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Abstract. Adrenocortical carcinoma (ACC) is a rare and 
aggressive cancer with a high relapse rate and limited treatment 
options. Therefore, the identification of potential prognostic 
markers in patients with ACC may improve early detection, 
survival rates and may additionally provide novel insights 
into the early detection of recurrence. In the present study, 
clinical traits and RNA-seq data of 79 patients with ACC were 
obtained from The Cancer Genome Atlas (TCGA). Weighted 
gene co-expression network analysis was carried out and 
17 distinct co-expression modules were built to examine the 
association between the modules and the clinical traits. Of the 
17 modules, two co-expression modules, which contained 214 
and 168 genes, were significantly correlated with two clinical 
traits, tumor stage and vital status. Functional enrichment 
analysis was performed on the selected modules. The results 
showed that one of the modules was primarily enriched in 
cell division and the other module was enriched in metabolic 
pathways, suggesting their involvement in tumor progression. 
Furthermore, cyclin dependent kinase 1 (CDK1) and ubiq-
uitin C (UBC) were identified as hub genes in both modules. 
Survival analysis revealed that the high expression of the hub 
genes significantly correlated with the poor survival rate of 
patients, suggesting that CDK1 and UBC have vital roles in 
the progression of ACC. In the present study, a co-expression 
gene module of ACC was provided and the prognostic genes 
that may serve as new diagnostic markers in the future were 
defined.

Introduction

The adrenal glands reside above the kidneys and produce multiple 
hormones essential for development (1). Each gland consists of 

an inner medulla and an outer cortex that produce catechol-
amines and steroid hormones, respectively (2). Adrenocortical 
carcinoma (ACC) is a rare tumor of the adrenal cortex with an 
estimated incidence of 1 patient per million/year (3,4). There is a 
higher prevalence of ACC in females and an increased incidence 
in the first and fourth to fifth decades of life (5). There are no 
notable clinical phenotypic characteristics in patients with ACC 
during the early stage and the majority of patients are diagnosed 
with advanced stage ACC in the first instance (6). Patients with 
ACC do not respond favorably to chemotherapy and radio-
therapy (7) and the patients frequently have to undergo surgical 
resection where the 5‑year survival rate is >35%. Mitotane (o, 
p'-dichlorodiphe nyldichloroethane) has been used since the 60s 
for treating patients with ACC, despite its toxicity and narrow 
therapeutic index (8,9). An improved understanding of the genes 
associated with ACC may improve treatment options by identi-
fying potential therapeutic targets. Weighted gene co-expression 
network analysis (WGCNA) is a frequently used method to 
explore the association between genes and phenotypes (10). 
Gene expression data are transformed into co-expression 
modules and provide insights into the signaling networks that 
may underlie certain phenotypes. WGCNA is widely used to 
improve understanding of various biological processes such 
as cancer and its progression (11,12). Yang et al (13) identified 
candidate biomarkers and molecular mechanisms involved 
in glioblastoma multiforme using WGCNA (13). WGCNA 
compares differentially expressed genes and identifies key 
interactions among different co-expression modules (12).

Next generation sequencing is used to detect genomic 
alterations which could be used to guide targeted therapies for 
treating patients with ACC and several targets have been discov-
ered (14,15). However, the molecular diagnostic parameters are 
still not entirely known and there are only small number of studies 
that have cataloged relevant expression modules in patients with 
ACC, which has limited understanding of the disease and its 
mechanisms (16-18). Using WGCNA, it is possible to construct 
gene networks and analyze the connectivity between genes and 
clinical traits (19). The master regulators identified in the gene 
regulation network will typically exhibit important functions.

In this study, it was hypothesized that distinct ACC 
co-expression modules are associated with different clinical 
outcomes and the highly connected genes in the modules 
can represent the biological feature of this module and have 
the potential as prognosis markers. Normalized-RNA-seq 
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and clinical data was downloaded from the TCGA database 
of 79 patients with ACC at different stages. The candidate 
mRNAs related to tumor progression were identified by 
co-expression analysis. Furthermore, 2,472 differentially 
expressed genes from ACC and normal tissues were down-
loaded from the Gene expression profiling interactive analysis 
(GEPIA) website (20), and ACC and ACC co‑expression 
modules were constructed (20). Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analyses were performed on the selected modules, and 
the hub gene in each module was identified, which assisted 
in determining the primary function(s) of the genes in each 
module. These findings may play a significant role in recog-
nizing the malignant potential of these genes as well as the 
prognosis of patients with ACC.

Materials and methods

Patients and TCGA data retrieval. The clinical and gene 
expression data of 79 patients with ACC were obtained from 
TCGA (https://tcga-data.nci.nih.gov/tcga/) (21), where the 
expression profile was obtained based on the IlluminaHiSeq 
RNA-seq platform (Illumina, Inc.). The Bioconductor (22) 
packages TCGAbiolinks (23) based on the R software (24) 
(version 3.4.0) were used to download and process the data 
collected from TCGA. These data included the age, sex, 
survival status and the cancer stage of the patients in addition 
to the vital status. The DEGs in normal and ACC tissues were 
obtained from GEPIA (http://gepia.cancer-pku.cn/) (20). The 
screening standards for the identification of DEGs were a log2 
fold‑change (log2FC)>1 and Q<0.01. 

WGCNA. Co-expression networks were constructed with 
the identified DEGs. Pearson's correlation coefficients were 
calculated for all the genes in the dataset and the correlation 
matrix of the entire gene dataset was obtained. The power β 
was used to remove weakly correlated genes, while retaining 
the strongly correlated ones. The process produced an adja-
cent matrices weighted network that was converted into a 
topological overlapping matrices (TOM) network as previ-
ously described (10,25). After constructing the TOM network, 
hierarchical clustering was used to generate a cluster dendro-
gram with branches corresponding to the gene co-expression 
modules. The WGCNA (10) algorithm was used to identify 
the co-expression modules. WGCNA was implemented using 
R (10). The TOM representing the overlap in shared neighbors 
and the soft thresholding power were calculated according to 
a previous study (25). Colored heatmaps were used to analyze 
the strength of the interactions.

Construct module‑trait associations of ACC. Module‑trait 
associations were estimated using the association between 
the module signature and the phenotype (clinical traits) as 
previously described (12), thus allowing easy identification of 
the expression set (module) that strongly correlated with the 
phenotype. For each expression profile, the gene significance 
(GS) was calculated as the absolute value of the association 
between the expression profile and each clinical trait, whereas 
the module membership (MM) was defined as the correlation 
between the expression profile and each module signature.

Functional analysis of network module genes. To identify the 
underlying biological mechanisms responsible for the progres-
sion of ACC, the DEGs derived from the brown and yellow 
modules were used for GO and KEGG pathway enrichment 
analyses, because the two modules are both correlated with the 
patient clinical traits. The DEGs annotated in the GO database 
were used to classify the GO functions in the ClusterProfiler 
package (26), and the DEGs for KEGG enrichment analysis 
were mapped to the KEGG database. After the enrichment 
analysis, the significant KEGG pathway and GO terms were 
selected according to the cut‑off criterion of adjusted P<0.05.

Protein‑protein‑interaction (PPI) network construction. The 
PPI data was retrieved from a previous study, which contained 
protein interaction associations from 15 databases (27). The 
overall PPI network was based on 16,081 nodes and 231,633 
interactions in these databases. The genes involved in the 
brown and yellow modules were mapped to the overall PPI 
network to obtain the module specific interaction network. 
Furthermore, the degree of each node was calculated using the 
IGRAPH package (28). The widely linked genes (hub genes) 
in the PPI network were more closely related to most proteins.

Determination of the receiver operating characteristic (ROC) 
curves and the area under the ROC curve (AUC). To validate 
whether the mRNA levels of the hub genes exhibit excellent 
diagnostic efficiency for distinguishing the tumor tissues from 
the normal tissues, the ROC curve analysis was performed. 
Specifically, the normalized the mRNA expression profile 
both for the normal adrenal gland tissue and the ACC tissue 
were downloaded from Recount2 database (29), including 
159 normal adrenal gland samples and 79 ACC samples 
respectively. The ACC samples were labeled as ‘positive’ 
and the normal adrenal gland sample were labeled as ‘nega-
tive’. Subsequently, the ROCR (30) package based on the R 
(version 3.5.2) software system was used to plot the ROC curve 
and calculated the AUC for the hub genes. 

Survival analysis. Survival analysis for all genes in the brown 
and yellow modules was performed using the R survival 
package (https://CRAN.R-project.org/package=survival; 
version 2.41-3). A log-rank test was performed to determine 
whether the expression of a gene correlated with the overall 
survival. For the overall survival rate, a log-rank test was used 
to test for significance in the univariate analysis between each 
subgroup. Unless otherwise specified, P<0.05 was considered 
to indicate a statistically significant difference.

Results 

Pre‑processing of datasets and construction of ACC 
co‑expression modules. The clinical information, including 
the age, sex, race, ethnicity and vital status, and the normal-
ized RNA-seq data of 79 patients were obtained from 
TCGA. The DEGs in normal and ACC tissues were retrieved 
from GEPIA. A total of 2,472 DEGs were identified with 
a Q‑value <0.01 and a log2FC>1. The expression values 
of the 2,472 genes in the 79 ACC samples were used to 
construct the co‑expression module by WGCNA. The flash-
Clust package (31) was used to perform the cluster analysis 
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(Fig. 1). A total of four abnormal samples were removed and 
75 samples were used for further analysis.

The power value, which primarily affects the independence 
and the average connectivity degree of the co-expression 
module of the most critical parameters in the network, is 
considered an important parameter. Therefore, the power 
value of the data was assessed (Fig. 2A). A power value of 
3, indicated the independent degree was up to 0.8 and the 
average connectivity degree was higher (Fig. 2B). The degree 
distribution of the node and the fitting relationship between the 
node degree and its corresponding proportion were calculated 
(Fig. 2C and D). The results revealed that the constructed 
network was a scale-free network conforming to biological 
characteristics. Therefore, a power value of 3 was used to 
construct the co-expression modules and the results generated 
17 distinct gene co-expression modules in the ACC samples. 
These co-expression modules were constructed and depicted 
in different colors (Fig. 3A). They were arranged from large 
to small by the number of genes they included and the interac-
tions of the 17 co-expression modules are shown in Fig. 3B. 

Gene co‑expression modules correspond to clinic traits. 
The data on the clinical traits were obtained from TCGA. 
The modules with common expression patterns that were 
associated with certain traits were identified based on the 
association between the module eigengene and the clinical 
traits (Fig. 3C; Tables SI and SII). The dendrogram and heat 
map of the eigengene were both used to identify groups of 
correlated eigengenes and clinical characteristics. The brown 
module clustered with two important clinical indexes, the 
tumor stage and vital status (Fig. 4). Moreover, the Pearson's 
correlation coefficient (PCC) between the yellow module and 
the tumor stage is ‑0.34 (P=0.003), and the PCC between 
the yellow module and the vital status is ‑0.47 (P=2x10‑05). 
Furthermore, the yellow module negatively correlated with 
these two indexes, indicating that genes in this module may be 
associated with the prognosis of patients (Fig. 3B). Therefore, 
both modules were defined as core modules for further study.

GO and KEGG enrichment analysis of genes in brown and 
yellow modules. The association between the genes and the 
clinical characteristics were calculated along with the MM 
and GS, where MM was the correlation of the gene expression 
profile with the eigengenes and GS was the absolute value of 
the association between the gene and the external traits. MMs 
and GSs with high thresholds were chosen to avoid false posi-
tive prognostic genes, and the top 50% of genes in the brown 
and yellow modules were selected as candidate genes. GO and 
KEGG analyses were performed to explore the biological func-
tions of the candidate genes in the brown and yellow modules. All 
significant terms in the annotated systems were represented as 
colored bars to compare the relative significance of the enriched 
terms, where the length and color saturation of each term were 
proportional to the gene count/ratio and the P‑value obtained 
from the enrichment analyses (Figs. 5 and 6). According to 
the results, GO enrichment analysis indicated that the genes in 
the brown module were primarily involved in cell division and 
protein kinase activity (Fig. 6A), which was consistent with the 
KEGG pathway enrichment results (Fig. 5A). For the yellow 
module, the genes were enriched in various metabolic pathways 

in GO enrichment analysis such as valine, creatinine and isoleu-
cine metabolic processes (Fig. 6B) and various tumor-associated 
pathways including acute myeloid leukemia and renal cell carci-
noma in KEGG enrichment analysis (Fig. 5B).

PPI network‑based prognostic gene identification. The brown 
and yellow modules contained 214 and 168 genes, respectively. 
To identify the prognostic genes based on the PPI network, the 
genes were mapped to the pre‑built PPI network, and the nodes 

Figure 1. Clustering dendrogram of the 79 adrenocortical carcinoma samples. 
Of the 79 samples, four samples were considered as abnormal samples and 
were therefore removed. 

Figure 2. Determination of the soft-thresholding power in the weighted gene 
co‑expression network analysis. (A) Analysis of the scale‑free fit index for 
various soft-thresholding powers. (B) Analysis of the mean connectivity 
for various soft-thresholding powers. Degree of mean connectivity as a 
function of the soft‑thresholding power. (C) Histogram of connectivity 
distribution when soft-thresholding power β=3. (D) Scale free topology when 
soft-thresholding power β=3.
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that failed to map to the PPI network were ignored. Cytoscape 
(V3.6.1) (32) software was used to construct the module and 
to calculate the intramodular connectivity. The intramodular 
connectivity was calculated for each gene by the connec-
tion strength with other module genes and genes with high 
intramodular connectivity were considered intramodular hub 
genes. The hub genes in the two modules are represented with 
larger dots in Fig. 7. The brown module subnetwork contained 
105 nodes and 216 edges (Fig. 7A), whereas the yellow module 
subnetwork contained 92 nodes and 126 edges (Fig. 7B).

To further validate the results, three genes with the highest 
degree, in the brown (CCNB1, CDC2 and CDK1) and the 
yellow (PRKCA, RAD23A and UBC) modules were selected 
to investigate their correlation with the overall survival of the 
patients (Fig. 8). The nodes with the highest degrees in the two 
modules were CDK1 and UBC, and their elevated expression 
levels were significantly associated with poor overall survival 
(P<0.0001; Fig. 8A and D). Other genes (CCNB1, CDC2, 
PRKCA and RAD23A) were also significantly associated with 
the overall survival and they may serve as prognostic genes in 

ACC (Fig. 8B, C, E and F). The relationships between all nodes 
and the overall survival were calculated (data not shown). In 
addition, as shown in the Fig. 9, ROC curve validated that 
the high degree gene in the brown module (Fig. 9A) and the 
yellow module (Fig. 9B) exhibited good diagnostic efficiency 
for normal and tumor tissues.

Discussion

Compared with other methods such as differential expression 
analysis, WGCNA places a focus on the association between 
co-expression modules and clinical traits, and therefore, the 
results that are considered more reliable yield relevant biolog-
ical significance (12). In the present study, a total of 17 distinct 
gene co‑expression modules were identified from 79 patients 
with ACC by WGCNA to determine the association between 
the transcriptome of patients with ACC and the clinical traits. 
After examining the associations between the modules and 
the clinical traits, two modules were correlated with clinical 
traits. Several hub genes in the network were identified which 

Figure 3. Modularization of the adrenocortical carcinoma‑associated genes and clinical characterization of the modules. (A) Clustering dendrograms of genes, 
without similarity based on topological overlap. A total of 17 co‑expression modules were constructed and were each assigned a different color. (B) Heat map 
of the gene network depicting the topological overlap matrix among all the genes in the analysis. Lighter colors represent a lower degree of overlap and progres-
sively darker red colors represent a greater degree of overlap. The blocks of the darkest colors along the diagonals are the modules. The gene dendrogram and 
module assignment are also shown along the left side and the top. (C) Module‑trait associations. Each row corresponds to a module eigengene and each column 
corresponds to a trait. Each cell contains the corresponding correlation and P‑value. The table is color‑coded by correlation according to the color legend.

Figure 4. Eigengene dendrogram and heatmap to identify groups of correlated eigengenes termed meta-modules. (A) The brown module is strongly associated 
with the stage of the patient's tumor. (B) Heatmap of eigengene adjacency for (A). (C) The brown module is strongly associated with vital status. (D) Heatmap 
of eigengene adjacency for (C).



ONCOLOGY LETTERS  18:  3673-3681,  2019 3677

confirmed that CDK1 and UBC serve important roles in the 
progression of ACC. 

Early diagnosis and specific markers are important for 
managing and limiting tumor development. Electrochemical 
immunosensors have been developed to detect dehydroepian-
drosterone sulfate in blood plasma samples for early diagnosis 
of patients with pediatric ACC (33). Mohan et al (34) demon-
strated that evaluation of G0S2 hypermethylation identified 
a subgroup of patients with ACC with a rapidly progres-
sive disease course which is feasible for clinical treatment 
options (34). Novel therapeutic regimens are frequently based 
on specific gene or protein targets present in the disease. 
Identification of programmed cell death protein 1 function 
in T cells has improved the development of cancer immuno-
therapy (35,36). The identification of potential biomarkers in 
the present study may serve as novel targets for drugs or in 
diagnostic methods clinically. 

The power value was the most critical parameter affecting 
the independence and the average connectivity degree of the 
co-expression modules in WGCNA (10,37). A higher average 
connectivity degree appeared when the power value =3. The 
brown module clustered with tumor stage and vital status, 
whereas the yellow module negatively correlated with these 
two indices. The Tumor‑Node‑Metastasis classification system 
was used in ACC staging and stage III ACC was character-
ized by infiltration in the surrounding tissues (38,39). As 
discussed above tumor stage and vital status were important 
clinical parameters, and they may also reflect tumor prog-
nosis (40-42). Functional enrichment analysis for candidate 

genes in the brown module showed that these genes were 
primarily enriched in pathways associated with cell division. 
Uncontrolled self-renewal capacity and aberrant regulation 
of genetic material may promote tumor cell progression and 
recurrence (43). Tripartite motif‑containing protein 3 (TRIM3) 
has been used as a tumor suppressor due to its ability to regu-
late asymmetric cell division in glioblastoma and expression 
of TRIM3 additionally attenuates the stem‑like quality of 
primary glioblastoma cultures (44). A combination of mito-
chondrial division inhibitor 1 and platinum agents produced 
a synergistic pro-apoptotic effect in drug-resistant tumor 
cells (45). These results indicate that cell division is associated 
with tumor progression and genes in the brown module may 
serve an important role in the regulation of cell division in 
patients with ACC. Furthermore, genes in the yellow module 
were primarily enriched in metabolic processes and lyso-
some membrane‑associated pathways, which may influence 
the T cell-mediated immune response, tumor invasion, and 
malignancy (46-48). 

Cytoscape was used to construct a co-expression network 
for the brown and yellow modules, and the genes with high 
intramodular connectivity were considered as hub genes. 
The genes with the highest degree of connectivity in the two 
modules were CDK1 and UBC. CDK1 is a master regulator 
of the cell cycle and overexpression of CDK1 increases the 
spheroid-forming ability of tumor cells and the tumor-initi-
ating capacity, whereas the inhibition of CDK1 reduced these 
characteristics (49‑51). CDK1 was previously identified as a 
biomarker in patients with ACC using PCR, western blotting 

Figure 5. KEGG pathway enrichment analysis of the genes in the (A) brown module and (B) yellow module. KEGG, Kyoto Encyclopedia of Genes and 
Genomes.
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Figure 7. Protein‑protein interaction network of the genes involved in the (A) brown module and (B) yellow module. The size of the node represents the degree 
of connectivity of the node and the edges represents, and interaction between two genes.

Figure 6. Gene ontology enrichment analysis of the genes in the (A) brown module and (B) yellow module.
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and immunofluorescence by Xiao et al (52). UBC is a highly 
conserved protein which is involved in the selective proteolysis 
of abnormal proteins (53). Hao et al (54) identified UBC as a 
differential node protein which may serve as a key regulator 
in the response of non‑small cell lung cancer A549 cells to 
phycocyanin (54). Furthermore, knockdown of UBC and UBB 
with mixed small hairpin RNAs suppressed the growth and 
radio sensitivity of H1299 lung cancer cells (55). UBC was 
also associated with the regulation of Toxoplasma gondii 
rhopty protein 18, which serves a key regulatory role in cell 

immunity and apoptosis (56). Survival analysis revealed that 
increased expression of CDK1 and UBC resulted in poorer 
overall survival of patients with ACC, which is consistent with 
previous studies (49,50).

However, there were some limitations in the present study. 
The finally identified hub genes in the network requires 
experimental verification. At present, there are no studies 
investigating the function of UBC in ACC, to the best of our 
knowledge. Therefore, experiments based on clinical samples 
are required to verify the results of the present study. 

Figure 8. Overall survival of the six relevant hub genes identified in ACC. Patients were stratified into increased and decreased expression groups based on the 
median expression level. The genes from the brown module involved were (A) CDK1, (B) CCNB1, (C) CDC20 and the genes involved from the yellow module 
were (D) UBC, (E) PRKCA and (F) RAD23A. CDK1, cyclin dependent kinase 1; UBC, ubiquitin C; CCNB1, G2/mitotic‑specific cyclin‑B1; CDC20, Cell 
division cycle protein 20 homolog; PRKCA, Protein kinase C α type; RAD23A, UV excision repair protein RAD23 homolog A.

Figure 9. Receiver operating characteristic curve of the high degree genes from the (A) brown module and the (B) yellow module.
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In conclusion, the brown and yellow modules were identi-
fied as the most critical modules in the progression of ACC. 
The hub genes CDK1 and UBC were the most significantly 
expressed genes in the two modules, and they may serve as 
potential diagnostic and prognostic biomarkers of patients 
with ACC in the future. The selected candidate genes may 
serve as targets for the development of novel therapeutics. 

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

The datasets analyzed in the present study are available in the The 
Cancer Genoma Atlas repository, (https://cancergenome.nih.gov/). 

Authors' contributions

YZ designed the study. YZ and LJ developed the methods. YZ 
collected the sample. YZ analyzed and interpreted the data. 
YZ and LJ wrote, reviewed and revised the manuscript. 

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

 1. Drenthen LCA, Roerink SHPP, Mattijssen V and de Boer H: 
Bilaterally enlarged adrenal glands without obvious cause: Need for a 
multidisciplinary diagnostic work-up. Clin Case Rep 6: 729-734, 2018.

 2. Mohan DR, Lerario AM and Hammer GD: Therapeutic targets 
for adrenocortical carcinoma in the genomics era. J Endocr 
Soc 2: 1259‑1274, 2018.

 3. Paragliola RM, Torino F, Papi G, Locantore P, Pontecorvi A and 
Corsello SM: Role of mitotane in adrenocortical carcinoma‑review 
and state of the art. Eur Endocrinol 14: 62-66, 2018.

 4. Fragni M, Fiorentini C, Rossini E, Fisogni S, Vezzoli S, Bonini SA, 
Dalmiglio C, Grisanti S, Tiberio GAM, Claps M, et al: In vitro 
antitumor activity of progesterone in human adrenocortical 
carcinoma. Endocrine 63: 592‑601, 2019.

 5. Breidbart E, Cameo T, Garvin JH, Hibshoosh H and Oberfield SE: 
Pubertal outcome in a female with virilizing adrenocortical 
carcinoma. J Pediatr Endocrinol Metab 29: 503‑509, 2016.

 6. Nikoleishvili D, Koberidze G, Kutateladze M, Zumbadze G and 
Mariamidze A: Bilateral adrenocortical carcinoma: Case report 
and review of literature. Georgian Med News 19‑24, 2018.

 7. Stigliano A, Cerquetti L, Lardo P, Petrangeli E and Toscano V: 
New insights and future perspectives in the therapeutic strategy of 
adrenocortical carcinoma (Review). Oncol Rep 37: 1301-1311, 2017.

 8. Megerle F, Herrmann W, Schloetelburg W, Ronchi CL, Pulzer A, 
Quinkler M, Beuschlein F, Hahner S, Kroiss M and Fassnacht M; German 
ACC Study Group: Mitotane monotherapy in patients with advanced 
adrenocortical carcinoma. J Clin Endocrinol Metab 103: 686‑1695, 2018.

 9. Oddie PD, Albert BB, Hofman PL, Jefferies C, Laughton S and 
Carter PJ: Mitotane in the treatment of childhood adrenocortical 
carcinoma: A potent endocrine disruptor. Endocrinol Diabetes 
Metab Case Rep 2018: pii: EDM180059, 2018.

10. Langfelder P and Horvath S: WGCNA: An R package for 
weighted correlation network analysis. BMC Bioinformatics 9: 
559, 2008.

11. Lin X, Li J, Zhao Q, Feng JR, Gao Q and Nie JY: WGCNA 
Reveals Key Roles of IL8 and MMP‑9 in progression of involve-
ment area in colon of patients with ulcerative colitis. Curr Med 
Sci 38: 252‑258, 2018.

12. Wan Q, Tang J, Han Y and Wang D: Co‑expression modules 
construction by WGCNA and identify potential prognostic 
markers of uveal melanoma. Exp Eye Res 166: 13-20, 2018.

13. Yang Q, Wang R, Wei B, Peng C, Wang L, Hu G, Kong D and 
Du C: Candidate biomarkers and molecular mechanism investi-
gation for glioblastoma multiforme utilizing WGCNA. Biomed 
Res Int 2018: 4246703, 2018.

14. Ross JS, Wang K, Rand JV, Gay L, Presta MJ, Sheehan CE, 
Ali SM, Elvin JA, Labrecque E, Hiemstra C, et al: Next-generation 
sequencing of adrenocortical carcinoma reveals new routes to 
targeted therapies. J Clin Pathol 67: 968‑973, 2014.

15. Papathomas TG, Duregon E, Korpershoek E, Restuccia DF, 
van Marion R, Cappellesso R, Sturm N, Rossi G, Coli A, 
Zucchini N, et al: Sarcomatoid adrenocortical carcinoma: A 
comprehensive pathological, immunohistochemical, and targeted 
next‑generation sequencing analysis. Hum Pathol 58: 113‑122, 2016.

16. Gu Y, Gu W, Dou J, Lu Z, Ba J, Li J, Wang X, Liu H, Yang G, 
Guo Q, et al: Diagnostic role of prostate-specific membrane 
antigen in adrenocortical carcinoma. Front Endocrinol 
(Lausanne) 10: 226, 2019.

17. Romero Arenas MA, Whitsett TG, Aronova A, Henderson SA, 
LoBello J, Habra MA, Grubbs EG, Lee JE, Sircar K, Zarnegar R, et al: 
Protein expression of PTTG1 as a diagnostic biomarker in adreno-
cortical carcinoma. Ann Surg Oncol 25: 801‑807, 2018.

18. Duregon E, Volante M, Giorcelli J, Terzolo M, Lalli E and 
Papotti M: Diagnostic and prognostic role of steroidogenic factor 
1 in adrenocortical carcinoma: A validation study focusing on 
clinical and pathologic correlates. Hum Pathol 44: 822‑828, 2013.

19. Ding M, Li F, Wang B, Chi G and Liu H: A comprehensive 
analysis of WGCNA and serum metabolomics manifests the 
lung cancer-associated disordered glucose metabolism. J Cell 
Biochem 120: 10855‑10863, 2019.

20. Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A 
web server for cancer and normal gene expression profiling and 
interactive analyses. Nucleic Acids Res 45: W98‑W102, 2017.

21. Zheng S, Cherniack AD, Dewal N, Moffitt RA, Danilova L, 
Murray BA, Lerar io AM, Else T, Knijnenburg TA, 
Ciriello G, et al: Comprehensive pan-genomic characterization 
of adrenocortical carcinoma. Cancer cell 29: 723-736, 2016.

22. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, 
Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al: Bioconductor: 
Open software development for computational biology and 
bioinformatics 5: R80, 2004.

23. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, 
Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I, et al: 
TCGAbiolinks: An R/Bioconductor package for integrative 
analysis of TCGA data. Nucleic Acids Res 44: e71, 2016.

24. Team RC, R: A language and environment for statistical 
computing, 2013.

25. Shi H, Zhang L, Qu Y, Hou L, Wang L and Zheng M: Prognostic 
genes of breast cancer revealed by gene co-expression network 
analysis. Oncol Lett 14: 4535‑4542, 2017.

26. Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R 
package for comparing biological themes among gene clusters. 
OMICS 16: 284‑287, 2012.

27. Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, 
Barabási AL and Loscalzo J: Network-based approach to 
prediction and population-based validation of in silico drug 
repurposing. Nat Commun 9: 2691, 2018.

28. Csardi G and Nepusz T: The igraph software package for complex 
network 31. research. Inter Journal, Complex Systems 1695: 1‑9, 2006.

29. Collado‑Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, 
Hansen KD, Jaffe AE, Langmead B and Leek JT: Reproducible 
RNA‑seq analysis using recount2. Nat Biotechnol 35: 319‑321, 2017.

30. Sing T, Sander O, Beerenwinkel N and Lengauer T: ROCR: 
Visualizing classifier performance in R. Bioinformatics 21: 
3940‑3941, 2005.

31. Langfelder P and Horvath S: Fast R Functions for robust 
correlations and hierarchical clustering. J Stat Softw 46: 1-17, 
2012.



ONCOLOGY LETTERS  18:  3673-3681,  2019 3681

32. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, 
Amin N, Schwikowski B and Ideker T: Cytoscape: A software 
environment for integrated models of biomolecular interaction 
networks. Genome Res 13: 2498‑2504, 2003.

33. Lima D, Inaba J, Clarindo Lopes L, Calaça GN, Los Weinert P, 
Lenzi Fogaça R, Ferreira de Moura J, Magalhães Alvarenga L, 
Cavalcante de Figueiredo B, Wohnrath K and Andrade Pessôa C: 
Label-free impedimetric immunosensor based on arginine- 
functionalized gold nanoparticles for detection of DHEAS, 
a biomarker of pediatric adrenocortical carcinoma. Biosens 
Bioelectron 133: 86-93, 2019.

34. Mohan DR,  L era r io  A M, Else  T,  Muk her jee  B, 
Almeida MQ, Vinco M, Rege J, Mariani BMP, Zerbini MCN, 
Mendonca BB, et al: Targeted assessment of G0S2 methylation 
identifies a rapidly recurrent, routinely fatal molecular subtype 
of adrenocortical carcinoma. Clin Cancer Res 125: 3276‑3288, 
2019.

35. Ishida Y, Agata Y, Shibahara K and Honjo T: Induced expression 
of PD‑1, a novel member of the immunoglobulin gene super-
family, upon programmed cell death. EMBO J 11: 3887‑3895, 
1992.

36. Ascierto PA, Capone M, Grimaldi AM, Mallardo D, Simeone E, 
Madonna G, Roder H, Meyer K, Asmellash S, Oliveira C, et al: 
Proteomic test for anti‑PD‑1 checkpoint blockade treatment 
of metastatic melanoma with and without BRAF mutations. 
J Immunother Cancer 7: 91, 2019.

37. Liu X, Hu AX, Zhao JL and Chen FL: Identification of key gene 
modules in human osteosarcoma by co-expression analysis 
weighted gene co-expression network analysis (WGCNA). J Cell 
Biochem 118: 3953‑3959, 2017.

38. Grubbs E and Lee JE: Limited prognostic value of the 2004 
International Union Against Cancer staging classification for 
adrenocortical carcinoma: Proposal for a revised TNM classifi-
cation. Cancer 115: 5848, 2009.

39. Libe R: Adrenocortical carcinoma (ACC): Diagnosis, prognosis, 
and treatment. Front Cell Dev Biol 3: 45, 2015.

40. Petru E, Huber C, Sampl E and Haas J: Comparison of primary 
tumor size in stage I and III epithelial ovarian cancer. Anticancer 
Res 38: 6507‑6511, 2018.

41. Sylvestre E, Bouzil le G, Breton M, Cuggia M and 
Campillo-Gimenez B: Retrieving the vital status of patients with 
cancer using online obituaries. Stud Health Technol Inform 247: 
571‑575, 2018.

42. Roseweir AK, Kong CY, Park JH, Bennett L, Powell AGMT, 
Quinn J, van Wyk HC, Horgan PG, McMillan DC, Edwards J and 
Roxburgh CS: A novel tumor-based epithelial-to-mesenchymal 
transition score that associates with prognosis and metastasis 
in patients with Stage II/III colorectal cancer. Int J Cancer 144: 
150‑159, 2019.

43. Palm MM, Elemans M and Beltman JB: Heritable tumor cell 
division rate heterogeneity induces clonal dominance. PLoS 
Comput Biol 14: e1005954, 2018.

44. Chen G, Kong J, Tucker‑Burden C, Anand M, Rong Y, Rahman F, 
Moreno CS, Van Meir EG, Hadjipanayis CG and Brat DJ: Human 
Brat ortholog TRIM3 is a tumor suppressor that regulates asym-
metric cell division in glioblastoma. Cancer Res 74: 4536‑4548, 
2014.

45. Qian W, Wang J, Roginskaya V, McDermott LA, Edwards RP, 
Stolz DB, Llambi F, Green DR and Van Houten B: Novel 
combination of mitochondrial division inhibitor 1 (mdivi-1) and 
platinum agents produces synergistic pro-apoptotic effect in drug 
resistant tumor cells. Oncotarget 5: 4180‑4194, 2014.

46. Noël G, Langouo Fontsa M and Willard‑Gallo K: The impact 
of tumor cell metabolism on T cell-mediated immune responses 
and immuno-metabolic biomarkers in cancer. Semin Cancer 
Biol 52: 66‑74, 2018.

47. Herrero‑Ruiz J, Mora‑Santos M, Giráldez S, Sáez C, Japón MA, 
Tortolero M and Romero F: βTrCP controls the lysosome‑medi-
ated degradation of CDK1, whose accumulation correlates with 
tumor malignancy. Oncotarget 5: 7563‑7574, 2014.

48. Dykes SS, Gao C, Songock WK, Bigelow RL, Woude GV, 
Bodily JM and Cardelli JA: Zinc finger E‑box binding 
homeobox-1 (Zeb1) drives anterograde lysosome trafficking 
and tumor cell invasion via upregulation of Na+/H+ Exchanger-1 
(NHE1). Mol Carcinog 56: 722‑734, 2017.

49. Ravindran Menon D, Luo Y, Arcaroli JJ, Liu S, KrishnanKutty LN, 
Osborne DG, Li Y, Samson JM, Bagby S, Tan AC, et al: CDK1 
interacts with Sox2 and promotes tumor initiation in human 
melanoma. Cancer Res 78: 6561‑6574, 2018.

50. Warfel NA, Dolloff NG, Dicker DT, Malysz J and El‑Deiry WS: 
CDK1 stabilizes HIF‑1α via direct phosphorylation of Ser668 to 
promote tumor growth. Cell Cycle 12: 3689-3701, 2013.

51. Zeng Y, Stauffer S, Zhou J, Chen X, Chen Y and Dong J: 
Cyclin-dependent kinase 1 (CDK1)-mediated mitotic phos-
phorylation of the transcriptional co-repressor Vgll4 inhibits its 
tumor‑suppressing activity. J Biol Chem 292: 15028‑15038, 2017.

52. Xiao H, Xu D, Chen P, Zeng G, Wang X and Zhang X: 
Identification of five genes as a potential biomarker for predicting 
progress and prognosis in adrenocortical carcinoma. J Cancer 9: 
4484‑4495, 2018.

53. Eichner R, Fernández-Sáiz V, Targosz BS and Bassermann F: 
Cross talk networks of mammalian target of rapamycin signaling 
with the ubiquitin proteasome system and their clinical implica-
tions in multiple myeloma. Int Rev Cell Mol Biol 343: 219‑297, 
2019.

54. Hao S, Li S, Wang J, Zhao L, Yan Y, Cao Q, Wu T, Liu L and 
Wang C: Transcriptome analysis of phycocyanin-mediated 
inhibitory functions on non‑small cell lung cancer A549 cell 
growth. Mar Drugs 16: pii: E511, 2018.

55. Tang Y, Geng Y, Luo J, Shen W, Zhu W, Meng C, Li M, Zhou X, 
Zhang S and Cao J: Downregulation of ubiquitin inhibits the 
proliferation and radioresistance of non-small cell lung cancer 
cells in vitro and in vivo. Sci Rep 5: 9476, 2015.

56. Xia J, Kong L, Zhou LJ, Wu SZ, Yao LJ, He C, He CY and 
Peng HJ: Genome‑wide bimolecular fluorescence complemen-
tation-based proteomic analysis of Toxoplasma gondii ROP18's 
human interactome shows its key role in regulation of cell immu-
nity and apoptosis. Front Immunol 9: 61, 2018.

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International (CC BY-NC-ND 4.0) License.


