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Abstract: Magnetoelectric resonators have been studied for the detection of small amplitude and low
frequency magnetic fields via the delta-E effect, mainly in fundamental bending or bulk resonance
modes. Here, we present an experimental and theoretical investigation of magnetoelectric thin-film
cantilevers that can be operated in bending modes (BMs) and torsion modes (TMs) as a magnetic
field sensor. A magnetoelastic macrospin model is combined with an electromechanical finite
element model and a general description of the delta-E effect of all stiffness tensor components Cij

is derived. Simulations confirm quantitatively that the delta-E effect of the C66 component has the
promising potential of significantly increasing the magnetic sensitivity and the maximum normalized
frequency change ∆ fr. However, the electrical excitation of TMs remains challenging and is found to
significantly diminish the gain in sensitivity. Experiments reveal the dependency of the sensitivity
and ∆ fr of TMs on the mode number, which differs fundamentally from BMs and is well explained
by our model. Because the contribution of C11 to the TMs increases with the mode number, the
first-order TM yields the highest magnetic sensitivity. Overall, general insights are gained for the
design of high-sensitivity delta-E effect sensors, as well as for frequency tunable devices based on the
delta-E effect.

Keywords: delta-E effect; magnetoelectric; magnetoelastic; resonator; torsion mode; bending mode;
magnetic modeling; MEMS; FEM

1. Introduction

In recent years, thin-film magnetoelectric sensors have been studied, frequently en-
visioning biomedical applications in the future [1,2]. Such applications often require the
measurement of small amplitude and low frequency magnetic fields [1–3]. With the direct
magnetoelectric effect, such small detection limits are only obtained at high frequencies
and in small-signal bandwidths of a few Hz [2,4]. One way to overcome these limitations is
by using a modulation scheme based on the delta-E effect. The delta-E effect is the change
of the effective elastic properties with magnetization due to magnetoelastic coupling [5–8].
It results from inverse magnetostriction that adds additional stress-induced magnetostric-
tive strain to the purely elastic Hookean strain. The delta-E effect can occur generally
in various elastic moduli and several components of the elastic stiffness tensor C [9,10].
Hence, it is sometimes referred to as the delta-C effect [11]. Typically, delta-E effect sensors
are based on magnetoelectric resonators that are electrically excited via the piezoelectric
layer at or close to the resonance frequency fr. Upon the application of a magnetic field,
the magnetization changes and the delta-E effect alters the mechanical stiffness tensor of
the magnetostrictive layer. If the altered stiffness tensor components contribute to the
resonance frequency of the excited mode, the resonance frequency changes, which can
be read-out electrically. The delta-E effect of the Young’s modulus has especially been
studied thoroughly in soft magnetic amorphous materials [12–18]. It was used for magnetic
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field sensing with magnetoelectric plate resonators [19–22] and beam structures [23–32].
Such resonators are operated in bending or bulk modes and some have achieved limits of
detection down to the sub-nT regime at low frequencies. Microelectromechanical systems
(MEMS) cantilever sensors based on the delta-E effect were recently used for the mapping
of magnetically labeled cells [33], and have shown promising properties for sensor array
applications [34].

In contrast to the delta-E effect of the Young’s modulus, the delta-E effect of the shear
modulus has been studied less extensively [35] and mainly in amorphous wires [36,37]. It
has been used for a different kind of delta-E effect sensors where shear waves, traveling
through the magnetoelastic material, are influenced by the delta-E effect. This concept
was realized with bulk acoustic shear waves in amorphous ribbons [38] and recently with
surface acoustic shear waves in magnetic thin film devices [10,39–42]. Only very few
studies investigate torsion modes in beam structures [43,44], either with electrostatically
actuated cantilevers [43] or double-clamped beams [44]. Both studies are limited to specific
configurations of the magnetic system and consider neither the full tensor relations of
the mechanics and the delta-E effect nor higher resonance modes. Until now, a compre-
hensive experimental and theoretical analysis has been missing as well as a discussion of
implications for the design of delta-E effect-based devices.

2. MEMS Torsion Mode Sensors

In this study, all measurements and models are made for a microelectromechanical
system (MEMS) technology-fabricated cantilever with an electrode design that permits
the excitation of torsion modes. A sketch including dimensions and layer structure and a
top-view photograph of the design are shown in Figure 1. The approximately 3.1 mm-long
and 2.15 mm-wide cantilever consists of a ≈ 2 µm-thick piezoelectric layer of AlN [45] on
a 50 µm-thick poly-Si substrate. A 2 µm-thick amorphous magnetostrictive multilayer is
deposited on the rear side. A magnetic field is applied during the deposition to induce
a magnetic easy axis along the short cantilever axis. For actuation and read-out, three
top electrodes (E1, E2 and E3) of 100 nm-thick Au with lengths L1 = L2 ≈ 1 mm and
L3 ≈ 0.6 mm and widths W1 = W2 ≈ 0.5 mm and W3 ≈ 1 mm contact the AlN layer on the
top. The counter electrode (150 nm Pt) covers the whole beam area and is located between
the AlN layer and the substrate. All measurements are performed with electrode E1. As a
magnetostrictive material, we use a 2 µm multilayer of 20× (100 nm (Fe90Co10)78Si12B10
and 6 nm Cr). It is covered by a top Cr-layer that serves as a protection against corrosion.
More information about the layer structures and the fabrication process can be found
elsewhere [27]. In contrast to the sensors in Ref. [27], the sensor presented here is signifi-
cantly wider and the adapted electrode design additionally permits the excitation of torsion
modes. Details on the geometry are given in the appendix.
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Figure 1. Delta-E effect sensor analyzed in this study: (a) schematic top view of the cantilever, with
three different electrodes E1, E2 and E3 of lengths L1 = L2 ≈ 1 mm, L3 ≈ 0.6 mm and widths
W1 = W2 ≈ 0.5 mm and W3 ≈ 1 mm; (b) schematic side-view of the cantilever with the thickness of
the functional layers and the poly-Si substrate; (c) top-view photograph of the fabricated structure.
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3. Sensitivity
3.1. Definition of the Sensitivity

An important parameter that characterizes a magnetic field sensor is its sensitivity.
During sensor operation, an alternating voltage is applied to excite the cantilever at its
mechanical resonance frequency fr. Applying a magnetic field, shifts fr via the delta-E effect
and correspondingly the sensor’s admittance characteristic on its frequency axis f. Hence,
the magnitude |Y| = abs{Y} and phase angle φ = arg{Y} of the sensor admittance Y
depend on the magnetic field. Consequently, the ac magnetic field to be measured causes an
amplitude modulation (am) and phase modulation (pm) of the current through the sensor.
Detailed information on the operation and read-out can be found elsewhere [46–48]. The
linearized change of |Y| and φ with the magnetic field can be described by the amplitude
sensitivity Sam = SY,r·SH,r and the phase sensitivity Spm = Sφ,r·SH,r [49], respectively.
Both sensitivities have a magnetic part SH,r that includes the delta-E effect and an electric
part SY,r or Sφ,r, which can be determined from the admittance. We refer to the three
sensitivities as relative sensitivities, because they are normalized to the excitation frequency
fex = fr. The normalization is required to eventually compare the electrical and magnetic
sensitivities of sensors with different geometries operated at different fr or in different
resonance modes. Usually a magnetic bias field H0 is applied to operate the sensor at
optimum conditions. The relative sensitivities are then defined in linear approximation as
derivatives [49]:

SY,r
∂|Y|
∂ f

∣∣∣∣
f= fr, H=H0

· fr; Sφ,r
∂φ

∂ f

∣∣∣∣
f= fr,H=H0

· fr; SH,r
1
fr

∂ fr

∂µ0H

∣∣∣∣
H=H0

, (1)

with the magnetic vacuum permeability µ0 ≈ 4π·10−7 N/A2. From Equation (1), the
relative magnetic sensitivity SH,r is the linearized and normalized change of the resonance
frequency fr with the applied magnetic flux density µ0H.

3.2. Magnetic Sensitivity of Arbitrary Resonance Modes

The delta-E effect is included in the relative magnetic sensitivity SH,r because the
resonance frequency fr = fr

(
Cij
)

is a function of the stiffness tensor components Cij.
Depending on the respective resonance mode, different Cij dominate fr and depending
on the magnetoelastic properties they might result in non-zero SH,r. To describe SH,r for
arbitrary resonance modes, it can be separated into a purely mechanical part f−1

r ∂ fr/∂Cij
that contains the resonance properties of the structure and a purely magnetoelastic part
∂Cij/∂µ0H:

SH,r
1
fr

∂ fr

∂µ0H

∣∣∣∣
H=H0

= ∑3
i=1 ∑3

j=1
1
fr

∂ fr

∂Cij

∂Cij

∂µ0H

∣∣∣∣
H=H0

∑3
i=1 ∑3

j=1 ∂C fr,ij ∂HCij. (2)

If treated separately, the factors ∂ fr/∂Cij and ∂Cij/∂µ0H must be normalized to re-
move the dependency on the absolute value of Cij that cancels out in SH,r. We define:

∂C fr,ij
Cij

fr

∂ fr

∂Cij

∣∣∣∣∣
H=H0

; ∂HCij
1

Cij

∂Cij

∂µ0H

∣∣∣∣
H=H0

. (3)

From Equation (3), the factor ∂C fr,ij represents a normalized measure for the influence
of the stiffness tensor component Cij on the resonance frequency fr of the considered
resonance mode. It is a purely mechanical quantity and hence determined by the geometry,
the resonance mode, and the effective mechanical properties of the resonator. The second
factor ∂HCij, includes the delta-E effect and describes the normalized influence of the
applied flux density µ0H on Cij. Hence, the two factors quantify the mechanical and the
magnetoelastic parts of the relative magnetic sensitivity SH,r. They will be used later to
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analyze the sensitivity and the frequency detuning of higher bending and torsion modes of
the cantilever.

4. Sensor Modelling

The model used to describe and analyze the sensor consists of two parts. With
a semi-analytical magnetoelastic macrospin model, the delta-E effect is obtained, i.e.,
the effective mechanical stiffness tensor C(H) as a function of the applied field H. It is
used as an input for an electromechanical finite element mechanics (FEM) model that
describes the resonance frequency and the sensor’s impedance response. In addition to a
macrospin approximation, we assume a quasi-static magnetization behavior. Consequently,
it is only valid for operation frequencies and magnetic field frequencies far below the
ferromagnetic resonance frequency (FMR). The FMR generally depends on the geometry
and the magnetic properties of the thin-film [50] and can cause a frequency dependency
of the delta-E effect [51]. For the soft-magnetic material and thin-film geometry used
here, it is in the GHz regime [51,52]. Because the operation frequencies are of the order of
several kHz, magnetodynamic effects and the frequency dependency of the delta-E effect
are neglected [51]. Due to the low frequencies, we assume that also electrodynamic effects
can be omitted in the electromechanical model. In the following, both parts of the model
are discussed in detail.

4.1. Electromechanical Model

In the electromechanical part of the model, we consider a simplified cantilever geome-
try, reduced to the poly-Si substrate, the piezoelectric AlN layer, and the magnetic FeCoSiB
layer. Details on the geometry used are given in Appendix C. We assume all materials to be
mechanically linear, which is a good approximation at sufficiently small excitation voltages.
The material parameters used are given in the appendix. The cantilever is oriented in a
cartesian coordinate system as illustrated in Figure 2, used throughout this paper. The
mechanical equation of motion is given by (e.g., [53])

ρ
∂2u
∂t2 = ∇·σ , (4)

if no external forces are present. It includes the displacement vector u, the time t, the
mass density ρ, and the divergence ∇·σ of the mechanical stress tensor σ. For sufficiently
small excitation frequencies, eddy current effects can be neglected and the electrostatic
equations [54]:

E = −∇U,
∇·D = ρc,

(5)

are valid in good approximation. They include the electrical vector field E, the gradient
∇U of the electrical potential U and the divergence ∇·D of the electric flux density D
with the free charge density ρc. The electrostatic equations are coupled to the mechanical
equation of motion via the constitutive piezoelectric equations, here in the stress-charge
form [54,55]:

σ = C∗ε− eT
c E

D = ecε− εelE ,
(6)

with the linear strain tensor ε and the complex mechanical stiffness tensor C∗ = C(1 + iη).
Its real part is the material’s stiffness tensor C and its imaginary part Cη includes the
isotropic loss factor η, which is used to consider damping in the materials [56]. The
electromechanical coupling tensor is denoted as ec and the electrical permittivity tensor
as εel. For the calculation, we set fixed boundary conditions (u = 0) at the left face of
the beam. For the piezoelectric material, we assumed at the boundaries nD = 0 (with
surface normal vector n), and an initial value for the electric potential of U = 0, except
for the area covered by the electrodes. The electrodes are modeled with a fixed potential
boundary condition, where an alternating voltage Uapp = U0· exp(i[ωt + ϕv]) is applied,
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with amplitude U0, the angular frequency ω and phase angle ϕv. To calculate the electrical
admittance Y = I/U the current I is obtained from integrating the surface charge density
over the electrode areas. For the solution, a linear response of the system is assumed, with
a displacement of the form u = û· exp(i[ωt + ϕu]) and a solution for the electrical potential
of U = Û· exp(i[ωt + ϕv]). The equations are solved within a frequency domain study in
COMSOL(r) Multiphysics v. 5.3a (COMSOL AB, Stockholm, Sweden) [56]. All material
parameters used are given in the appendix.
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4.2. Magnetoelastic Model

For the magnetic model, we consider the enthalpy density function of a macrospin
with a uniaxial anisotropy energy density, an external magnetic field, a demagnetizing
term, and magnetoelastic energy density. Using Einstein’s summation convention, the
enthalpy density term we use is:

u = K
(

1− (miEAi)
2
)
− µ0Msmi Hi −

1
2

µ0Msmi Hd,i − σjλj with i = 1, 2, 3 j = 1, . . . , 6 . (7)

In this equation, the components of the reduced magnetization vector are denoted by
mi, the magnitude of the magnetization vector by Ms and the magnetic vacuum perme-
ability by µ0. The effective easy axis of magnetization is characterized by its orientation
vector EAi and the effective first-order uniaxial anisotropy energy density constant K. The
components of the external magnetic field vector are given by Hi and the components of the
mean demagnetizing field by Hd,i = −Diimi Ms, with the main diagonal components Dii of
the demagnetizing tensor. For the magnetoelastic energy density, we use the coupling term
−σiλi with the stress tensor components σi and the components λi of the isotropic magne-
tostrictive strain tensor. Both are given in Voigt’s notation. The coupling term results from
omitting magnetostrictive self-energy and incorporating the term constant with stress into
K [57]. In the following, the polar angle θ and the azimuthal angle ϕ of m in the spherical
coordinate system (Figure 2) are used to define its components mi. The exact definition of
all vector and tensor components is given in the appendix. The linearized change of the
elastic compliance components Sij with the magnetic field and stress is derived from the
expression

Sij(H, σ) =
∂εi
∂σj

=
∂(ei + λi)

∂σj
Sm,ij + ∆Sij . (8)

where the first summand Sm,ij is the constant, fixed magnetization elastic compliance tensor
component. The magnetization dependent part ∆Sij can be obtained from the equilibrium
conditions that are given by the first-order derivatives of u:

uϕ
∂u
∂ϕ

= 0 and uθ
∂u
∂θ

= 0 . (9)
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From these equilibrium conditions a general expression for the linearized change
∆Sij of the compliance tensor can be derived (Appendix A). Denoting the second-order
derivatives as uϕϕ and uθθ it is:

∆Sij
∂λi
∂σj

= −∂λi
∂ϕ

∂uϕ

∂σj

1
uϕϕ
− ∂λi

∂θ

∂uθ

∂σj

1
uθθ

. (10)

This expression permits a quick calculation of the compliance tensor for different
magnetic systems described by an enthalpy density u. From Equation (10), the non-zero
components of ∆S for in-plane magnetization (θ = π/2) are:

∆S11 = ∆S22 = −∆S12 =
9λ2

s cos[ϕ]2 sin[ϕ]2

uϕϕ
, (11)

∆S16 = −∆S26 = −9λ2
s cos[ϕ] cos[2ϕ] sin[ϕ]

uϕϕ
, (12)

∆S44 =
9λ2

s sin[ϕ]2

uθθ
, (13)

∆S45 =
9λ2

s cos[ϕ] sin[ϕ]
uθθ

, (14)

∆S55 =
9λ2

s cos[ϕ]2

uθθ
, (15)

∆S66 =
9λ2

s cos[2 ϕ]2

uϕϕ
. (16)

The final compliance tensor for in-plane magnetization as a function of magnetic field
and stress is:

S(H, σ) =



S11 S12 Sm,13 0 0 ∆S16
S12 S22 Sm,23 0 0 ∆S26

Sm,13 Sm,23 Sm,33 0 0 0
0 0 0 S44 ∆S45 0
0 0 0 ∆S45 S55 0

∆S16 ∆S26 0 0 0 S66

 with Sij(H, σ) = Sm,ij + ∆Sij. (17)

Because in our case both, Sm and ∆S. are symmetric, and S is also symmetric. Note that
Sm,16 = Sm,26 = Sm,45 = 0 in our isotropic magnetic material and consequently S16 = ∆S16,
S26 = ∆S26 and S45 = ∆S45. Finally, the stiffness tensor C is obtained by numerically
calculating the inverse C(H, σ) = S(H, σ)−1. It has the same non-zero components and
symmetry. All equations (Equations (11)–(17) are obtained from Equation (10) assuming
in-plane magnetization (θ = π/2) and are valid for the isotropic magnetoelastic coupling
used in the enthalpy density function (Equation (7)). For all the following simulations,
we additionally assume in-plane magnetic fields (θH = π/2) and an in-plane easy axis
(θEA = π/2).

These two assumptions influence and simplify u and its derivatives, which are given
in the appendix.

5. Implications of the Magnetic Model

In the following, results for the Cij of the magnetoelastic model are discussed at the
example of a thin-film geometry. For the calculations, we assumed zero static stress (σi = 0)
and D33 = 1. The large shape anisotropy results in C44 ≈ Cm,44 and C55 ≈ Cm,55. We limit
the discussion to the C11, C12 and C66 components as they are most relevant for torsion and
bending modes.
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In Figure 3a, the normalized C11, C12 and C66 components are plotted for a macrospin
and ϕEA = 90◦. Because uϕϕ(H = HK) = 0 and so ∆S66(H → HK)→ ∞ (Equation (4)) it
is C66(H = HK) = 0. At |H| > |HK|, it is C66 < Cm,66 with C66 = Cm,66 only for H → ∞ .
Hence, for finite H even a small shear stress σ6 can always tilt the magnetization vector out
of the applied magnetic field direction. It occurs, because the magnetoelastic energy density
contribution −σ6λ6 of the shear stress σ6 is asymmetric around ϕ = 0◦. Its minimum is
shifted by 45◦ compared to the minimum of the one-component at ϕ = 0◦. Consequently,
at the two local maxima it is C66(ϕ = 45◦, 135◦) = Cm,66. The C11 component shows two
distinct minima but unlike the delta-E effect in the Young’s modulus (e.g., [6,14,49]) no
discontinuities at |H| = |HK|. Although the discontinuities are present in S11 (not shown),
they vanish during the inversion due to contributions of other Sij components to C11. In
contrast to C11, C12 stiffens with applied magnetic bias field because ∆S12 = −∆S11. The
signs are a direct consequence of the positive isotropic magnetoelastic coupling. As the
macrospin rotates towards the x axis, magnetostrictive expansion occurs along the x axis,
but contraction occurs along the y axis. Compared with C11, the maximum relative change
of C12 is larger because Sm,12 < Sm,11, which results in a different weighting in Equation
(8). In Figure 3b, C66 is shown for three different angles of the easy axis ϕEA = 90◦, 85◦, and
75◦. It is apparent that a change of ϕEA strongly influences C66. Relative to ϕEA = 90◦, the
two minima at H = ±HK shift to a larger |H| and the minimum value increases strongly
by more than 85% at ϕEA = 85◦ and about 95% at ϕEA = 75◦. The center minimum
shifts due to the single domain hysteresis and decreases slightly with decreasing ϕEA. A
singularity occurs at ϕEA = 85◦ due to the magnetic discontinuity at the switching field of
the single-spin model. Due to the strong impact of small deviations from ϕEA = 90◦ on
C66(H), the magnetic sensitivity is expected to change notably with ϕEA.
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Figure 3. (a) Magnetic field dependent components Cij of the effective stiffness tensor for an ideal hard axis magnetization
process of a macrospin. The external magnetic field with magnitude H is applied along the x axis and normalized the
anisotropy field HK; (b) component C66 for different angles ϕEA of the magnetic easy axis to the x axis; (c) maximum
value ∂HCij,max of ∂HCij(H) (Equation (3)) for the C11 and C66 components as functions of the easy axis angle ϕEA. For the
calculations in (c), a distribution of effective anisotropy energy density is used as in Ref. [49] with a standard deviation of
δK = 15 % for a more quantitative estimation and to prevent singularities.

In the following, we quantify the influence of the Cij components on the relative
magnetic sensitivity SH,r using ∂HCij as defined in Equation (3). Calculating ∂HCij requires
forming the derivate ∂Cij/∂H, which results in singularities for the 66-component at
ϕEA = 90◦ and |H| = |HK|. A finite derivative can be estimated by including the
distribution of the effective anisotropy energy density K in a mean-field approach [15,49,58].
With such a distribution, inhomogeneities in the magnetization response are considered
that can occur, e.g., from spatially varying stress or internal stray fields. We use a normal
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distribution of K with a standard deviation δK = 15 % as a representative example value
that has been used previously for a similar device [49]. We calculate ∂HCij(H) numerically
from Cij(H) and extract the maximum ∂HCij,max(H) for H > 0, at various angles ϕEA of the
easy axis. They are plotted in Figure 3c. As a result of the distribution, both ∂HCij,max are
finite at ϕEA = 90◦ with ∂HC66,max ≈ 10× ∂HC11,max ≈ 4.5× ∂HC12,max. This is reduced
to ∂HC66,max ≈ 4 × ∂HC11,max ≈ 2 × ∂HC12,max at ϕEA = 80◦. In conclusion, the C66
component potentially offers a significantly larger magnetic sensitivity than the C11 and
C12 components.

6. Results
6.1. Magnetization Measurements

Magneto–optical Kerr effect (MOKE) microscopy [59] was used to analyze the mag-
netic multilayer. The picture in Figure 4a shows the rear side of the cantilever and is
composed of a series of images. For each image, the magnetic multilayer was demag-
netized along the x axis and the MOKE sensitivity axis was set along the y axis. The
region of the magnetic multilayer is marked with a white frame and the estimated easy
axis orientation is indicated with white arrows. In a large region around the left, top, and
bottom edge, no magnetic response is visible. A comparison with light microscopy images
reveals possibly corroded regions. They might have formed due to incomplete Cr-coverage
at the edges. At the time, a particularly thin Cr-layer was deposited to ensure good magne-
tooptical contrast. Close to the clamping region (blue rectangle in Figure 4a), the layer is
partially delaminated. Despite these nonidealities, the overall magnetic response in the
magnetically active region is quite homogeneous. The average easy axis orientation is
approximately ϕEA = −75◦ ± 5◦ relative to the x axis. An effective uniaxial anisotropy
energy density of K = (1.2 ± 0.1) kJ/m3 is estimated with the magnetoelastic model. We
used the ballistic demagnetizing tensor [60] in the center of the film and assumed σj = 0. A
representative magnetization curve of the center region, recorded along the x axis, is shown
in Figure 4b, and compared with one recorded at the clamping region. The difference
between these curves indicates a different alignment of the effective anisotropy. However,
due to the magnetic multilayer structure and the partial delamination additional effects
cannot be excluded. From previous investigations [49], we expect that the deteriorated
magnetic properties at the clamping especially reduce the resonance frequency detuning
and the magnetic sensitivity of the first bending mode.
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Figure 4. (a) Magneto-optical Kerr effect microscopy image of the analyzed structure, demagnetized along the x axis
and composed of a series of different images. The region of the magnetic layer is marked by a white square and the
approximated orientation of the magnetic easy axis is indicated with arrows at approximately −75◦ ± 5◦ relative to the x
axis; (b) magnetization curve close to the clamping and in the center of the magnetic film. The two evaluated regions are
indicated with squares in (a).
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6.2. Electromechanical Properties

To analyze the electromechanical properties of the sensor, the sensor admittance
Y( fex) is measured over a large range of excitation frequencies fex. Six resonance modes
are characterized in detail by fitting a modified Butterworth van Dyke (mBvD) model
(e.g., [61]) with the equivalent circuit configuration from [47] to the measurements. The
resonance frequencies fr and quality factors are calculated from the mBvD parameters of
each admittance curve and compared with the eigenfrequencies obtained from the finite
element method (FEM) model. With this comparison, the eigenmodes are identified to
be the first three bending modes (BM1–3) and the first three torsion modes (TM1–3). The
FEM model was fitted to admittance measurements of the first torsion mode (TM1) close to
magnetic saturation at µ0H =− 10 mT. It matches the measurements very well as shown
in Figure 5a. The material parameters match excellently with literature values. Details
on the material parameters and on the geometry are given in Appendix C. A comparison
of the measured resonance frequencies in magnetic saturation with the FEM simulations
results in extremely small deviations <2% for all six modes (Appendix B).
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Figure 5. (a) Example comparison of measurement and FEM simulation of the sensor admittance around the first torsion
mode (TM1), close to magnetic saturation at −10 mT; (b) comparison of measured and modeled maximum phase shift of
the first three torsion modes (TM, samples 1–3) and the first and second bending modes (BMs, samples 4–9) with various
electrode configurations. The BM measurements are published in Ref. [28].

The set of material parameters found is used to predict, and compare the impedance
characteristic of other cantilever delta-E effect sensors published previously [28]. The
sensors differ in their geometry from our torsion mode sensor. They were designed to
excite the first and second bending mode with various electrode geometries. For the
simulations, we used the same material parameters found for the torsion mode sensors but
adjusted the geometry.

As a figure of merit for the electromechanical model, we compared the absolute
difference ∆φ = φmax − φmin of the phase angle φ of the electrical admittance Y. The
simulation results are plotted in Figure 5b and compared with values of the torsion modes
(Appendix B) measured here, and the bending mode from Ref. [28]. The TMs were mea-
sured close to magnetic saturation at µ0H = −10 mT to reduce the influence of the delta-E
effect. Slight deviations between the measurement and simulation might result from effec-
tively different magnetoelectric coupling factors, e.g., due to the slightly different material
parameters, geometric inaccuracies, or stress [62]. In conclusion, the model can estimate
the electromechanical properties of the device and the effect of different electrode configu-
rations well. For the application of magnetoelastic resonators as delta-E effect sensors, a
high ∆φ and hence a high electrical sensitivity is desirable. In comparison to the bending
modes, the ∆φ of the torsion modes is systematically smaller, which is also reflected in
the electrical sensitivities. With SY,r ≈ 0.85 mS of TM1, the maximum relative electrical
amplitude sensitivity SY,r ≈ 5.8 mS of sample No. 7 (BM2) [28] is almost a factor of seven
larger, despite a similar quality factor. Hence, the large factor potentially gained in the
magnetic sensitivity from utilizing the C66 component can be diminished by a reduced
electrical sensitivity.
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Additional simulations show that further optimization of the electrode design and
reduction in the parasitic capacity from bond pads and wires could improve ∆φ of TM1
to ∆φ = 10◦. Alternatively, the parasitic effect of the sensor capacitance could be neutral-
ized with additional electronics to utilize the phase-modulated signal for magnetic field
detection [48]. A further improvement by a factor of two could be obtained by exciting
both electrodes E1 and E2, phase shifted by 180◦. Additionally, alternative piezoelectric
materials with larger piezoelectric coefficients, such as AlScN [63–65] could increase the
electrical sensitivity significantly and result in ∆φ comparable with bending modes.

6.3. Delta-E Effect and Sensitivities

The fr(H) plots extracted from the modified Butterworth van Dyke (mBvD) fits of the
first three bending modes (BM1–3) are shown in Figure 6a (right). They are normalized
to fr,max∆ fr(−10 mT) and have a respective minimum resonance frequency fr,min. As a
measure for the maximum resonance frequency detuning, we defined the normalized
resonance frequency change fr( fr,max − fr,min)/ fr,max. All three curves are w-shaped and
∆ fr increases with increasing mode number. This effect was reported previously and
explained with a strong weighting of the magnetic properties at the clamping in BM1 [49].
Here, the difference between the BM1 and BM2 is significantly larger, which is consistent
with the deteriorated material around the clamping region, visible in the magneto–optical
Kerr effect microscopy (MOKE) images (Figure 4a). Correspondingly, the relative magnetic
sensitivity SH,r ≈ 3.5 T−1 is smallest in BM1 and increases up to SH,r ≈ 9 T−1 in BM2.
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Figure 6. Measurements of the resonance frequency fr as a function of the applied magnetic flux density µ0H along the long
cantilever axis (x axis) starting at µ0H = −10 mT: (a) normalized resonance frequency fr/ fr,max of the first three torsion
modes (TMs) (left) and the first three transversal bending modes (BMs) (right). The maximum resonance frequencies fr,max

of the TMs are 26.256, 87.478, 175.150 kHz, and of the BMs: 7.649, 47.182, 121.400 kHz; (b) relative magnetic sensitivities
SH,r = SH/ fr,max calculated from the data in (a) with Equation (1).

The normalized fr(H) plots of the torsion modes (TMs) and their corresponding
SH,r are shown in Figure 6 (left). Although the sample is close to magnetic saturation at
µ0H = −10 mT, all three fr(H) curves still exhibit a non-zero slope as expected from the
presented theory. The three fr(H) curves have a global minimum around H = 0, two
local minima at around ±2 mT, and two local maxima at about ±1 mT. With an increasing
mode number, the local maxima are almost unaffected, whereas ∆ fr significantly decreases.
Consequently, the maximum SH,r also decrease with the increasing mode number, here
from SH,r = 12.6 T−1 in TM1 to SH,r = 3.0 T−1 in TM3. The trend is notably opposed to the
corresponding behavior of the bending modes and will be analyzed and explained in detail
in the next section using the magnetoelastic and electromechanical models. Overall, the
magnetic sensitivities are in the range of≈ 10 T−1 also measured with other magnetoelastic
resonators in bending and bulk resonance modes [22,49]. At first glance, the similarity of
BM and TM in SH,r ∝ ∂HCij, might contradict the magnetoelastic model results in Figure 3c.
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To resolve this and explain the dependency of the torsion modes on the mode number, the
second factor ∂C fr,ij that contributes to SH,r must be considered.

6.4. Resonance Frequency Simulations

In the following, we use the stiffness tensor components from the magnetic model
as input in the finite element method (FEM) model to describe and analyze the frequency
detuning and the magnetic sensitivity of the bending and torsion modes measured before.
The demagnetizing tensor is approximated with the ballistic demagnetizing tensor in the
center of the magnetic layer [60]. Consistently with the measurements the easy axis angle is
set to ϕEA = −75◦ and the effective anisotropy energy density constant to K = 1.2 kJ/m3,
assuming σj = 0. Results for the normalized resonance frequencies fr(H) of the torsion
modes are shown in Figure 7a and of the bending modes in Figure 7b. Despite the
simplifying assumptions, a striking similarity with the measurements is apparent. All
simulated torsion mode (TM) curves in Figure 7a exhibit two local maxima around one
global minimum. Due to the single-domain hysteresis, the local minimum is shifted slightly
leftwards away from µ0H = 0. The frequency difference between the local maxima and the
global minimum decreases significantly with increasing mode number, as also observed in
the measurements.

Within the model, this phenomenon can be explained with the mode shapes of the
higher torsion modes (Figure 7c). Due to the multiple twisting of the cantilever in higher
modes, the resonance nodes are closer together. This results in an increasing contribution
of the stiffness tensor components C11 and C22 to fr relative to the C66 component. Quanti-
tatively, we can explain the contribution of Cij to fr with the 11- and the 66-components of
the normalized frequency factors ∂C fr,ij (Equation (3)). They are estimated with the FEM
model and summarized in Table 1. Whereas ∂C fr,11 increases by almost a factor of three,
∂C fr,66 shows the opposite trend and decreases by a factor of approximately two, from TM1
to TM3. Because the minima and maxima of C11 and C66 occur at similar magnetic bias
fields they increasingly compensate each other in higher torsion modes. This causes similar
magnetic sensitivities of TMs and BMs in our sensor, although ∂HC66,max > ∂HC11,max in
Figure 3c. If the delta-E effect of C66 is to be utilized, consequently, the first torsion mode is
preferable to higher modes.

Table 1. Normalized frequency factors ∂C fr,11 and ∂C fr,66 (Equation (3)) of the first three torsion
modes (TMs) and bending modes (BMs), calculated with the electromechanical finite element model.

Resonance Mode TM1 TM2 TM3 BM1 BM2 BM3

∂C fr,11 0.010 0.017 0.029 0.060 0.056 0.052
∂C fr,66 0.034 0.026 0.016 0 0 0
∂C fr,12 0 0 0 −0.003 −0.006 −0.001

In contrast to the measured bending mode curves (Figure 6), the corresponding
modeled curves (Figure 7b) are almost independent of the mode number. Consistently,
the ∂C fr,11 of the BMs are approximately constant with the mode number. The other
frequency factor ∂C fr,12 is very small and ∂C fr,66 ≈ 0. A different effect dominates the mode
dependency observed in the measured bending modes. This corroborates the hypothesis
stated earlier in Section 6.3 that the reduced maximum normalized resonance frequency
change ∆ fr (as defined in Section 6.3) of BM1 is likely caused by the deteriorated magnetic
layer present around the clamping (Figure 4a).
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As shown earlier in Figure 3a, the minima of C11(H) occur at the same magnetic bias
fields as the maxima of C12(H). Whereas C11(H) softens upon the application of a magnetic
bias field, C12(H) increases. However, upon application of a magnetic field, they both
reduce the resonance frequency of bending modes. Consequently, their corresponding
frequency factors have opposite signs and ∂C fr,12 < 0.

7. Summary and Conclusions

In summary, we provide an experimental and theoretical study on the delta-E effect,
the normalized resonance frequency change ∆ fr (defined in Section 6.3) and the sensitivity
of first and higher-order bending modes (BMs) and torsion modes (TMs). The study was
conducted on a magnetoelectric thin-film cantilever with a soft magnetic FeCoSiB–Cr
multilayer and an electrode design that enables the excitation of various resonance modes.
A general expression was developed that permits the detailed analysis of the magnetic sen-
sitivity of arbitrary resonance modes. An electromechanical finite element method model
was set up to describe the resonator and the electrical sensitivity. It was combined with a
magnetoelastic macrospin model to include the tensor of the linearized delta-E effect for
isotropic magnetostriction in the approximation of negligible magnetostrictive self-energy.
The models are valid for moderately high-operation frequencies, where electrodynamic
and magnetodynamic effects can be omitted.

The delta-E effect model is discussed in detail for here the most relevant components
C66, C11, and C12 of the magnetic field-dependent stiffness tensor. Simulation results imply
that the C66 component potentially offers a ten-fold higher contribution to the magnetic
sensitivity than the C11 component. With an increasing tilt of the magnetic easy axis, this
factor reduces to approximately four at an easy axis angle aligned at 80◦ relative to the long
axis of the cantilever. However, the measurements and simulations of the current design
confirm that the TMs exhibit a systematically smaller electromechanical response compared
to BMs, which can significantly diminish the potential gain in sensitivity. Possible ways of
improvement are sketched out. From simulated and measured resonance frequency curves
fr(H) we found that the maximum normalized resonance frequency change ∆ fr and the
magnetic sensitivity of TMs reduce with the increasing mode number due to the increasing
contribution of C11 to the resonance frequency. Hence, the dependency of TMs on the mode
number is opposite to the one observed for BMs and caused by a different mechanism.

In conclusion, the delta-E effect of the C66 component shows the promising potential
of significantly increasing the magnetic sensitivity and the maximum normalized reso-
nance frequency change ∆ fr. However, the efficient electrical excitation of TMs remains
challenging for achieving high electrical sensitivity. Generally, the results imply that the
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delta-E effect of different Cij can have opposite effects on ∆ fr, depending on the resonance
mode. This was demonstrated in the example of torsion modes. Because the contribution of
C11 increases with the torsion mode number, the first-order torsion mode shows the highest
magnetic sensitivity. In addition to fundamental insights on the delta-E effect in higher
resonance modes, a model for the electrical and the magnetic sensitivity was presented.
The results are not only relevant for the development of magnetoelastic magnetic field
sensors, but also for frequency tunable devices based on the delta-E effect.
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Appendix A. Magnetoelastic Model

Appendix A.1. Definition of Vectors

In the following, a detailed definition of all vectors is given in the spherical coordinate
system. All polar angles are denoted by θ and all azimuthal angles by ϕ, with an index
if it is not the angles of the reduced magnetization. The reduced magnetization vector is
denoted as

m =
[

cos ϕ sin θ sin ϕ sin θ cos θ
]T , (A1)

The easy axis unit vector EA is given by

EA =
[

cos ϕEA sin θEA sin ϕEA sin θEA cos θEA
]T . (A2)

The vector H of the external applied field and Hd of the demagnetizing field are given by

H = H
[

cos ϕH sin θH sin ϕH sin θH cos θH
]T , (A3)

Hd = −MS
[

D11m1 D22m2 D33m3
]T . (A4)

For all higher-order tensors, we use the Voigt notation. The magnetostriction tensor is
then given by

λ =
3
2

λs
[

m2
1 −

1
3 m2

2 −
1
3 m2

3 −
1
3 2m2m3 2m1m3 2m1m2

]T . (A5)

Appendix A.2. General Expression for ∆Sij

From the equilibrium conditions, one can write

∆Sij =
∂λi
∂σj

= ∂λi
∂ϕ

∂ϕ
∂σj

+ ∂λi
∂θ

∂θ
∂σj

= ∂λi
∂ϕ

(
− ∂uϕ

∂σj
/ ∂uϕ

∂ϕ

)
+ ∂λi

∂θ

(
− ∂uθ

∂σj
/ ∂uθ

∂θ

)
− ∂λi

∂ϕ
∂uϕ

∂σj
1

uϕϕ
− ∂λi

∂θ
∂uθ
∂σj

1
uθθ

.
(A6)
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Appendix A.3. Derivatives of the Energy Density Functional

For in-plane magnetization (θ = π/2), easy axis (θEA = π/2), and magnetic field
(θH = π/2), the second-order derivatives of u (Equation (7)) are given by

uθθ
∂2u
∂ϕ2 = 3λs[σ11 cos(2ϕ)− σ22 cos(2ϕ) + 2σ12 sin(2ϕ)] + µ0MsH cos(ϕ− ϕH) + 2K cos(2[ϕ− ϕEA])

+µ0M2
s (D22 − D11) cos(2ϕ)

(A7)

uθθ
∂2u
∂θ2 = 3λs

[
σ11 cos2 ϕ + σ22 sin2 ϕ− σ33 + σ12 sin(2ϕ)

]
+ µ0MsH cos(ϕ− ϕH) + 2K cos2(ϕ− ϕEA)

−µ0M2
s
(

D11 cos2 ϕ + D22 sin2 ϕ− D33
) (A8)

Appendix B. Resonance Frequencies and Sensitivities

A summary of the maximum measured resonance frequencies fr,max at µ0H = −10
mT is given in Table A1, together with the corresponding quality factor Qmax and the
maximum magnetic sensitivities from Figure 6. The bending modes (BMs) and the torsion
modes (TMs) were all measured using only electrode E1. Hence, the electrodes are not
optimized for the bending modes. Additionally, the maximum quality factor of the BMs is
a factor of three smaller than in TM1. Due to both factors, the electrical sensitivity of BMs
is significantly smaller than that of TMs for our cantilever.

Table A1. Measured resonance frequencies fr,max of the six modes analyzed and the quality factor
Qmax, both measured in magnetic saturation at µ0H = −10 mT. The maximum magnetic sensitivity
SH and the maximum relative magnetic sensitivity SH,r are obtained from Figure 6b. The maximum
relative electrical sensitivities found are given by Sφ,r and SY,r.

Mode fr,max (kHz) fr,model (kHz) Qmax SH (Hz/mT) SH,r (1/T) Sφ,r (◦) SY,r (µS)

TM1 26.26 26.26 900 330 12.6 4780 850
TM2 87.48 88.20 700 837 9.5 59 27.5
TM3 175.15 179.20 280 542 3.0 115 95
BM1 7.65 7.80 300 26.7 3.5 2550 150
BM2 47.18 48.55 300 432 9.2 220 70
BM3 121.40 116.20 300 811 6.7 18 42

Appendix C. Geometry and Material Parameters

Appendix C.1. Geometry

The poly-Si cantilever was measured with an optical microscope to be L = 3.12 mm
long and W = 2.15 mm wide. For the simulations, the length in the model was slightly
adjusted within the measurement accuracy to 3.116 mm. The magnetostrictive layer was
deposited directly at the clamping on the bottom side of the poly-Si cantilever and has a
width of Wmag = 2 mm and a length of Lmag = 3.05 mm. The AlN layer is of the same
geometry but deposited on top of the poly-Si. The electrodes E1 and E2 are positioned at the
clamping on top of the AlN layer and the left and right edge, respectively. An additional
parallel capacitance of C0 = 17.7 pF is used. It is consistent with the area of the bond pads,
the conduction lines, and the relative electrical permittivity used for the AlN.

Appendix C.2. Substrate (Poly-Si)

For the poly-silicon substrate, we use isotropic material parameters, with Young’s
modulus ESi = 160 GPa [66,67] a Poisson’s ratio of vSi = 0.22 [67] and a mass density of
ρSi = 2300 kg/m3 [68].

Appendix C.3. Magnetic Material (FeCoSiB)

The mass density of FeCoSiB was experimentally determined by estimating the vol-
ume with profilometer measurements and the mass with a microbalance. The measure-
ments were performed on a 6-inch wafer with a mean FeCoSiB layer thickness of ap-
proximately 1.5 µm. A density of ρFeCoSiB = (7870± 1350) kg/m3 was obtained. For the
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simulation, a corresponding mass density of ρFeCoSiB = 7700 kg/m3 was used. For the
stiffness tensor of the mechanically isotropic magnetic film, we use:

Cm,ij =



Cm,11 Cm,12 Cm,12 0 0 0
Cm,12 Cm,11 Cm,12 0 0 0
Cm,12 Cm,12 Cm,11 0 0 0

0 0 0 Cm,44 0 0
0 0 0 0 Cm,55 0
0 0 0 0 0 Cm,66

 (A9)

Using a Young’s modulus of E = 150 GPa and a Poisson’s ratio of v = 0.3, both
at fixed magnetization, the non-zero components of the fixed magnetization stiffness
tensor are:

Cm,11 = Cm,22 = Cm,33 =
E(1− v)

(1 + v)(1− 2v)
= 201.92 GPa (A10)

Cm,12 = Cm,13 = Cm,23 =
E(v)

(1 + v)(1− 2v)
= 86.54 GPa (A11)

Cm,66 = Cm,55 = Cm,44 =
E

2(1 + v)
= 57.69 GPa (A12)

For the magnetoelastic simulations, we use a saturation magnetic flux density of
µ0Ms = 1.5 T [17] and saturation magnetostriction of λs = 35 ppm [17].

Appendix C.4. Piezoelectric Material (AlN)

For the stiffness matrix CAlN and the piezoelectric stress-charge coefficient tensor d
we use values based on ab initio calculations [69]. Those tend to overestimate d and are
here slightly adjusted. The stiffness tensor is:

CAlN =



410.2 142.2 110.1 0 0 0
142.2 410.2 110.1 0 0 0
110.1 110.1 385.0 0 0 0

0 0 0 122.9 0 0
0 0 0 0 122.9 0
0 0 0 0 0 134.0

 GPa (A13)

The piezoelectric coupling tensor ce = dCAlN results as

ce =

 0 0 0 0 −0.27828 0
0 0 0 −0.27828 0 0

−0.4496 −0.4496 1.41 0 0 0

pC
m2 . (A14)

For the density, we use ρAlN = 3300kg/m3 and for the electrical permittivity εel = εrε0
with the electrical vacuum permittivity ε0 and the relative electrical permittivity εr, given by

εr =

 9.2081 0 0
0 9.2081 0
0 0 10.1192

 (A15)
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