
Journal of

Clinical Medicine

Review

Advances in Diagnostic Imaging for Cardiac Sarcoidosis

Osamu Manabe 1, Noriko Oyama-Manabe 1,*, Tadao Aikawa 1 , Satonori Tsuneta 2 and Nagara Tamaki 3

����������
�������

Citation: Manabe, O.;

Oyama-Manabe, N.; Aikawa, T.;

Tsuneta, S.; Tamaki, N. Advances in

Diagnostic Imaging for Cardiac

Sarcoidosis. J. Clin. Med. 2021, 10,

5808. https://doi.org/10.3390/

jcm10245808

Academic Editors: Cosima Schiavone

and Claudio Tana

Received: 11 November 2021

Accepted: 9 December 2021

Published: 11 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama 330-8503, Japan;
omanabe@jichi.ac.jp (O.M.); aikawatadao@gmail.com (T.A.)

2 Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo 060-8648,
Japan; subsky.s1t2.7he9ia4n.uguisu@gmail.com

3 Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
natamaki@koto.kpu-m.ac.jp

* Correspondence: norikomanabe@jichi.ac.jp; Tel.: +81-48-647-2111

Abstract: Sarcoidosis is a systemic granulomatous disease of unknown etiology, and its clinical
presentation depends on the affected organ. Cardiac sarcoidosis (CS) is one of the leading causes
of death among patients with sarcoidosis. The clinical manifestations of CS are heterogeneous,
and range from asymptomatic to life-threatening arrhythmias and progressive heart failure due to
the extent and location of granulomatous inflammation in the myocardium. Advances in imaging
techniques have played a pivotal role in the evaluation of CS because histological diagnoses obtained
by myocardial biopsy tend to have lower sensitivity. The diagnosis of CS is challenging, and several
approaches, notably those using positron emission tomography and cardiac magnetic resonance
imaging (MRI), have been reported. Delayed-enhanced computed tomography (CT) may also be
used for diagnosing CS in patients with MRI-incompatible devices and allows acceptable evaluation
of myocardial hyperenhancement in such patients. This article reviews the advances in imaging
techniques for the evaluation of CS.

Keywords: cardiac sarcoidosis; 18F-fluorodeoxyglucose; cardiac magnetic resonance (CMR); positron
emission tomography (PET)

1. Introduction

Sarcoidosis is an inflammatory granulomatous disease of unknown etiology that can
affect any organ, including the lungs, lymphatic system, skin, eyes, and heart [1]. Cardiac
sarcoidosis (CS) is clinically recognized in approximately 5% of patients with systemic sar-
coidosis, whereas CS has been recorded in at least 25% of autopsy or imaging studies [2,3].
The incidence and prevalence of CS vary substantially over different geographical regions
and ethnic groups. An autopsy series of patients with systemic sarcoidosis showed that ap-
proximately 27% from the United States and 80% from Japan were revealed to have CS [4].
CS is a potentially life-threatening condition that can lead to conduction disturbances,
such as atrial and ventricular arrhythmias and heart failure. Therefore, screening for CS,
including medical interviews, physical examinations, and electrocardiography (ECG), is
recommended for patients newly diagnosed with sarcoidosis [1].

The presentation of CS varies from asymptomatic to chest pain, dyspnea, syncope,
palpitations, and sudden cardiac death. Endomyocardial biopsies are highly specific
for the diagnosis of CS, but their sensitivity is not very high; therefore, findings on car-
diac magnetic resonance imaging (CMR) or positron emission tomography (PET) with
18F-fluorodeoxyglucose (FDG) are used for clinical diagnosis [4]. Recent studies have
demonstrated that advanced cardiac imaging with CMR or PET can be useful not only
for diagnosis but also for monitoring and predicting adverse cardiovascular events. In
addition to visual evaluations, various quantitative evaluations have been proposed, and
new imaging and analysis methods are also attracting attention. This article reviews the
advances in imaging techniques for the evaluation of CS.
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2. Guidelines for the Diagnosis of CS

Several guidelines and diagnostic criteria have been suggested for the diagnosis of CS.
One of the initial guidelines was proposed by the Japanese Ministry of Health and Welfare
(JMHW) in 1993 and revised in 2006, which was subsequently modified in 2015 by the
Japanese Society of Sarcoidosis and Other Granulomatous Disorders (JSSOG) (Table 1) [5–7].
The Japanese Circulation Society (JCS) expanded the JMHW/JSSOG 2015 guidelines, in-
cluding a pathway for the clinical diagnosis of isolated CS in 2016 [8]. The Heart Rhythm
Society (HRS) published an expert consensus statement in 2014 (Table 2) [9]. The diagnostic
pathways for CS are primarily divided into histological and clinical branches. Histopatho-
logical diagnosis is required to reveal noncaseating granulomas from endomyocardial
biopsy (EMB) or surgical resection of the heart. However, the role of biopsy is limited due
to its low sensitivity rate of approximately 20% to 30% [10], which may be attributed to the
patchy distribution. Clinical diagnosis requires concordance among electrocardiography,
echocardiography, and imaging findings, including late gadolinium enhancement (LGE) on
CMR and FDG-PET (Figure 1). The advantages and disadvantages of FDG-PET and MRI
are summarized in Table 3. The diagnostic criteria for CS have been updated according to
the technological development and cumulating of the information about CS.

Table 1. The Japanese Society of Sarcoidosis and other Granulomatous Disorders (JSSOG) 2015 criteria for cardiac sarcoido-
sis [11,12].

1. Histological diagnosis group
Cardiac sarcoidosis is confirmed when endomyocardial biopsy specimens demonstrate noncaseating epithelioid cell granulomas
with a histological or clinical diagnosis of extracardiac sarcoidosis.
2. Clinical diagnosis group
Cardiac sarcoidosis is confirmed when, despite the absence of noncaseating epithelioid cell granulomas on endomyocardial biopsy
specimens, extracardiac sarcoidosis is diagnosed histologically or clinically and the following conditions and the following
diagnostic criteria are satisfied:
(a) Two or more of the five major criteria are met;
OR
(b) One of the five major criteria and two or more of the three minor criteria are met.
Major criteria
(1) Advanced atrioventricular block or sustained ventricular tachycardia.
(2) Basal thinning of the interventricular septum or morphological abnormality (aneurysm, wall thinning, or wall thickening).
(3) Depressed ejection fraction (<50%) or regional wall motion abnormality.
(4) Abnormal uptake of 67Ga or 18F-fluorodeoxyglucose in the heart.
(5) Delayed gadolinium enhancement on cardiac magnetic resonance.
Minor criteria
(1) Abnormal electrocardiographic findings: ventricular arrhythmias (non-sustained ventricular tachycardia or multifocal or
frequent premature ventricular contractions), bundle branch block, axis deviation, or abnormal Q-waves.
(2) Perfusion defects on nuclear imaging.
(3) Endomyocardial biopsy: interstitial fibrosis or monocyte infiltration of moderate grade.

Table 2. Diagnosis of cardiac sarcoidosis from the HRS Expert Consensus Statement [9].

1. Histologic diagnosis
Noncaseating granulomas on endomyocardial biopsy without an alternative cause
2. Clinical diagnosis
(a) Histologic diagnosis of extracardiac sarcoidosis;
and
(b) The presence of one of the following findings:
(1) Steroid-responsive cardiomyopathy or heart block.
(2) Unexplained LVEF < 40%.
(3) Unexplained sustained VT.
(4) Advanced heart block.
(5) Patchy uptake on cardiac PET.
(6) Late gadolinium enhancement (LGE) on CMR.
(7) Positive 67Ga uptake.
and
(c) Other causes for the cardiac manifestation(s) have been excluded.
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Figure 1. Typical FDG-PET and MR images for cardiac sarcoidosis. Cardiac sarcoidosis: A patient with systemic sarcoidosis
was assessed for a cardiac lesion. Whole-body maximum intensity projection (MIP) image in FDG-PET obtained after
an extended fasting period and consumption of a low-carbohydrate food preparations, and the four-chamber view and
short-axis images of MRI LGE and a fused image of MRI and FDG-PET are displayed (A). LGE and FDG uptake in the
LV and RV myocardium were detected. The physiological myocardial FDG uptake was suppressed. The MIP image also
shows several regions of FDG uptake in the right supraclavicular, mediastinum, hilar, and abdominal lymph nodes. MIP
images of post-anti-inflammatory therapy show that the uptake of some lymph nodes persisted, but abnormal cardiac
accumulation was almost decreased (B). MIP, maximum intensity projection; FDG, 18F-fluorodeoxyglucose; PET, positron
emission tomography; MRI, magnetic resonance imaging; LGE, late gadolinium enhancement; LV, left ventricular; RV, right
ventricular.

Table 3. Advantages and disadvantages of FDG-PET and MRI.

Advantages Disadvantages

PET

Active lesion
Whole-body imaging possible
Assesses response to therapy
Safely performed in patients with advanced renal
dysfunction
Intracardiac devices

Radiation exposure
Lower spatial resolution
Long acquisition time
Need for specialized patient preparation
Nondiagnostic scans due to physiological uptake
More expensive

MRI

High spatial resolution
Excellent soft-tissue contrast
Non-ionizing radiation
Detects morphological abnormalities including
ventricular wall thinning
A lower number of nondiagnostic scans
No need for specialized patient preparation

Long acquisition time
Limited by the incompatible cardiac devices
With risk from gadolinium contrast in patients with
advanced renal dysfunction
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3. FDG-PET

FDG-PET is now routinely used to assess the infiltration of sarcoidosis in the my-
ocardium. FDG is a glucose analog, and its uptake is associated with the expression of
glucose transporters (GLUTs). Increased uptake of FDG in inflammatory diseases, in-
cluding sarcoidosis, can be attributed to the activation of inflammatory cells, such as
macrophages, lymphocytes, and granulocytes, with increased levels of GLUT.

The pitfall of using FDG-PET for evaluation of CS is that living myocardial cells also
use glucose as their energy source. Therefore, physiological myocardial FDG uptake often
makes it difficult to detect active CS lesions. Patients with suspected CS require adequate
preparation, such as prolonged fasting, a low-carbohydrate diet, and/or a high-fat, high-
protein diet to suppress the false-positive association with physiological myocardial FDG
uptake (Figure 2) (Table 4) [13–15]. Sample foods for dietary preparation prior to FDG-PET
scan are well summarized in the Japanese Society of Nuclear Cardiology recommenda-
tion [13]. Multivariate analysis of patients without cardiac disease, including the factors
such as body mass index, fasting blood sugar, gender, age, and long fasting, demonstrated
that only long fasting was independently associated with the suppression of physiological
FDG uptake [16]. Measurement of serum free fatty acid levels at the injection of FDG
can be used to determine whether the uptake was physiological [17]. Typical patterns
of FDG accumulation in CS are focal and focal-on-diffuse in the myocardium, which of-
ten corresponds to a decrease in myocardial perfusion [13]. FDG-PET with an adequate
preparation protocol is ideal for detecting active lesions and assessing the response to
anti-inflammatory therapy in patients with CS [18]. The inter-observer interpretation of
cardiac FDG uptake patterns was improved by proper dietary preparation [19]. A meta-
analysis of data collected from 891 patients showed that PET or PET/CT had a pooled
sensitivity of 84% and a pooled specificity of 83% for diagnosing CS [20]. In particular, the
specificity of FDG in the detection of CS varies and is relatively low compared with its
sensitivity. Possible explanations for this include nonspecific physiological uptake, uptake
of other myocardial diseases such as ischemic disease and hypertrophic cardiomyopathy,
and early-stage sarcoid lesions in patients who do not meet the diagnostic criteria for CS.
Cardiac PET enhances the prognostic assessment of patients with suspected CS. Blankstein
et al. showed that patients with abnormal FDG uptake and focal perfusion defects had a
higher risk of death or ventricular tachycardia in their retrospective study of 118 patients
with known or suspected CS [21].

J. Clin. Med. 2021, 10, 5808 5 of 14 
 

 

 
Figure 2. Typical time schedule of the FDG-PET/CT scan. Preparations before FDG-PET/CT include 
a low-carbohydrate diet (LCD) and prolonged fasting (over 18 h). Delayed cardiac spot imaging is 
also recommended if the time schedule permits it. 

Table 4. Recommended foods for dietary preparation before FDG-PET. 

Drink Sugar-free drinking water such as tap water, mineral water, and tea, etc. 

Vegetables 
Low-carbohydrate vegetables such as broccoli, cabbage, cucumber, green pepper, lettuce, 
spinach, etc. 

Low-carbohydrate food Butter (without sugar), cheese, egg, fish, meat, tofu, etc.  
Seasoning Sugar-free seasoning, such as mayonnaise, olive oil, pepper, salad oil, etc. 

Focal FDG uptake in the right ventricle (RV) is more reliable for the diagnosis of CS 
because physiological FDG uptake in the RV is less frequently observed than in the LV 
[22]. FDG uptake by the RV is associated with positive endomyocardial biopsy findings 
in patients with CS [23]. Assessment of RV FDG uptake provides useful information for 
diagnosing CS and predicting cardiac events. CS with FDG uptake in the RV is associated 
with subsequent death or ventricular tachycardia (VT) [21]. 

3.1. Quantitative Analysis of FDG-PET Findings 
PET enables quantitative estimation of disease activity in vivo. Semi-quantitative 

methods, SUV measurement, and especially SUVmax evaluations, are most frequently 
used to assess the degree of FDG uptake. SUV is the ratio of the tissue radioactivity con-
centration divided by the injected dose and body weight. When fasting for over 18 h fol-
lowed a low-carbohydrate diet, quantification of myocardial SUVmax provided higher 
diagnostic accuracy for diagnosing CS in comparison with visual analysis [24]. The pre-
treatment FDG uptake index, defined as the product of the SUVmax and the number of 
LV segments with abnormal uptake, was a predictor of the response to immunosuppres-
sive therapy in patients with CS [25]. 

SUVmax is a simple measurement, and the SUVmax value reflects only the value of 
a single voxel that is hampered by physical, biological, and technical processes and does 
not reflect the metabolism of the entire target lesion. Cardiac metabolic volume (CMV) 
and cardiac metabolic activity (CMA) have emerged as volume-based parameters, which 
are mainly useful for assessing active CS lesions [17,26]. CMV is a measurement of the 
volume with a high metabolism in the myocardium within a given boundary determined 
by a threshold, such as the liver uptake and the blood pool SUV (Figure 3). On the other 
hand, CMA is defined as the product of the mean SUV and the CMV. Osborne et al. re-
ported that a reduction in SUVmax and CMV after immunotherapy was associated with 
improvement in the left ventricular ejection fraction (LVEF) [27]. Ahmadian et al. reported 
that CMA was greater in patients with lower LVEF and that an elevated CMA preceded 
adverse clinical events in their study of CS [26]. 

Figure 2. Typical time schedule of the FDG-PET/CT scan. Preparations before FDG-PET/CT include
a low-carbohydrate diet (LCD) and prolonged fasting (over 18 h). Delayed cardiac spot imaging is
also recommended if the time schedule permits it.

Table 4. Recommended foods for dietary preparation before FDG-PET.

Drink Sugar-free drinking water such as tap water, mineral water, and tea, etc.

Vegetables Low-carbohydrate vegetables such as broccoli, cabbage, cucumber, green pepper, lettuce, spinach, etc.

Low-carbohydrate food Butter (without sugar), cheese, egg, fish, meat, tofu, etc.

Seasoning Sugar-free seasoning, such as mayonnaise, olive oil, pepper, salad oil, etc.
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Focal FDG uptake in the right ventricle (RV) is more reliable for the diagnosis of
CS because physiological FDG uptake in the RV is less frequently observed than in the
LV [22]. FDG uptake by the RV is associated with positive endomyocardial biopsy findings
in patients with CS [23]. Assessment of RV FDG uptake provides useful information for
diagnosing CS and predicting cardiac events. CS with FDG uptake in the RV is associated
with subsequent death or ventricular tachycardia (VT) [21].

3.1. Quantitative Analysis of FDG-PET Findings

PET enables quantitative estimation of disease activity in vivo. Semi-quantitative
methods, SUV measurement, and especially SUVmax evaluations, are most frequently
used to assess the degree of FDG uptake. SUV is the ratio of the tissue radioactivity
concentration divided by the injected dose and body weight. When fasting for over 18 h
followed a low-carbohydrate diet, quantification of myocardial SUVmax provided higher
diagnostic accuracy for diagnosing CS in comparison with visual analysis [24]. The pre-
treatment FDG uptake index, defined as the product of the SUVmax and the number of LV
segments with abnormal uptake, was a predictor of the response to immunosuppressive
therapy in patients with CS [25].

SUVmax is a simple measurement, and the SUVmax value reflects only the value of a
single voxel that is hampered by physical, biological, and technical processes and does not
reflect the metabolism of the entire target lesion. Cardiac metabolic volume (CMV) and
cardiac metabolic activity (CMA) have emerged as volume-based parameters, which are
mainly useful for assessing active CS lesions [17,26]. CMV is a measurement of the volume
with a high metabolism in the myocardium within a given boundary determined by a
threshold, such as the liver uptake and the blood pool SUV (Figure 3). On the other hand,
CMA is defined as the product of the mean SUV and the CMV. Osborne et al. reported that
a reduction in SUVmax and CMV after immunotherapy was associated with improvement
in the left ventricular ejection fraction (LVEF) [27]. Ahmadian et al. reported that CMA was
greater in patients with lower LVEF and that an elevated CMA preceded adverse clinical
events in their study of CS [26].

An alternative method to assess CS that employs quantitative evaluation of the hetero-
geneity of myocardial FDG uptake has been proposed by several groups [28–30]. Quantita-
tive measures of the coefficient of variation (COV) of myocardial FDG uptake provide an
incremental diagnostic and prognostic advantage in CS patients. Tahara et al. reported that
the standard deviation and COV were significantly higher in patients with CS than in con-
trol participants, sarcoidosis patients without cardiac lesions, and dilated cardiomyopathy
patients [28]. Recently, the textural features of FDG-PET images of CS have been studied
for their diagnostic and prognostic value [31,32]. The quantitative assessment of FDG
uptake heterogeneity may be reflected in the inhomogeneous formation of noncaseating
granulomas in the myocardium of patients with CS. Novel semiconductor PET/CT with
high temporal and spatial resolution enables a more detailed distribution evaluation of
CS [33,34].
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present in inflammatory cells, including granuloma macrophages, epithelioid cells, and 
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(FMISO) is a PET tracer that accumulates in hypoxic tissues. Increased FMISO uptake has 
been reported in patients with suspected CS [38]. A small prospective study demonstrated 
that FMISO-PET has the potential to detect hypoxic lesions of CS without physiological 

Figure 3. Volume-based analysis of FDG-PET. The maximum intensity projection (A), colored on
the cardiac lesion (B), FDG-PET/CT of axial image (C), short-axis images of delayed-enhancement
MRI (D), and CT (E) of cardiac sarcoidosis are displayed, respectively. There are focal uptakes in
the left and right ventricles, which is concordant with the delayed enhancement on MRI and CT,
indicating active cardiac sarcoidosis. The estimated SUVmax, cardiac metabolic volume, and cardiac
metabolic activity were 10.8, 51.8, and 231.7 mL, respectively. There are also multiple FDG uptakes in
the supraclavicular, mediastinum, hilum, abdomen, pelvis, and right inguinal lymph nodes. FDG,
18F-fluorodeoxyglucose; PET, positron emission tomography; CT, computed tomography; MRI,
magnetic resonance imaging; SUV, standardized uptake value.

3.2. The Other Tracers

Although FDG-PET provides high diagnostic value for the detection of active CS,
physiological accumulation may occasionally make it difficult to determine whether the
finding is pathological or not. Several other PET tracers without physiological myocardial
uptake have been used to evaluate CS. Somatostatin receptors (SSTRs) are known to be
present in inflammatory cells, including granuloma macrophages, epithelioid cells, and
giant cells [35]. Therefore, 68Ga-DOTA-Tyr-octreotide (DOTATOC), which is a PET tracer
that targets SSTRs, is used to assess sarcoidosis [36,37] (Table 5). 18F-fluoromisonidazole
(FMISO) is a PET tracer that accumulates in hypoxic tissues. Increased FMISO uptake has
been reported in patients with suspected CS [38]. A small prospective study demonstrated
that FMISO-PET has the potential to detect hypoxic lesions of CS without physiological
myocardial uptake [39]. 3′-Deoxy-3-[18F]-fluorothymidine (FLT) is another PET tracer used
to evaluate cellular proliferative activity. Although FLT uptake is significantly lower than
that of FDG, FLT PET/CT can detect cardiac and extracardiac sarcoidosis [40]. Martineau
et al. examined the relationship between FLT, FDG, and perfusion PET imaging in patients
with CS [41]. They hypothesized that FLT might identify areas likely to develop myocardial
scarring due to the strong correlation between FLT uptake and perfusion defects.
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Table 5. Diagnostic ability of the other tracers of PET.

PET Tracer Reference Gold Standard Active CS/Total
Number Sensitivity (%) Specificity (%)

DOTATOC Lapa, C [33] CMR 10/15 70.0 100.0

FMISO Furuya, S [35] FDG-PET 8/9 77.8 100.0

FLT Norikane, T [36] FDG-PET 13/20 92.3 100.0

Martineau, P [37] FDG-PET 7/14 85.7 100.0

CS, cardiac sarcoidosis; DOTATOC, 68Ga-DOTA-Tyr-octreotide; CMR, cardiac magnetic resonance imaging; 18F-fluoromisonidazole; FDG,
18F-fluolodeoxyglucose; PET, positron emission tomography; FLT, 3′-Deoxy-3-[18F]-fluorothymidine.

4. CMR
4.1. Late Gadolinium Enhancement

Gadolinium-based contrast agents are distributed within the extracellular space of
the myocardium, and their distribution is influenced by different regional conditions
such as edema, scar tissue, fibrosis, and necrosis. Evaluation of LGE on CMR is a basic
technique used for tissue characterization, particularly fibrosis and scar formation in the
myocardium, and is an essential tool for assessing CS (Figure 4). Although the presence of
LGE is a non-specific finding, the appearance of mid-wall and/or epicardial LGE sparing
the subendocardium in the basal heart, particularly the septum and lateral wall, may
increase the specificity for the diagnosis of CS [42–45]. A meta-analysis of data collected
from 649 participants with histologically proven extra-cardiac sarcoidosis and/or with a
suspicion of CS showed that CMR had a pooled sensitivity of 93% and a pooled specificity
of 85% for diagnosing CS [46]. The findings showing contiguous extension to the right
ventricle was also a typical pattern for CS [47]. The presence of LGE on CMR is known to
be an independent predictor of all-cause mortality and adverse cardiovascular events in
sarcoidosis patients [48,49]. Conversely, the prognosis is favorable for patients without
abnormal LGE on CMR. A quantitative method to estimate the LGE percentage of LV
mass has been proposed, and a large extent of LGE correlates with a high incidence of
adverse outcomes in patients with CS [50]. According to a retrospective cohort study by
Kazmirczak et al., patients with LGE extent > 5.7% had high annualized event rates [51].
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Figure 4. Typical time schedule of a CMR scan. Scout scans of the transaxial, coronal, and sagittal images were acquired.
ECG-gated imaging is performed as follows: steady-state free precession (SSFP) short-axis and long-axis cine images are
acquired during a breath-hold. T1 mapping images, which are optional, are obtained pre- and post-contrast administration.
T2 mapping images are also optional. Late gadolinium enhancement (LGE) images are obtained from post-contrast images
with an inversion time chosen to null normal myocardium. High-resolution gradient echo inversion recovery 10 min
post-contrast.

Nevertheless, the presence of LGE cannot distinguish between active inflammation
and chronic fibrotic changes. In this regard, a high signal intensity on T2-weighted images
reflects active inflammation due to the indication of edema [52]. Tonegawa-Kuji et al. ana-
lyzed T2-weighted short-tau-inversion-recovery black-blood imaging data by measuring
the myocardium-to-spleen ratio and concluded that semi-quantitative analysis was useful
for the detection of active CS [53]. Currently, the development of novel techniques for CMR
imaging, such as T1 and T2 mapping, has the potential to allow assessment of CS. The ECV
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fraction was calculated using pre- and post-enhanced T1 mapping. T1 and T2 native values
are directly estimated by mapping sequences that allow reliable tissue characterization of
the myocardium. Previous reports have shown that T1 and T2 values are longer in patients
with systemic sarcoidosis than in healthy individuals [54,55]. T1 and T2 mapping may also
be useful for recognizing cardiac involvement in patients with systemic sarcoidosis. T1
and T2 values can also be used for monitoring disease activity because these values are
reduced by anti-inflammatory treatment [54].

4.2. Integrated PET/MRI

The hybrid PET/MRI system is a novel instrument that allows simultaneous data
acquisition by combining functional, structural, and molecular imaging in a single scan [56].
Several studies have evaluated the utility of PET/MRI for the evaluation of CS [57–60].
Wisenberg et al. showed that PET/CT and PET/MRI provided similar diagnostic data
for FDG uptake in a same-day protocol in 10 CS patients [58]. Comprehensive imaging
with cardiac PET/MRI holds great promise for providing further insights regarding the
disease process underlying CS. The combination of information on active inflammation
from FDG-PET and fibrotic scars from LGE on MRI can provide incremental value in the
development of therapeutic strategies for CS [57]. Wicks et al. assessed the diagnostic
and prognostic utility of simultaneous cardiac PET/MRI in 51 consecutive patients with
suspected CS. In their results, hybrid PET/MRI was superior to PET and MRI alone for
detecting CS, and the presence of LGE and FDG uptake on PET/MRI was a predictor of
major adverse cardiac events [59]. More recently, Guelich et al. demonstrated the utility
of T1 and T2 mapping in addition to LGE in hybrid PET/MRI for the identification of
active CS [60]. Thus, hybrid PET/MRI may have implications for the assessment of disease
presence, activity, and prognosis in CS in a single examination.

4.3. Regional Myocardial Function

Cardiac involvement of sarcoidosis can show different manifestations ranging from
early active granuloma to inactive scars in the myocardium [61]. This heterogeneity can also
reflect the dyssynchrony of left ventricular wall motion. A recent meta-analysis of speckle-
tracking echocardiography data demonstrated that left ventricular global longitudinal and
circumferential strain, which represent the change in length in proportion to the baseline
length from longitudinal and circumferential directions, was significantly lower in patients
with extracardiac sarcoidosis but without any cardiac symptoms [62]. Assessment of global
and regional ventricular function is one of the important functions of CMR. Accurate and
reproducible measurements of left ventricular (LV) ejection fraction (EF) and LV volume
are possible using CMR. Myocardial tissue-tracking imaging techniques, such as tagging,
strain-encoded MRI, and myocardial feature-tracking deformation imaging, are useful
for measuring regional myocardial contractile function (Figure 5). These CMR-derived
strain parameters have the potential to facilitate early detection and prediction of disease
outcome in patients with CS [63,64]. Velangi et al. reported that RV systolic dysfunction
was present in 12.1% of 290 patients with sarcoidosis with known or suspected CS, and RV
systolic dysfunction was independently associated with all-cause death [65] (Table 6).
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Figure 5. CMR feature-tracking analysis. Findings for the same patient as in Figure 1. Each regional
strain is presented in the same colored curve, and the white curve represents the average of all
regions. Inhomogeneous longitudinal strain due to cardiac sarcoidosis not only in the LV wall but
also in the RV wall. LV, left ventricular; RV, right ventricular.

Table 6. Imaging evaluation relating to prognosis and/or cardiac events.

Modality Authors Findings

FDG-PET

Blankstein et al. [21] Abnormal uptake and focal perfusion defects
RV FDG uptake

Ahmadian et al. [26] CMA

Sperry, B.W. et al. [29]
Schildt, J.V. et al. [30] Heterogeneity of myocardial FDG uptake

Manabe, O. et al. [31] Texture parameter

CMR

Greulich, S. et al. [48]
Coleman, G.C. et al. [49] Presence of LGE

Ise, T. et al. [50]
Kazmirczak, F. et al. [51] Extent of LGE

Dabir, D. et al. [64] Global longitudinal strain

Velangi, P.S. et al. [65] RV systolic dysfunction

FDG, 18F-fluuorodeoxyglucose; PET, positron emission tomography; RV, right ventricular; CMA, cardiac metabolic response; CMR, cardiac
magnetic resonance imaging; LGE, late gadolinium enhancement.

PET-derived phase-analysis data can improve the sensitivity of scar detection in
CS [66]. Phase analysis on gated PET [66] and single-photon emission computed tomogra-
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phy (SPECT) [67] images also has the potential to add incremental diagnostic or predictive
value for patients with CS.

4.4. Computed Tomography

Coronary CT angiography is useful for excluding coronary artery disease in patients
with suspected CS. Furthermore, delayed-phase contrast-enhanced CT, which is often
performed 6–15 min after contrast injection, can be used to detect cardiac involvement
in patients with systemic sarcoidosis in a manner similar to CMR (Figure 6) [5]. The
iodine-based CT contrast material accumulates in the myocardial scar in a manner similar
to gadolinium-based CMR contrast material [68]. Therefore, contrast-enhanced CT has the
potential to serve as a “one-stop shop” for evaluation of coronary artery disease, systemic
disease, and cardiac involvement in patients with sarcoidosis [69]. Delayed-enhanced
CT can also be performed for patients with MRI-incompatible devices. We previously
demonstrated that the image quality of delayed-enhanced CT is acceptable for evaluation
of myocardial hyperenhancement in patients with or without implantable devices [5]. The
disadvantages of contrast-enhanced CT are the relative contraindication to chronic kidney
disease and the lower contrast-to-noise ratio in comparison with LGE-CMR [70]. Low
tube voltage CT scanning with iterative model reconstruction [5] or virtual monochromatic
imaging in dual-energy CT [71] may offer a more accurate assessment of myocardial
hyperenhancement in this setting. Statistical texture analysis-based approaches have
emerged as more objective and reproducible methods than visual assessment for detecting
myocardial hyperenhancement in delayed-enhanced CT [72].
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Figure 6. T1 mapping on MRI and delayed contrast-enhancement CT. A case of cardiac sarcoidosis.
Short-axis views of delayed-enhancement CT (A), late gadolinium enhancement (LGE) on MRI
(B), and the extracellular volume (ECV) map obtained pre- and post-enhancement at similar levels
(C). Abnormal patchy enhancement in the anteroseptal, septal, and lateral wall was detected by
delayed-enhancement CT. LGE can also reveal obvious hyperintensity areas consistent with CT.
Higher ECV values corresponded to LGE.

5. Conclusions

In this review, we have summarized the diagnostic approach for CS, including recent
advances in PET, CMR, and CT. Current international recommendations for diagnosing CS
are based on a multimodal approach (Figure 7). Among the existing modalities, FDG-PET
and LGE evaluations on CMR are essential tools, and further advancements using novel
techniques may be useful for the non-invasive diagnosis and prognosis assessment of CS.
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devices, PET would be the first choice. For detection of late enhancement, delayed iodine enhanced
CT would be one option for the evaluation of coronary artery disease, systemic disease, and cardiac
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