
seen in parallel to a decrease in the 129-
associated loci between B6129 and B6.129
mice. Using this approximation we may
assume that not only PrPC but also unidenti-
fied 129/Sv-associated gene/s contribute to
the KA-mediated sensitivity observed in
B6129 Prnp0/0 mice. Moreover, B6129
Prnp0/0 mice overexpressing truncated forms
of PrPC showed additional increased degen-
eration that B6129 Prnp0/0 mice suggesting
that susceptible neurons become highly reac-
tive to cellular stress induced by KA, indi-
cating that specific domains of the protein
may play a role in triggering cell death in
certain physiological and non-physiological
conditions.

MOLECULAR DISSECTION OF THE
PARTICULAR FUNCTIONS OF PRPC

IN CELL DEATH: LESSONS FROM
TRUNCATED FORMS, ANTIBODIES,

AND PEPTIDES

The sequence of PrPC can be divided into 2
structurally well-defined regions: a long, flexi-
ble N-terminal flexible tail (approximately the
first 100 residues) and a globular C-terminal
domain containing 3 a-helices and 2 b-strands
flanking the first a-helix (Fig. 2). The flexible
tail also has distinctive features: a small
charged region (CC1), an octarepeat (OR)
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region, and a central domain (CD), which in
turn comprises a second charge cluster (CC2)
and a hydrophobic region (HR). In order to
demonstrate that the N-terminal domain is
mainly responsible for cooper-binding in anti-
oxidative protection, Zeng and co-workers
demonstrated that when the N-terminal domain
of PrPC is tethered to the plasma membrane,
this modified PrPC largely compromised cell
survival due to the resulting inability to control
cellular stress.72 In fact, by using other methods
(antibody treatment) it has been determined
that the proximity of the flexible tail of the pro-
tein to the cellular membrane leads to cell death
by activating reactive oxygen species (ROS)
generation.73,74 This has also been indicated by
using transgenic mice.59 Surprisingly, the loca-
tion of cell death and its timing in the recently
described FTgpi155 mouse (lacking 141 to 225
residues)59 are rather similar to what is reported
in other mice lacking domains of PrPC: i.e.,
DF35.75 This anatomical correlation of cell
death relies on the stronger activity of the Prnp
promoter in cerebellar granule cells in these
mice. However, DF35 mediated cell death can-
not be reverted by overexpressing anti-apopto-
tic molecules, indicating that both caspase 3
and non-caspase 3 directed mechanisms are
mediating DF35-associated cell death. Thus,
overexpressing truncated forms of the protein
in cultured cells could be also an alternative
approach to determining the functions of partic-
ular domains of PrPC in cytotoxicity. In our
studies, we determined that the expression of
DF35 and DCD in neuroblastoma (N2a) cells is
cytotoxic and activates Caspase 3, thereby cor-
roborating previous results76 (see also68). How-
ever, only DCD was able to increase ROS
production in transfected cells. This correlates
with results using FTgpi155 mice, since in both
cases the flexible tail (containing the OR) is
close to plasma membrane. As indicated above,
the FTgpi155 mice showed similar degenera-
tion to DF35 mice; however DC4 mice (lack-
ing) do not display cerebellar degeneration but
are more susceptible to ischemic insults with
increased ROS generation.77 Concerning the
effects of antibodies we need to consider sev-
eral scenarios. First, antibodies (e.g., SAF61,
recognizing residues 142 to 160 of PrPC) are

able to aggregate PrPC in the plasma mem-
brane, activating fyn at lipid rafts and trigger-
ing cell death.9 In this process the activity of
ERK1/2 and NADPH oxidase plays a crucial
role.78,79 Indeed, the use of similar antibodies
against PrPC in vivo also leads to cell death.80

The antibodies used in the in vivo experiments
were IgG P and IgG D13 (recognizing residues
95 to 105 region of the PrPC). Second, antibod-
ies directed to the globular domain are able to
induce cell death in vitro and in vivo indepen-
dently of PrPC aggregation.73,74 In contrast, the
injection of the ICSM35 antibody (recognizing
PrPC epitopes 93 to 105) and ICSM18 (recog-
nizing residues 143 to 153 of PrPC) failed to
induce cell death in the hippocampus of
C57BL10 mice.81 In fact, it has been observed
that the use of antibodies (POM1) directed to
the globular domains triggers similar neuro-
toxic responses to those of pathogenic prion by
approaching the flexible N-terminal domain to
the plasma membrane.74

Some years ago, the use of synthetic pepti-
des was revealed as a new alternative for ana-
lyzing prion neurotoxicity.82 In fact one of the
most widely used peptides of PrP(106–126) with
aggregating properties needed the terminal half
of the HR region but not the OR in order to be
neurotoxic.83 This result was in line with a pre-
viously published manuscript indicating that
this peptide is able to induce ROS production
in cultured neurons,84 which could also be
increased by overexpressing PrPC.85 In fact,
mice lacking the aa 105–125 of PrPC showed
early death during the postnatal period.86 Thus,
although the existence of a survival signal
interacting at this level or PrPC to trigger neuro-
protective signals could not be ruled out, one
should be tempted to strongly consider
Ockham’s razor theory in this scenario:
“Among competing hypotheses, the one with
the fewest assumptions should be selected.” It
may be that these antibodies acting on the glob-
ular domain, the infective prion, or the mimick-
ing peptides are blocking the intrinsic activity
of the N-terminal domain, as happens when the
domain is approached or tethered to the plasma
membrane. Thus, the homeostatic cellular func-
tion of PrPC could be lost, triggering a cell-
death mechanism (Fig. 3). However, we should

PrPC FUNCTIONS IN NEURAL TISSUE 31



FIGURE 3. Scheme illustrating the effect of the expression of particular truncated forms of PrPC

(B-E), treatment with GD-directed antibodies (F), peptides recognizing the CD region (G), aggre-
gating antibodies recognizing GD and OR regions (H), and pathogenic prion protein (I). Absence of
the OR in B and C leads to increased apoptosis. In contrast, PrPC lacking the CD but more rele-
vantly lacking both the GD and the CD induced increased neurotoxicity. In contrast, aggregating
antibodies (H), GD-directed antibodies (F), peptides (G), and the pathogenic prion (I) lead to pro-
found changes in the 3D organization of PrPC in the membrane, which triggers the approach of the
N-terminal region to the plasma membrane (red curved arrow) leading to increased ROS produc-
tion and cell death as observed in PrPC constructs with artificial tethering of the N-terminal to the
membrane. In these conditions, PrPC recycling is very low and their homeostatic function is lost.
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forget that other perspective was offered by
Walter Chatton: “If 3 things are not enough to
verify an affirmative proposition about things,
a fourth must be added, and so on.” The com-
ing years and experiments will reveal whether
we should apply Ockham’s razor, or not, con-
cerning PrPC-mediated cell death.
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APPENDIX

Examples of Pubmed citations on PrPC

functions

Paragraphs illustrating 3 examples of manu-
scripts describing some functions of the PrPC.

These manuscripts were selected as examples
with the Pubmed search of the subject “cellular
prion protein” and the particular process as key-
word. As examples, the keywords cell survival,
neurotoxicity and Alzheimer’s disease were
used. Notice that in each description several
studies reported roles for PrPC at different lev-
els, and in some cases these are controversial.

Cell survival and cellular prion protein
PrPC increase cell proliferation and survival1

PrPC absence increases proliferation of hip-
pocampal precursors26

PrPC mediate cell cycle on neuroblastoma
cells2

Cell survival by acting on PIK3 kinase87

Cell survival promoting glucose uptake in
cancer cells88

Cell survival after genotoxic stress89

Yeast prion promote drug resistance and cell
survival90

Neurotoxicity induced by the cellular
prion protein or its domains in vitro and in
vivo

A syntethic peptide of PrPC is
neurotoxic79,82

Description of the neurotoxicity of the puta-
tive transmembrane domain of PrPC.91

Description of the neurotoxic potential of the
cytoplasmic domain of PrPC92

Peptides mimicking the central domain of
PrPC triggers cell-death pathways93

PrPC aggregating antibodies induced cell
death9

Membrane tethered PrPC triggers cell death
in mice59

The flexible tail of PrPC mediates cell-death
induced by PrP antibodies73

PrPC-directed antibodies do not trigger
apoptosis81

Distinct domains of PrPC triggers different
intracellular cell-death signals94

Cellular prion protein and Alzheimer�s
disease (Ab).

PrPC–derived peptides bind to amyloid pre-
cursor protein (APP)95

PrPC regulates BACE1 activity34 and APP
processing84

PrPC mediates impairment of synaptic plas-
ticity mediated by Ab96,97
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PrPCmediates the toxicity of Ab oligomers98,99

PrPC is not involved in Ab-mediated toxicity
and synaptic plasticity42

PrPC expression is needed for memory
impairment in mouse models of Alzheimer
disease100

PrPC immunotargeting in vivo prevents Ab-
mediated LTP inhibition101

The N-terminal domain of PrPC binds to Ab
oligomers102

PrPC modulate Ab production and deposi-
tion in mouse models103

Metabotropic glutamate receptor 5 is a core-
ceptor of Ab oligomers and PrPC104

Blocking Ab binding to PrPC as terapeuthic
strategy for Alzheimer�s disease.105
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