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Abstract
The emergence of SARS-CoV-2 variants stressed the demand for tools allowing to interpret the effect of single amino acid 
variants (SAVs) on protein function. While Deep Mutational Scanning (DMS) sets continue to expand our understanding 
of the mutational landscape of single proteins, the results continue to challenge analyses. Protein Language Models (pLMs) 
use the latest deep learning (DL) algorithms to leverage growing databases of protein sequences. These methods learn to 
predict missing or masked amino acids from the context of entire sequence regions. Here, we used pLM representations 
(embeddings) to predict sequence conservation and SAV effects without multiple sequence alignments (MSAs). Embeddings 
alone predicted residue conservation almost as accurately from single sequences as ConSeq using MSAs (two-state Mat-
thews Correlation Coefficient—MCC—for ProtT5 embeddings of 0.596 ± 0.006 vs. 0.608 ± 0.006 for ConSeq). Inputting 
the conservation prediction along with BLOSUM62 substitution scores and pLM mask reconstruction probabilities into a 
simplistic logistic regression (LR) ensemble for Variant Effect Score Prediction without Alignments (VESPA) predicted SAV 
effect magnitude without any optimization on DMS data. Comparing predictions for a standard set of 39 DMS experiments 
to other methods (incl. ESM-1v, DeepSequence, and GEMME) revealed our approach as competitive with the state-of-the-art 
(SOTA) methods using MSA input. No method outperformed all others, neither consistently nor statistically significantly, 
independently of the performance measure applied (Spearman and Pearson correlation). Finally, we investigated binary 
effect predictions on DMS experiments for four human proteins. Overall, embedding-based methods have become competi-
tive with methods relying on MSAs for SAV effect prediction at a fraction of the costs in computing/energy. Our method 
predicted SAV effects for the entire human proteome (~ 20 k proteins) within 40 min on one Nvidia Quadro RTX 8000. All 
methods and data sets are freely available for local and online execution through bioembeddings.com, https:// github. com/ 
Rostl ab/ VESPA, and PredictProtein.
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BFD  Big Fantastic Database
CNN  Convolutional neural network
DL  Deep learning
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DMS  Deep mutational scanning
FNN  Feed forward neural network
GoF  Gain-of-function SAV
LoF  Loss-of-function SAV
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NLP  Natural language processing
OMIM  Online Mendelian Inheritance in Man
PDB  Protein Data Bank
pLM  Protein Language Model (used here: ESM-

1b/1v: ProtBERT: ProtT5)
PMD  Protein mutant database
ProtT5beff  Rule-based method developed here using 

ProtT5 embeddings to predict binary SAV 
effects from single sequences

ProtT5cons  Method developed here using ProtT5 
embeddings to predict residue conservation 
from single sequences optimizing a CNN on 
the unchanged pre-trained ProtT5

ReLU  Rectified linear unit
ROC  Receiver-operating characteristic
SAV  Single amino acid variant (also known as 

SAAV or nsSNP: or missense mutation/
variant)

SOTA  State-of-the-art
SSD  Solid State Drive
SVM  Support Vector Machine
VESPA  Method developed here for Variant Effect 

Score Prediction without Alignments
VESPAl  Light VESPA: less accurate but faster

Introduction

Many different resources capture SAV effects. Mutations 
in the Spike (S) surface protein of SARS-CoV-2 have wid-
ened the attention to the complex issue of protein variant 
effects (Korber et al. 2020; Laha et al. 2020; Mercatelli and 
Giorgi 2020; O’Donoghue et al. 2020). The ability to distin-
guish between beneficial (= gain of function, GoF), deleteri-
ous (= loss of function, LoF) and neutral single amino acid 
variants (SAVs; also referred to as SAAV, missense muta-
tions, or non-synonymous Single Nucleotide Variants: nsS-
NVs) continues to be a key challenge toward understanding 
how SAVs affect proteins (Adzhubei et al. 2010; Bromberg 
and Rost 2007, 2009; Ng and Henikoff 2003; Studer et al. 
2013; Wang and Moult 2001). Recently, an unprecedented 
amount of in vitro data describing the quantitative effects of 
SAVs on protein function has been produced through Mul-
tiplexed Assays of Variant Effect (MAVEs), such as deep 
mutational scans (DMS) (Fowler and Fields 2014; Weile and 
Roth 2018). However, a comprehensive atlas of in vitro vari-
ant effects for the entire human proteome still remains out of 
reach (AVE Alliance Founding Members 2020). Yet, even 
for the existing experiments, intrinsic problems remain: (1) 
In vitro DMS data capture SAV effects upon molecular func-
tion much better than those upon biological processes, e.g., 
disease implications may be covered in databases such as the 
Online Mendelian Inheritance in Man (OMIM) (Amberger 

et al. 2019), but not in MaveDB (Esposito et al. 2019). (2) 
The vast majority of proteins have several structural domains 
(Liu and Rost 2003, 2004a, b); hence, most are likely to 
have several different molecular functions. However, each 
experimental assay tends to measure the impact upon only 
one of those functions. (3) In vivo protein function might be 
impacted in several ways not reproducible by in vitro assays.

Evolutionary information from MSAs is most impor-
tant to predict SAV effects. Many in silico methods try 
to narrow the gap between known sequences and unknown 
SAV effects; these include (by earliest publication date): 
PolyPhen/PolyPhen2 (Adzhubei et  al. 2010; Ramensky 
et al. 2002), SIFT (Ng and Henikoff 2003; Sim et al. 2012), 
I-Mutant (Capriotti et al. 2005), SNAP/SNAP2 (Bromberg 
and Rost 2007; Hecht et al. 2015), MutationTaster (Schwarz 
et al. 2010), Evolutionary Action (Katsonis and Lichtarge 
2014), CADD (Kircher et al. 2014), PON-P2 (Niroula et al. 
2015), INPS (Fariselli et al. 2015), Envision (Gray et al. 
2018), DeepSequence (Riesselman et al. 2018), GEMME 
(Laine et al. 2019), ESM-1v (Meier et al. 2021), and methods 
predicting rheostat positions susceptible to gradual effects 
(Miller et al. 2017). Of these, only Envision and DeepSe-
quence trained on DMS experiments. Most others trained on 
sparsely annotated data sets such as disease-causing SAVs 
from OMIM (Amberger et al. 2019), or from databases 
such as the protein mutant database (PMD) (Kawabata et al. 
1999; Nishikawa et al. 1994). While only some methods 
use sophisticated algorithms from machine learning (ML; 
SVM, FNN) or even artificial intelligence (AI; CNN), almost 
all rely on evolutionary information derived from multiple 
sequence alignments (MSAs) to predict variant effects. The 
combination of evolutionary information (EI) and ML/AI 
has long been established as a backbone of computational 
biology (Rost 1996; Rost and Sander 1992, 1993), now even 
allowing AlphaFold2 to predict protein structure at unprece-
dented levels of accuracy (Jumper et al. 2021). Nevertheless, 
for almost no other task is EI as crucial as for SAV effect 
prediction (Bromberg and Rost 2007). Although different 
sources of input information matter, when MSAs are avail-
able, they trump all other features (Hecht et al. 2015). Even 
models building on the simplest EI, e.g., the BLOSUM62 
matrix condensing bio-physical constraints into a 20 × 20 
substitution matrix (Ng and Henikoff 2003) with no distinc-
tion between E481K (amino acid E at residue position 481 
mutated to amino acid K) and E484K (part of SARS-CoV-2 
Delta variant), or a simple conservation weight (Reeb et al. 
2020) with no distinction of D484Q and D484K, almost 
reach the performance of much more complex and seem-
ingly advanced methods.

Embeddings capture language of life written in pro-
teins. Every year, algorithms improve natural language 
processing (NLP), in particular by feeding large text cor-
pora into Deep Learning (DL)-based Language Models 
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(LMs). These advances have been transferred to protein 
sequences by learning to predict masked or missing amino 
acids using large databases of raw protein sequences as 
input (Alley et al. 2019; Bepler and Berger 2019a, 2021; 
Elnaggar et al. 2021; Heinzinger et al. 2019; Madani et al. 
2020; Ofer et al. 2021; Rao et al. 2020; Rives et al. 2021). 
Processing the information learned by such protein LMs 
(pLMs), e.g., by constructing 1024-dimensional vectors 
of the last hidden layers, yields a representation of protein 
sequences referred to as embeddings [Fig. 1 in (Elnaggar 
et al. 2021)]. Embeddings have succeeded as exclusive 
input to predicting secondary structure and subcellular 
location at performance levels almost reaching (Alley et al. 
2019; Heinzinger et al. 2019; Rives et al. 2021) or even 
exceeding (Elnaggar et al. 2021; Littmann et al. 2021c; 
Stärk et al. 2021) state-of-the-art (SOTA) methods using 
EI from MSAs as input. Embeddings even succeed in sub-
stituting sequence similarity for homology-based annota-
tion transfer (Littmann et al. 2021a, b) and in predicting 
the effect of mutations on protein–protein interactions 
(Zhou et al. 2020). The power of such embeddings has 
been increasing with the advance of algorithms (Bepler 
and Berger 2021; Elnaggar et al. 2021; Rives et al. 2021). 
ESM-1v demonstrated pre-trained pLMs predicting SAV 
effect without any supervision at state-of-the-art level on 
DMS data using solely mask reconstruction probabilities 
(Meier et al. 2021). Naturally, there will be some limit to 
such improvements. However, the advances over the last 
months prove that this limit had not been reached by the 
end of 2020.

Here, we analyzed ways of using embeddings from pre-
trained pLMs to predict the effect of SAVs upon protein 
function with a focus on molecular function, using exper-
imental data from DMS (Esposito et al. 2019) and PMD 
(Kawabata et al. 1999). The embeddings from the pre-trained 
pLMs were not altered or optimized to suit the subsequent 
 2nd step of supervised training on data sets with more limited 
annotations. In particular, we assessed two separate super-
vised prediction tasks: conservation and SAV effects. First, 
we utilized pre-trained pLMs (ProtBert, ProtT5, ESM-1b) 
as static feature encoders (without fine-tuning the pLMs) to 
derive input embeddings for developing a method predicting 
the conservation that we could read off a family of aligned 
sequences (MSA) for each residue without actually generat-
ing the MSA. Second, we trained a Logistic Regression (LR) 
ensemble to predict SAV effect using (2a) the predictions of 
the best conservation predictor (ProtT5cons) together with 
(2b) substitution scores of BLOSUM62 and (2c) substitu-
tion probabilities of the pLM ProtT5. While substitution 
probabilities alone already correlated with DMS scores, we 
observed that adding conservation predictions together with 
BLOSUM62 increased performance. The resulting model 
for Variant Effect Score Prediction without Alignments 

(VESPA) was competitive with more complex solutions 
in terms of correlation with experimental DMS scores and 
computational and environmental costs. Additionally, for a 
small drop in prediction performance, we created a compu-
tationally more efficient method, dubbed VESPA-light (or 
short: VESPAl), by excluding substitution probabilities to 
allow proteome-wide analysis to complete after the coffee 
break on a single machine (40 min for human proteome on 
one Nvidia Quadro RTX 8000).

Methods

Data sets

In total, we used five different datasets. ConSurf10k was 
used to train and evaluate a model on residue conservation 
prediction. Eff10k was used to train SAV effect prediction. 
PMD4k and DMS4 were used as test sets to assess the pre-
diction of binary SAV effects. The prediction of continuous 
effect scores was evaluated on DMS39.

ConSurf10k assessed conservation. The method pre-
dicting residue conservation used ConSurf-DB (Ben Chorin 
et al. 2020). This resource provided sequences and conserva-
tion for 89,673 proteins. For all, experimental high-resolu-
tion three-dimensional (3D) structures were available in the 
Protein Data Bank (PDB) (Berman et al. 2000). As standard-
of-truth for the conservation prediction, we used the values 
from ConSurf-DB generated using HMMER (Mistry et al. 
2013), CD-HIT (Fu et al. 2012), and MAFFT-LINSi (Katoh 
and Standley 2013) to align proteins in the PDB (Burley 
et al. 2019). For proteins from families with over 50 proteins 
in the resulting MSA, an evolutionary rate at each residue 
position is computed and used along with the MSA to recon-
struct a phylogenetic tree. The ConSurf-DB conservation 
scores ranged from 1 (most variable) to 9 (most conserved). 
The PISCES server (Wang and Dunbrack 2003) was used to 
redundancy reduce the data set, such that no pair of proteins 
had more than 25% pairwise sequence identity. We removed 
proteins with resolutions > 2.5 Å, those shorter than 40 resi-
dues, and those longer than 10,000 residues. The resulting 
data set (ConSurf10k) with 10,507 proteins (or domains) 
was randomly partitioned into training (9392 sequences), 
cross-training/validation (555), and test (519) sets.

Eff10k assessed SAV effects. This dataset was taken from 
the SNAP2 development set (Hecht et al. 2015). It contained 
100,737 binary SAV-effect annotations (neutral: 39,700, 
effect: 61,037) from 9594 proteins. The set was used to train 
an ensemble method for SAV effect prediction. For this, we 
replicated the cross-validation (CV) splits used to develop 
SNAP2 by enforcing that clusters of sequence-similar pro-
teins were put into the same CV split. More specifically, 
we clustered all sequence-similar proteins (PSI-BLAST E 
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value < 1e-3) using single-linkage clustering, i.e., all con-
nected nodes (proteins) were put into the same cluster. By 
placing all proteins within one cluster into the same CV split 
and rotating the splits, such that every split was used exactly 
once for testing, we ascertained that no pair of proteins 
between train and test shared significant sequence similar-
ity (PIDE). More details on the dataset are given in SNAP2 
(Hecht et al. 2015).

PMD4k assessed binary SAV effects. From Eff10k, we 
extracted annotations that were originally adopted from 
PMD (“no change” as “neutral”; annotations with any level 
of increase or decrease in function as “effect”). This yielded 
51,817 binary annotated SAVs (neutral: 13,638, effect: 
38,179) in 4061 proteins. PMD4k was exclusively used for 
testing. While these annotations were part of Eff10k, all 
performance estimates for PMD4k were reported only for 
the PMD annotations in the testing subsets of the cross-val-
idation splits. As every protein in Eff10k (and PMD4k) was 
used exactly once for testing, we could ascertain that there 
was no significant (prediction by homology-based inference 
possible) sequence-similarity between PMD4k and our train-
ing splits.

DMS4 sampled large-scale DMS in vitro experiments 
annotating binary SAV effects. This set contained binary 
classifications (effect/non-effect) for four human proteins 
(corresponding genes: BRAC1, PTEN, TPMT, PPARG) 
generated previously (Reeb 2020). These were selected 
as they were the first proteins with comprehensive DMS 
experiments including synonymous variants (needed to map 
from continuous effect scores to binary effect vs. neutral) 
resulting in 15,621 SAV annotations (Findlay et al. 2018; 
Majithia et al. 2016; Matreyek et al. 2018). SAVs with ben-
eficial effect (= gain of function) were excluded, because 
they disagree between experiments (Reeb et al. 2020). The 
continuous effect scores of the four DMS experiments were 
mapped to binary values (effect/neutral) by considering the 
95% interval around the mean of all experimental meas-
urements as neutral, and the 5% tails of the distribution as 
“effect”, as described in more detail elsewhere (Reeb et al. 
2020). In total, the set had 11,788 neutral SAVs and 3516 
deleterious effect SAVs. Additionally, we used two other 
thresholds: the 90% interval from mean (8926 neutral vs. 
4545 effect) and the 99% interval from mean (13,506 neutral 
vs. 1,548 SAVs effect).

DMS39 collected DMS experiments annotating con-
tinuous SAV effects. This set was used to assess whether 
the methods introduced here, although trained only on 
binary effect data from Eff10k, had captured continuous 
effect scales as measured by DMS. The set was a subset 
of 43 DMS experiments assembled for the development of 
DeepSequence (Riesselman et al. 2018). From the original 
compilation, we excluded an experiment on tRNA as it is 
not a protein, on the toxin–antitoxin complex as it comprises 

multiple proteins and removed experiments for which only 
double variants existed. DMS39 contained 135,665 SAV 
scores, in total. The number of SAVs per experiment var-
ied substantially between the 39 with an average of 3625 
SAVs/experiment, a median of 1962, a minimum of 21, and 
a maximum of 12,729. However, to avoid any additional 
biases in the comparison to other methods, we avoided any 
further filtering step.

Input features

For the prediction of residue conservation, all newly devel-
oped methods exclusively trained on embeddings from pre-
trained pLMs without fine-tuning those (no gradient was 
backpropagated to the pLM). The predictions of the best-
performing method for conservation prediction were used in 
a second step together with substitution scores from BLO-
SUM62 and substitution probabilities from ProtT5 as input 
features to predict binary SAV effects.

Embeddings from pLMs: For conservation prediction, 
we used embeddings from the following pLMs: ProtBert 
(Elnaggar et al. 2021) based on the NLP (Natural Language 
Processing) algorithm BERT (Devlin et al. 2019) trained on 
Big Fantastic Database (BFD) with over 2.3 million protein 
sequences (Steinegger and Söding 2018), ESM-1b (Rives 
et al. 2021) that is conceptually similar to (Prot)BERT (both 
use a Transformer encoder) but trained on UniRef50 (The 
UniProt Consortium 2021) and ProtT5-XL-U50 (Elnag-
gar et al. 2021) (for simplicity referred to as ProtT5) based 
on the NLP sequence-to-sequence model T5 (transformer 
encoder–decoder architecture) (Raffel et al. 2020) trained 
on BFD and fine-tuned on Uniref50. All embeddings were 
obtained from the bio_embeddings pipeline (Dallago et al. 
2021). As described in ProtTrans, only the encoder side of 
ProtT5 was used and embeddings were extracted in half-pre-
cision (Elnaggar et al. 2021). The per-residue embeddings 
were extracted from the last hidden layer of the models with 
size 1024 × L (1280 for ESM-1b), where L is the length of 
the protein sequence and 1024 (or 1280 for ESM-1b) is the 
dimension of the hidden states/embedding space of ESM-1b, 
ProtBert, and ProtT5.

Context-dependent substitution probabilities: The 
training objective of most pLMs is to reconstruct corrupted 
amino acids from their non-corrupted protein sequence 
context. Repeating this task on billions of sequences allows 
pLMs to learn a probability of how likely it is to observe 
a token (an amino acid) at a certain position in the protein 
sequence. After pre-training, those probabilities can be 
extracted from pLMs by masking/corrupting one token/
amino acid at a time, letting the model reconstruct it based 
on non-corrupted sequence context and repeating this for 
each token/amino acid in the sequence. For each protein, this 
gives a vector of length L by 20 with L being the protein’s 
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length and 20 being the probability distribution over the 20 
standard amino acids. It was shown recently (Meier et al. 
2021) that these probabilities provide a context-aware esti-
mate for the effect of SAVs, i.e., the reconstruction prob-
abilities depend on the protein sequence, and other methods 
have made use of similar probabilities (Hopf et al. 2017; 
Riesselman et  al. 2018). To generate input features for 
our SAV effect predictor, we used, as suggested by Meier 
et al. (2021), the log-odds ratio between the probability of 
observing the wild-type amino acid at a certain position and 
the probability of observing a specific mutant at the same 
position: log

(

p
(

Xi,mutant

))

− log(p
(

Xi,wildtype

)

) . The term 
p
(

Xi,mutant

)

 described the probability of an SAV occurring 
at position i and p

(

Xi,wildtype

)

 described the corresponding 
probability of the wild-type occurrence (native amino acid). 
To extract these probabilities for SAV effect prediction, we 
only considered the pLM embeddings correlating best with 
conservation (ProtT5). Additionally, we extracted probabili-
ties for ProtBert on ConSurf10k to analyze in more detail the 
mistakes that ProtBert makes during reconstruction (SOM 
Fig. S5, S6).

Context-independent BLOSUM62 substitution scores: 
The BLOSUM substitution matrix gives a log-odds ratio 
for observing an amino acid substitution irrespective of its 
position in the protein (Henikoff and Henikoff 1992), i.e., the 
substitution score will not depend on a specific protein or 
the position of a residue within a protein but rather focuses 
on bio-chemical and bio-physical properties of amino acids. 

Substitution scores in BLOSUM were derived from compar-
ing the log-odds of amino acid substitutions among well-
conserved protein families. Typically applied to align pro-
teins, BLOSUM scores are also predictive of SAV effects 
(Ng and Henikoff 2003; Sruthi et al. 2020).

Method development

In our three-stage development, we first compared different 
combinations of network architectures and pLM embed-
dings to predict residue conservation. Next, we combined 
the best conservation prediction method with BLOSUM62 
substitution scores to develop a simple rule-based predic-
tion of binary SAV effects. In the third step, we combined 
the predicted conservation, BLOSUM62, and substitution 
probabilities to train a new method predicting SAV effects 
for binary data from Eff10k and applied this method to non-
binary DMS data.

Conservation prediction (ProtT5cons, Fig. 1A): Using 
either ESM-1b, ProtBert, or ProtT5 embeddings as input 
(Fig. 1a), we trained three supervised classifiers to distin-
guish between nine conservation classes taken from Con-
Surf-DB (early stop when optimum reached for ConSurf10k 
validation set). The objective of this task was to learn the 
prediction of family conservation from ConSurf-DB (Ben 
Chorin et al. 2020) based on the nine conservation classes 
introduced by that method that range from 1 (variable) to 
9 (conserved) for each residue in a protein, i.e., this task 

Fig. 1  Sketch of methods. Panel A sketches the conservation pre-
diction pipeline: (I) embed protein sequence (“SEQ”) using a pLM 
[here: ProtBERT, ProtT5 (Elnaggar et  al. 2021) or ESM-1b (Meier 
et  al. 2021)]. (II) Input embedding into supervised method (here: 
logistic regression, FNN or CNN) to predict conservation in 9-classes 
as defined by ConSurf-DB (Ben Chorin et al. 2020). (III) Map nine-
class predictions > 5 to conserved (C), others to non-conserved (−). 
Panel B shows the use of binary conservation predictions as input 

to SAV effect prediction by (I) considering all residue positions pre-
dicted as conserved (C) as effect (E), all others as neutral (ProtT-
5cons-19equal and ConSeq-19equal). (II) Residues predicted as con-
served are further split into specific substitutions (SAVs) predicted to 
have an effect (E) or not (−) if the corresponding BLOSUM62 score 
is < 0, all others are predicted as neutral (ProtT5-beff, ConSeq-BLO-
SUM62)
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implied a multi-class per-residue prediction. Cross-entropy 
loss together with Adam (Kingma and Ba 2014) was used 
to optimize each network toward predicting one out of nine 
conservation classes for each residue in a protein (per-token/
per-residue task).

The models were: (1) standard Logistic Regression (LR) 
with 9000 (9 k) free parameters; (2) feed-forward neural net-
work (FNN; with two FNN layers connected through the so-
called ReLU (rectified linear unit) activations (Fukushima 
1969); dropout rate 0.25; 33 k free parameters); (3) standard 
convolutional neural network (CNN; with two convolutional 
layers with a window size of 7, connected through ReLU 
activations; dropout rate of 0.25; 231 k free parameters). To 
put the number of free parameters into perspective: the Con-
Surf10k data set contained about 2.7 million samples, i.e., 
an order of magnitude more samples than free parameters 
of the largest model. On top of the 9-class prediction, we 
implemented a binary classifier (conserved/non-conserved; 
threshold for projecting nine to two classes optimized on 
validation set). The best-performing model (CNN trained 
on ProtT5) was referred to as ProtT5cons.

Rule-based binary SAV effect prediction (ProtT5beff, 
Fig. 1B): For rule-based binary SAV effect (effect/neutral) 
prediction, we considered multiple approaches. The first 
and simplest approach was to introduce a threshold to the 
output of ProtT5cons (no optimization on SAV data). Here, 
we marked all residues predicted to be conserved (conserva-
tion score > 5) as “effect”; all others as “neutral”. This first 
level treated all 19 non-native SAVs at one sequence posi-
tion equally (referred to as “19equal” in tables and figures). 
To refine, we followed the lead of SIFT (Ng and Henikoff 
2003) using the BLOSUM62 (Henikoff and Henikoff 
1992) substitution scores. This led to the second rule-based 
method dubbed BLOSUM62bin which can be considered 
a naïve baseline: SAVs less likely than expected (negative 
values in BLOSUM62) were classified as “effect”; all oth-
ers as “neutral”. Next, we combined both rule-based clas-
sifiers to the third rule-based method, dubbed ProtT5beff 
(“effect” if ProtT5cons predicts conserved, i.e., value > 5, 
and BLOSUM62 negative, otherwise “neutral”, Fig. 1b). 
This method predicted binary classifications (effect/neu-
tral) of SAVs without using any experimental data on SAV 
effects for optimization by merging position-aware informa-
tion from ProtT5cons and variant-aware information from 
BLOSUM62.

Supervised prediction of SAV effect scores (VESPA and 
VESPAl): For variant effect score prediction without align-
ments (VESPA), we trained a balanced logistic regression 
(LR) ensemble method as implemented in SciKit (Pedregosa 
et al. 2011) on the cross-validation splits of Eff10k. We 
rotated the ten splits of Eff10k, such that each data split 
was used exactly once for testing, while all remaining splits 
were used for training. This resulted in ten individual LRs 

trained on separate datasets. All of those were forced to 
share the same hyper-parameters. The hyper-parameters 
that differed from SciKit’s defaults were: (1) balanced 
weights: class weights were inversely proportional to class 
frequency in input data; (2) maximum number of itera-
tions taken for the solvers to converge was set to 600. The 
learning objective of each was to predict the probability of 
binary class membership (effect/neutral). By averaging their 
output, we combined the ten LRs to an ensemble method: 
VESPA = ensemble of LRs =

1

10

∑10

i=1
LRi . The output of 

VESPA is bound to [0,1] and by introducing a threshold 
can be readily interpreted as a probability for an SAV to be 
“neutral” (VESPA < 0.5) or to have “effect” (VESPA ≥ 0.5). 
As input for VESPA, we used 11 features to derive one score 
for each SAV; nine were the position-specific conservation 
probabilities predicted by ProtT5cons; one was the variant-
specific substitution score from BLOSUM62, the other the 
variant- and position-specific log-odds ratio of ProtT5’s sub-
stitution probabilities. To reduce the computational costs of 
VESPA, we introduced the “light” version VESPAl using 
only conservation probabilities and BLOSUM62 as input 
and thereby circumventing the computationally more costly 
extraction of the log-odds ratio. Both VESPA and VES-
PAl were only optimized on binary effect data from Eff10k 
and never encountered continuous effect scores from DMS 
experiments during any optimization.

Evaluation

Conservation prediction—ProtT5cons: To put the perfor-
mance of ProtT5cons into perspective, we generated ConSeq 
(Berezin et al. 2004) estimates for conservation through Pre-
dictProtein (Bernhofer et al. 2021) using MMseqs2 (Steineg-
ger and Söding 2018) and PSI-BLAST (Altschul et al. 1997) 
to generate MSAs. These were “estimates” as opposed to 
the standard-of-truth from ConSurf-DB, because, although 
they actually generated entire MSAs, the method for MSA 
generation was “just” MMseqs2 as opposed to HMMER 
(Mistry et al. 2013), and MAFFT-LINSi (Katoh and Stand-
ley 2013) for ConSurf-DB and the computation of weights 
from the MSA also required less computing resources. A 
random baseline resulted from randomly shuffling ConSurf-
DB values.

Binary effect prediction—ProtT5beff: To analyze the 
performance of VESPA and VESPAl, we compared results 
to SNAP2 (Hecht et al. 2015) at the default binary threshold 
(score > − 0.05, default value suggested in original publica-
tion) on PMD4k and DMS4. Furthermore, we evaluated the 
rule-based binary SAV effect prediction ProtT5beff on the 
same datasets. To assess to which extent performance of 
ProtT5beff could be attributed to mistakes in ProtT5cons, 
we replaced residue conservation from ProtT5cons with 
conservation scores from ConSeq and applied the same 
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two rule-based approaches as explained above (ConSeq 
19equal: conserved predictions at one sequence position 
were considered “effect” for all 19 non-native SAVs and 
ConSeq blosum62: only negative BLOSUM62 scores at 
residues predicted as conserved were considered “effect”; 
all others considered “neutral” with both using the same 
threshold in conservation as for our method, i.e., conser-
vation > 5 for effect) for PMD4k and DMS4. This failed 
for 122 proteins on PMD4k (3% of PMD4k), because the 
MSAs were deemed too small. We also compared ProtT-
5beff to the baseline based only on BLOSUM62 with the 
same thresholds as above (BLOSUM62bin). Furthermore, 
we compared to SNAP2 at default binary threshold of effect: 
SNAP2 score > − 0.05 (default value suggested in original 
publication). SNAP2 failed for four of the PMD4k proteins 
(0.1% of PMD4k). For the random baseline, we randomly 
shuffled ground truth values for each PMD4k and DMS4.

Continuous effect prediction—VESPA: We evalu-
ated the performance of VESPA and VESPAl on DMS39 
comparing to MSA-based DeepSequence (Riesselman et al. 
2018) and GEMME (Laine et al. 2019), and the pLM-based 
ESM-1v (Meier et al. 2021). Furthermore, we evaluated 
log-odds ratios from ProtT5’s substitution probabilities and 
BLOSUM62 substitution scores as a baseline. The Deep-
Sequence predictions were copied from the supplement to 
the original publication (Riesselman et al. 2018), GEMME 
correlation coefficients were provided by the authors, and 
ESM-1v predictions were replicated using the online reposi-
tory of ESM-1v. We used the publicly available ESM-1v 
scripts to retrieve “masked-marginals” for each of the five 
ESM-1v models and averaged over their outputs, because 
this strategy gave best performance according to the authors. 
If a protein was longer than 1022 (the maximum sequence 
length that ESM-1v can process), we split the sequence into 
non-overlapping chunks of length 1022. VESPA, VESPAl, 
and ESM-1v predictions did not use MSAs and therefore 
provided results for the entire input sequences, while Deep-
Sequence and GEMME were limited to residues to which 
enough other protein residues were aligned in the MSAs.

Performance measures: We applied the following stand-
ard performance measures:

Q2 scores (Eq. 1) described both binary predictions (con-
servation and SAV effect). The same held for F1-scores (Eq. 6, 
7) and MCC (Matthews Correlation Coefficient, Eq. 8). We 
defined conserved/effect as the positive class and non-con-
served/neutral as the negative class (indices “ + ” for positive, 
“−“ for negative) and used the standard abbreviations of TP 
(true positives: number of residues predicted and observed as 
conserved/effect), TN (true negatives: predicted and observed 

(1)

Q2 = 100 ⋅
(Number of residues predicted correctly in 2 states)

(Number of all residues)
.

as non-conserved/neutral), FP (false positives: predicted 
conserved/effect, observed non-conserved/neutral), and FN 
(false negatives: predicted non-conserved/neutral, observed 
conserved/effect)

Q9 is exclusively used to measure performance for the 
prediction of nine classes of conservation taken from Con-
Surf-DB. Furthermore, we considered the Pearson correla-
tion coefficient

and the Spearman correlation coefficient where raw 
scores (X, Y of Eq. 10) are converted to ranks

for continuous effect prediction.
Error estimates: We estimated symmetric 95% confi-

dence intervals (CI Eq. 12) for all metrics using bootstrap-
ping (Efron et al. 1996) by computing 1.96* standard devia-
tion (SD) of randomly selected variants from all test sets 
with replacement over n = 1000 bootstrap sets

(2)
Accuracy+ = Precision+ = Positive Predicted Value =

TP

TP + FP

(3)
Accuracy− = Precision− = NegativePredictedValue =

TN

TN + FN

(4)Coverage+ = Recall+ = Sensitivity =
TP

TP + FN

(5)Coverage_ = Recall− = Specificity =
TN

TN + FP

(6)F1+ = 100 ∙ 2 ∙
Precision+ ∙ Recall+

Precision+ + Recall+

(7)F1− = 100 ∙ 2 ∙
Precision− ∙ Recall−

Precision− + Recall−

(8)

MCC =
TP ∙ TN − FP ∙ FN

√

(TP + FP) ∙ (TP + FN) ∙ (TN + FP) ∙ (TN + FN)

(9)

Q9 = 100 ∙
Number of residues predicted correctly in 9 states

Number of all residues
.

(10)rP = �X,Y =
cov(X, Y)

�X�Y

,

(11)rS = �rgX ,rgY
=

cov(rgX , rgY )

�XrgX
�rgY

(12)CI = 1.96 ∙ SD = 1.96 ∙

�

∑

(yi − y)
2

n
,
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with yi being the metric for each bootstrap sample and y the 
mean over all bootstrap samples. We considered differences 
in performance significant if two CIs did not overlap.

Probability entropy: To investigate the correlation 
between embeddings and conservation classes of ConSurf-
DB, we computed the entropy of pLM substitution prob-
abilities (p) as

Results

We first showed that probabilities derived from pLMs suf-
ficed for the prediction of residue conservation from pLM 
embeddings without using MSAs (data set ConSurf10k; 
method ProtT5cons). Next, we presented a non-parametric 
rule-based SAV effect prediction based on predicted con-
servation (IF “predicted conserved” THEN “predict effect”; 
method ProtT5beff). We refined the rule-based system 
through logistic regression (LR) to predict SAV effect on 
variants labeled with “effect” or “neutral” (data set Eff10k; 
methods VESPA, VESPAl). Finally, we established that these 
new methods trained on binary data (effect/neutral) from 
Eff10k correlated with continuous DMS experiments.

Embeddings predicted conservation: First, we estab-
lished that protein Language Models (pLMs) capture infor-
mation correlated with residue conservation without ever 
seeing any such labels. As a standard-of-truth, we extracted 
the categorical conservation scores ranging from 1 to 9 
(9: highly conserved, 1: highly variable) from ConSurf-
DB (Ben Chorin et al. 2020) for a non-redundant subset 
of proteins with experimentally known structures (data set 
ConSurf10k). Those conservation scores correlated with 
the mask reconstruction probabilities output by ProtBert 
(Fig. 2). More specifically, one amino acid was corrupted 
at a time and ProtBert reconstructed it from non-corrupted 
sequence context. For instance, when corrupting and recon-
structing all residues in ConSurf10k (one residue at a time), 
ProtBert assigned a probability to the native and to each of 
the 19 non-native (SAVs) amino acids for each position in 
the protein. Using those “substitution probabilities”, Prot-
Bert correctly predicted the native amino acid in 45.3% of 
all cases compared to 9.4% for a random prediction of the 
most frequent amino acid (Fig. S4). The entropy of these 
probability distributions correlated slightly with conserva-
tion (Fig. 2, Spearman’s R = -−0.374) although never trained 
on such labels.

Next, we established that residue conservation can be pre-
dicted directly from embeddings by training a supervised 
network on data from ConSurf-DB. We exclusively used 

(13)Entropy(p1,… , pn) = −

n
∑

i=1

pilog2pi.

embeddings of pre-trained pLMs (ProtT5, ProtBert (Elnag-
gar et al. 2021), ESM-1b (Rives et al. 2021)), as input to 
relatively simple machine learning models (Fig. 1). Even 
the simplistic logistic regression (LR) reached levels of per-
formance within about 20% of ConSeq (Berezin et al. 2004) 
conservation scores, which were derived from MSAs gen-
erated by the fast alignment method MMseqs2 (Steinegger 
and Söding 2017) (Fig. 3). The top prediction used ProtT5 
embeddings which consistently outperformed predictions 
from ESM-1b and ProtBERT embeddings. For all three 
types of embeddings, the CNN outperformed the FNN, and 
these outperformed the LR. Differences between ProtBert 
and ProtT5 were statistically significant (at the 95% confi-
dence interval, Eq. 12), while improvements from ProtT5 
over ESM-1b were mostly insignificant. The ranking of the 
embeddings and models remained stable across several per-
formance measures  (F1effect,  F1neutral, MCC, Pearson correla-
tion coefficient, Table S1).

ConSurf-DB (Ben Chorin et al. 2020) simplifies family 
conservation to a single digit integer (9: highly conserved, 
1: highly variable). We further reduced these classes to a 
binary classification (conserved/non-conserved) to later 

Fig. 2  pLMs captured conservation without supervised training or 
MSAs. ProtBert was optimized to reconstruct corrupted input tokens 
from non-corrupted sequence context (masked language modeling). 
Here, we corrupted and reconstructed all proteins in the ConSurf10k 
dataset, one residue at a time. For each residue position, ProtBert 
returned the probability for observing each of the 20 amino acids 
at that position. The higher one probability (and the lower the cor-
responding entropy), the more certain the pLM predicts the corre-
sponding amino acid at this position from non-corrupted sequence 
context. Within the displayed boxplots, medians are depicted as black 
horizontal bars; whiskers are drawn at the 1.5 interquartile range. 
The x-axis gives categorical conservation scores (1: highly variable, 
9: highly conserved) computed by ConSurf-DB (Ben Chorin et  al. 
2020) from multiple sequence alignments (MSAs); the y-axis gives 
the probability entropy (Eq.  13) computed without MSAs. The two 
were inversely proportional with a Spearman’s correlation of -0.374 
(Eq.  11), i.e., the more certain ProtBert’s prediction, the lower the 
entropy and the higher the conservation for a certain residue position. 
Apparently, ProtBert had extracted information correlated with resi-
due conservation during pre-training without having ever seen MSAs 
or any labeled data
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transfer information from conservation to binary SAV 
effect (effect/neutral) more readily. The optimal threshold 
for a binary conservation prediction was 5 (> 5 conserved, 
Fig. S1). However, performance was stable across a wide 
range of choices: between values from 4 to 7, MCC (Eq. 8) 
changed between 0.60 and 0.58, i.e., performance varied 
by 3.3% for 44.4% of all possible thresholds (Fig. S1). This 
was explained by the nine- and two-class confusion matrices 
(Fig. S2 and S3) for ProtT5cons, which showed that most 
mistakes were made between neighboring classes of similar 
conservation, or between the least conserved classes 1 and 2.

Conservation-based prediction of binary SAV effect 
better for DMS4 than for PMD4k? Next, we established 
that we could use the predicted conservation of ProtT5cons 
for rule-based binary SAV effect prediction without any fur-
ther optimization and without any MSA. In using predicted 
conservation to proxy SAV effect, we chose the method best 
in conservation prediction, namely the CNN using ProtT5 
embeddings (method dubbed ProtT5cons, Fig. 1B). The 
over-simplistic approach of considering any residue pre-
dicted as conserved to have an effect irrespective of the SAV 
(meaning: treat all 19 non-native SAVs alike) was referred 
to as “19equal”. We refined this rule-based approach by 

combining conservation prediction with a binary BLO-
SUM62 score (effect: if ProtT5cons predicted conserved 
AND BLOSUM62 < 0, neutral otherwise), which we 
referred to as ProtT5beff. For PMD4k, the following results 
were common to all measures reflecting aspects of preci-
sion and recall through a single number  (F1effect,  F1neutral and 
MCC). First, the expert method SNAP2 trained on Eff10k 
(superset of PMD4k) achieved numerically higher values 
than all rule-based methods introduced here. Second, using 
the same SAV effect prediction for all 19 non-native SAVs 
consistently reached higher values than using the BLO-
SUM62 values (Fig. 4 and Table 1: 19equal higher than 
blosum62). For some measures (Q2,  F1effect), values obtained 
using ConSeq for conservation (i.e., a method using MSAs) 
were higher than those for the ProtT5cons prediction (with-
out using MSAs), while for others (MCC,  F1neutral), this was 
reversed (Fig. 4, Table 1, Table S2).

Most performances differed substantially between 
PMD4k and DMS4, i.e., the first four proteins (BRAC1, 
PTEN, TPMT, and PPARG) for which we had obtained 
large-scale experimental DMS measures that could be con-
verted into a binary scale (effect/neutral). First, using BLO-
SUM62 to convert ProtT5cons into SAV-specific predictions 

Fig. 3  Conservation predicted accurately from embeddings. Data: 
hold-out test set of ConSurf10k (519 sequences); panel A: nine-state 
per-residue accuracy (Q9, Eq. 9) in predicting conservation as defined 
by ConSurf-DB (Ben Chorin et al. 2020); panel B: two-state per-resi-
due accuracy (Q2, Eq. 1; conservation score > 5: conserved, non-con-
served otherwise). Supervised models (trained on ConSurf10k): LR: 
logistic regression (9,000 = 9  k free parameters), FNN feed-forward 
network (33  k parameters), and CNN convolutional neural network 
(231  k parameters with 0.25 dropout rate); methods: ConSeq com-
putation of conservation weight through multiple sequence align-
ments (MSAs) (Berezin et  al. 2004); Random random label swap. 

Model inputs were differentiated by color (green: ESM-1b embed-
dings (Rives et al. 2021), red: ProtBert embeddings (Elnaggar et al. 
2021), blue: ProtT5 embeddings (Elnaggar et al. 2021), gray: MSAs 
(MMseqs2 (Steinegger and Söding 2017), and PSI-BLAST (Alts-
chul et al. 1997)). Black whiskers mark the 95% confidence interval 
(± 1.96 SD; Eq. 12). ESM-1b and ProtT5 embeddings outperformed 
those from ProtBERT (Elnaggar et  al. 2021); differences between 
ESM-1b and ProtT5 were not statistically significant, but ProtT5 
consistently outperformed ESM-1b in all metrics but Q2 (Table S1). 
ESM-1b and ProtT5 as input to the CNN came closest to ConSeq 
(Table S1)
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outperformed the MSA-based conservation lookup from 
ConSeq, the expert method SNAP2 trained on PMD4k 
(Table 1: ProtT5beff highest rule-based), and the newly 
introduced VESPA. Second, combining the BLOSUM62 
matrix with conservation also improved ConSeq (Table 1: 
ConSeq: 19equal lower than blosum62). Third, ranking 
across different performance measures correlated much 
better than for PMD4k (Tables S1–S5). As the mapping 
from continuous DMS effect scores to binary labels might 
introduce systematic noise, we also investigated different 
thresholds for this mapping. However, results for DMS4 at 
intervals of 90% (Table S3) and 99% (Table S5) around the 
mean showed similar trends.

We trained a logistic regression (LR) ensemble (VESPA) 
on cross-validation splits replicated from the SNAP2 devel-
opment set. For binary effect prediction, we introduced 
a threshold (≥ 0.5 effect, otherwise neutral) to the output 
scores of VESPA. When comparing VESPA and VESPAl 
(light version of VESPA) to the other methods on PMD4k, 
we observed a different picture than for the rule-based 

approaches. While SNAP2 still resulted in the highest MCC 
(0.28 ± 0.01), it was not significantly higher than that of 
VESPA and VESPAl (MCC: 0.274 ± 0.09 and 0.271 ± 0.09, 
respectively), and its development set overlapped with 
PMD4k. When evaluating the methods on DMS4, the best-
performing method, VESPAl (MCC 0.405 ± 0.016), outper-
formed SNAP2 (MCC 0.204 ± 0.012) and VESPA (MCC 
0.346 ± 0.014) as well as all rule-based methods (Table 1). 
We observed the same trends for other intervals (Tables 
S3–S5).

pLMs predicted SAV effect scores without MSAs. 
Could VESPA, trained on binary effect data (Eff10k) capture 
continuous SAV effect scores measured by DMS? For ease 
of comparison with other methods, we chose all 39 DMS 
experiments (DMS39) with single SAV effect data assem-
bled for the development of DeepSequence (Riesselman 
et  al. 2018). Several methods have recently been opti-
mized on DMS data, e.g., the apparent state-of-art (SOTA), 
DeepSequence trained on the MSAs of each of those 39 
experiments. Another recent method using evolutionary 

Fig. 4  Embedding-based binary SAV effect prediction is seem-
ingly competitive. Data: PMD4k (red bars; 4  k proteins from PMD 
(Kawabata et al. 1999)); DMS4 (blue bars) first four human proteins 
(BRAC1, PTEN, TPMT, PPARG) with comprehensive experimen-
tal DMS measurements including synonyms (here 95% thresh-
old) (Reeb et  al. 2020). Methods: SUPERVISED: a SNAP2bin: 
effect SNAP2 score > −  0.05, otherwise neutral; b VESPA: effect 
VESPA score >  = 0.5, otherwise neutral; c VESPAl: effect VESPAl 
score >  = 0.5, otherwise neutral. RULE-BASED: d BLOSUM62bin: 
irrespective of residue position, negative BLOSUM62 scores pre-
dicted as effect, others as neutral; e ProtT5cons|ConSeq 19equal: all 
19 non-native SAVs predicted equally: effect if ProtT5cons|ConSeq 

predicted residue position to be conserved, otherwise neutral; f 
ProtT5beff|ConSeq blosum62: effect if ProtT5cons|ConSeq predicts 
conserved and BLOSUM62 negative, otherwise neutral. BASELINE: 
g Random: random shuffle of experimental labels. All values for 
DMS4 computed for binary (effect/neutral) mapping of experimental 
DMS values with panel A giving the two-state per-residue accuracy 
(Q2, Eq.  1) and panel B giving the Matthews Correlation Coeffi-
cient (MCC, Eq. 8). Error bars: Black bars mark the 95% confidence 
interval (± 1.96 SD, Eq.  12). For all methods, the MCC differences 
between the two data sets PMD4k and DMS4 were statistically sig-
nificant (exception: random)
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information in a more advanced way than standard profiles 
from MSAs appears to reach a similar top level without 
machine learning, namely GEMME (Laine et al. 2019), 
and so does a method based on probabilities from pLMs, 
namely ESM-1v, without using MSAs. Comparing all those 
to VESPA, we could not observe a single method outper-
forming all others on all DMS39 experiments (Fig. 5). The 
four methods compared (two using MSAs: DeepSequence 
and GEMME, two using probabilities from pLMs instead of 
MSAs: ESM-1v and VESPA) reached Spearman rank cor-
relations above 0.4 for 36 DMS experiments. In fact, for the 
11 highest correlating out of the 39 experiments, predictions 
were as accurate as typically the agreement between two dif-
ferent experimental studies of the same protein (Spearman 
0.65 (Reeb et al. 2020)).

GEMME had a slightly higher mean and median Spear-
man correlation (Eq. 11) than DeepSequence, ESM-1v, 
VESPA, and all others tested (Fig. 6A, Table 2). When con-
sidering the symmetric 95% confidence intervals (Eq. 12), 
almost all those differences were statistically insignificant 
(Fig. 6B) except for only using BLOSUM62. In terms of 
mean Spearman correlation, VESPA was slightly higher 
than DeepSequence, which was slightly higher than ESM-
1v (Fig. 6A), but again neither was significantly better. The 
median Spearman correlation was equal for ESM-1v and 

VESPA and insignificantly lower for DeepSequence. The 
fastest method, VESPAl, reached lower Spearman correla-
tions than all other major methods (Fig. 6). Ranking and 
relative performance after correcting for statistical signifi-
cance were identical for Spearman and Pearson correlation 
(Table S6).

For comparison, we also introduced two advances on a 
random baseline, namely the raw BLOSUM62 scores and the 
raw ProtT5 log-odds scores (Fig. 6; Fig. S7). BLOSUM62 
was consistently and statistically significantly outperformed 
by all methods, while the ProtT5 log-odds averages were 
consistently lower, albeit not with statistical significance. As 
pLM-based methods were independent of MSAs, they pre-
dicted SAV scores for all residues contained in the DMS39 
data sets, while, e.g., DeepSequence and GEMME could 
predict only for the subset of the residues covered by large 
enough MSAs. This was reflected by decreased coverage of 
methods relying on MSAs (DeepSequence and GEMME; 
Table S8). The Spearman correlation of ESM-1v, VESPA, 
and VESPAl for the SAVs in regions without MSAs was 
significantly lower than that in regions with MSAs available 
(Table S7).

SAV effect predictions blazingly fast: One important 
advantage of predicting SAV effects without using MSAs 
is the computational efficiency. For instance, to predict the 

Table 1  Performance in binary 
SAV effect  predictiona

a Data sets: The PMD4k data set contained 4 k proteins from the PMD (Kawabata et al. 1999); 74% of the 
SAVs were deemed effect in a binary classification. DMS4 marks the first four human proteins (BRAC1, 
PTEN, TPMT, PPARG) for which we obtained comprehensive experimental DMS measurements along 
with a means of converting experimental scores into a binary version (effect/neutral) using synonyms. 
DMS4 results are shown for a threshold of 95%: the continuous effect scores were binarized by assign-
ing the middle 95% of effect scores as neutral variants and SAVs resulting in effect scores outside this 
range as effect variants (Reeb et al. 2020). Methods: SNAP2bin: effect SNAP2 score > − 0.05, otherwise 
neutral; VESPA: effect score ≥ 0.5, otherwise neutral; VESPAl: effect score ≥ 0.5, otherwise neutral; BLO-
SUM62: negative BLOSUM62 scores predicted as effect, others as neutral; ProtT5cons|ConSeq-19equal: 
all 19 non-native SAVs predicted equally: effect if ProtT5cons|ConSeq predicted/labeled as conserved, oth-
erwise neutral; ProtT5beff|ConSeq-blosum62: effect if ProtT5cons|ConSeq predicted/labeled as conserved 
and BLOSUM62 negative, otherwise neutral. ± values mark the 95% confidence interval (Eq. 12). For each 
column, if available, significantly best results are highlighted in bold

Data set PMD4k DMS4

Method/metric Q2
(Eq. 1)

MCC
(Eq. 8)

Q2
(Eq. 1)

MCC
(Eq. 8)

Random 61.08% ± 0.41 − 0.002 ± 0.016 64.27% ± 0.76 − 0.001 ± 0.018
Supervised methods
 SNAP2bin 70.66% ± 0.39 0.280 ± 0.010 41.55% ± 0.82 0.204 ± 0.012
 VESPA 63.52% ± 0.43 0.274 ± 0.086 63.56% ± 0.79 0.346 ± 0.014
 VESPAl 63.04% ± 0.43 0.271 ± 0.085 72.59% ± 0.72 0.405 ± 0.016

Rule-based methods
 BLOSUM62bin 56.17% ± 0.43 0.049 ± 0.010 44.47% ± 0.84 0.169 ± 0.014
 ProtT5cons-19equal 68.58% ± 0.41 0.227 ± 0.010 62.20% ± 0.82 0.322 ± 0.014
 ProtT5-beff 52.26% ± 0.43 0.160 ± 0.016 71.47% ± 0.75 0.369 ± 0.016
 ConSeq-19equal 71.51% ± 0.39 0.206 ± 0.010 50.70% ± 0.84 0.267 ± 0.012
 ConSeq blosum62 54.32% ± 0.43 0.138 ± 0.016 63.81% ± 0.8 0.318 ± 0.014
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mutational effects for all 19 non-native SAVs in the entire 
human proteome (all residues in all human proteins) took 
40 min on one Nvidia Quadro RTX 8000 using VESPAl. In 
turn, this was 40 min more than using BLOSUM62 alone 
(nearly instantaneous), but this instantaneous BLOSUM62-
based prediction was also much worse (Q2 for binary BLO-
SUM62 prediction worse than random, Table 1). In con-
trast, running methods such as SNAP2 (or ConSeq) required 
first to generate MSAs. Even the blazingly fast MMseqs2 
(Steinegger and Söding 2017) needed about 90 min using 
batch-processing on an Intel Skylake Gold 6248 processor 
with 40 threads, SSD and 377 GB main memory. While 
VESPAl computed prediction scores within minutes for an 
entire proteome, VESPA and ESM-1v require minutes for 

some single proteins depending on sequence length, e.g., 
ESM-1v took on average 170 s per protein for the DMS39 
set, while ProtT5 required on average 780 s. This originated 
from the number of forward passes required to derive pre-
dictions: while VESPAl needed only a single forward pass 
through the pLM to derive embeddings for conservation 
prediction, VESPA and ESM-1v (when deriving “masked-
marginals” as recommended by the authors) required L for-
ward passes with L being the protein length, because they 
corrupt one amino acid at a time and try to reconstruct it. 
The large difference in runtime between ESM-1v and ProtT5 
originated from the fact that ESM-1v cropped sequences 
after 1022, reducing the strong impact of outliers, i.e., runt-
ime of transformer-based models scales quadratically with 

Fig. 5  No SAV effect prediction consistently best on DMS data. 
Data: DMS39 (39 DMS experiments gathered for the development of 
DeepSequence (Riesselman et  al. 2018)); experiments sorted by the 
maximum absolute Spearman coefficient for each experiment. Meth-
ods: a DeepSequence trained an unsupervised model for each DMS 
experiment using only MSA input, i.e., no effect score labels were 
used (Riesselman et al. 2018); b GEMME inferred evolutionary trees 
and conserved sites from MSAs to predict effects (Laine et al. 2019); 
c ESM-1v correlated log-odds of substitution probabilities (Methods) 
with SAV effect magnitudes (Meier et al. 2021); d VESPA (this work) 
trained a logistic regression ensemble on binary SAV classification 
(effect/neutral) using predicted conservation (ProtT5cons), BLO-
SUM62 (Henikoff and Henikoff 1992), and log-odds of substitution 

probabilities from ProtT5 (Elnaggar et  al. 2021) as input (without 
any optimization on DMS data). The values for the absolute Spear-
man correlation (Eq. 11) are shown for each method and experiment. 
The rightmost column shows the mean absolute Spearman correlation 
for each method. Although some experiments correlated much better 
(toward left) with predictions than others (toward right), the spread 
between prediction methods appeared high for both extremes; Deep-
Sequence was the only method reaching a correlation of 0 for one 
experiment; another one and three experiments were predicted with 
correlations below 0.2 for ESM-1v and DeepSequence, respectively, 
while the vast number of the 4 × 39 predictions reached correlations 
above 0.4
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sequence length, so while the shortest protein (71 residues) 
in the DMS39 set took only 5 s to compute, the longest 
(3033 residues) took 4.5 h to compute. We leave investigat-
ing the effect of splitting very long proteins into (overlap-
ping) chunks to future work.

Discussion

Conservation predicted by embeddings without MSAs. 
Even a simple logistic regression (LR) sufficed to predict 
per-residue conservation values from raw embeddings with-
out using MSAs (Fig. 3, Table S1). Relatively shallow CNNs 
(with almost 100-times fewer free parameters than samples 
despite early stopping) improved over the LR to levels in 
predicting conservation only slightly below conservation 
assigned by ConSeq which explicitly uses MSAs (Fig. 3, 
Table S1). Did this imply that the pLMs extracted evolution-
ary information from unlabeled sequence databases (BFD 
(Steinegger and Söding 2018) and UniProt (The UniProt 
Consortium 2021))? The answer might be more elusive than 
it seems. The methodology (pLMs) applied to predict con-
servation never encountered any explicit information about 
protein families through MSAs, i.e., the pLMs used here 

never had an explicit opportunity to pick up evolutionary 
constraints from related proteins. The correlation between 
substitution probabilities derived from pLMs and conser-
vation (Fig. 2) might suggest that pLMs implicitly learned 
evolutionary information.

A possible counterargument builds around the likelihood 
to pick up evolutionary constraints. The pLM clearly learned 
the reconstruction of more frequent amino acids much better 
than that of less frequent ones (Fig. S5). Unsurprisingly, AI 
is pushed most in the direction of most data. In fact, the dif-
ferences between amino acid compositions were relatively 
small (less than factor of 10), suggesting that even an event 
occurring at one-tenth of the time may challenge pLMs. If 
the same pLM has to learn the evolutionary relation between 
two proteins belonging to the same family, it has to effec-
tively master an event happening once in a million (assum-
ing an average family size of about 2.5 k—thousand—in 
a database with 2.5b—billion—sequences). How can the 
model trip over a factor of  101 and at the same time master a 
factor of  106? Indeed, it seems almost impossible. If so, the 
pLM may not have learned evolutionary constraints, but the 
type of bio-physical constraint that also constrain evolution. 
In this interpretation, the pLM did not learn evolution, but 

Fig. 6  Spearman correlation between prediction and DMS experi-
ment varied. Data and methods as for Fig. 5 with addition of: VES-
PAl: fast version of VESPA with input limited to ProtT5cons and 
BLOSUM62; ProtT5-logodds: raw log-odds from ProtT5 embed-
dings (Elnaggar et al. 2021); and raw BLOSUM62 substitution scores 
(Henikoff and Henikoff 1992). Panel A: mean absolute Spearman 
correlation coefficient (Eq.  11) for each method over all 39 DMS 
experiments; error bars highlight 0.95 confidence interval (1.96 
standard errors). Ignoring statistical significance, the numerical rank-

ing would be: GEMME, VESPA, DeepSequence, ESM-1v, VESPAl, 
ProtT5-logodds, and BLOSUM62. However, the first four did not 
differ by any statistical significance, and while those ranked 5 and 6 
differed from the best four, 5 was close to 4, and 6 close to 5; only 
BLOSUM62, the raw substitution scores compiled as background 
were clearly worst. Panel B: boxplots on absolute Spearman correla-
tion coefficients (Eq. 11) for each method over the 39 DMS experi-
ments. The medians are depicted as black horizontal bars; whiskers 
are drawn at the 1.5 interquartile range
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the constraints “written into protein sequences” that deter-
mine which residue positions are more constrained.

In fact, one pLM used here, namely ProtT5, has recently 
been shown to explicitly capture aspects of long-range 
inter-residue distances directly during pre-training, i.e., 
without ever being trained on any labeled data pLMs pick 
up structural constraints that allow protein 3D structure 
prediction from single protein sequences (Weißenow et al. 
2021). Another explanation for how ProtT5 embeddings 
capture conservation might be that pLMs picked up signals 
from short, frequently re-occurring sequence/structure 
motifs such as localization signals or catalytic sites that 
are more conserved than other parts of the sequence. If 
so, the pLM would not have to learn relationship between 
proteins but only between fragments, thereof reducing 
the factor  106 substantially. We could conceive of these 
motifs resembling some evolutionary nuclei, i.e., frag-
ments shorter than structural domains that drove evolu-
tion (Alva et al. 2015; Ben-Tal and Lupas 2021; Kolodny 
2021). Clearly, more work will have to shed light on the 
efficiency of (p)LMs in general (Bommasani et al. 2021).

Transformer-based pLMs best? We have tested a 
limited set of pLMs, largely chosen, because those had 
appeared to perform better than many other methods for a 
variety of different prediction tasks. Does the fact that in 
our hands Transformer-based pLMs worked best to predict 
residue conservation and SAVs imply that those will gen-
erally outperform other model types? By no means. While 
we expect that the about twenty approaches that we have 
compared in several of our recent methods (including the 

following 13: ESM-1[b|v] Meier et al. 2021; Rives et al. 
2021), ProSE[*|DLM|MT] (Bepler and Berger 2019b, 
2021), Prot[Albert|Bert|Electra|Vec|T5|T5XL|T5XLNet|T
5XXL] (Elnaggar et al. 2021; Heinzinger et al. 2019) pro-
vided a somehow representative sampling of the existing 
options, our conclusions were only valid for embeddings 
extracted in a generic way from generic pLMs without any 
bearing on the methods underlying those pLMs.

Predicted conservation informative about SAV 
effects: DMS data sets with comprehensive experimental 
probing of the mutability landscape (Hecht et al. 2013) as, 
e.g., collected by MaveDB (Esposito et al. 2019) continue 
to pose problems for analysis, possibly due to a diversity 
of assays and protocols (Livesey and Marsh 2020; Reeb 
et al. 2020). Nevertheless, many such data sets capture 
important aspects about the susceptibility to change, i.e., 
the mutability landscape (Hecht et al. 2013). As always, 
the more carefully selected data sets become, the more 
they are used for the development of methods and there-
fore no longer can serve as independent data for assess-
ments (Grimm et al. 2015; Reeb et al. 2016). Avoiding the 
traps of circularity and over-fitting by skipping training, 
our non-parametric rule-based approaches (ProtT5cons 
and ProtT5beff) suggested that predictions of SAV effects 
(by simply assigning “effect” to those SAVs where ProtT-
5cons predicted conserved and the corresponding BLO-
SUM62 value was negative) outperformed ConSeq with 
MSAs using the same idea, and even the expert effect pre-
diction method SNAP2 (Fig. 4, Table 1).

Strictly speaking, it might be argued that one single free 
parameter was optimized using the data set, because for the 
PMD4k data set, the version that predicted the same effect 
for all 19-SAVs appeared to outperform the SAV-specific 
prediction using BLOSUM62 (19equal vs blosum62 in 
Fig. 4 and Table 1). However, not even the values computed 
for PMD4k could distract from the simple fact that not all 
SAVs are equal, i.e., that regardless of model performance, 
19equal will not be used exclusively for any method. In fact, 
the concept of combining predictions with BLOSUM62 val-
ues has been shown to succeed for function prediction before 
(Bromberg and Rost 2008; Schelling et al. 2018) in that 
sense it was arguably not an optimizable hyperparameter. 
Embeddings predicted conservation (Fig. 3); conservation 
predicted SAV effects (Fig. 4). Did this imply that embed-
dings captured evolutionary information? Once again, we 
could not answer this question either way directly. To repeat: 
our procedure/method never used information from MSAs 
in any way. Could it have implicitly learned this? To repeat 
the previous speculation: embeddings might capture a real-
ity that constrains what can be observed in evolution, and 
this reality is exactly what is used for the part of the SAV 
effect prediction that succeeds. If so, we would argue that 
our simplified method did not succeed, because it predicted 

Table 2  Spearman correlation between SAV effect prediction and 
DMS  experimentsa

a Data sets: DMS39 [39 DMS experiments gathered for the develop-
ment of DeepSequence (Riesselman et al. 2018)] with 135,665 SAV 
scores. Methods: DeepSequence: AI trained on MSA for each of the 
DMS experiments (Riesselman et  al. 2018); GEMME: using evo-
lutionary information calculated from MSAs with few parameters 
optimized on DMS (Laine et  al. 2019); ESM-1v: embedding-based 
prediction methods (Meier et  al. 2021); VESPA: method developed 
here using logistic regression to combine predicted conservation 
(ProtT5cons), BLOSUM62 (Henikoff and Henikoff 1992) substitu-
tion scores, and log-odds from ProtT5 (Elnaggar et  al. 2021); VES-
PAl: “light” version of VESPA using only predicted conservation and 
BLOSUM62 as input. ± values mark the standard error

Method Mean absolute r
S

(Eq. 11)
Median absolute r

S

(Eq. 11)

MSA-based
 DeepSequence 0.50 ± 0.03 0.52 ± 0.03
 GEMME 0.53 ± 0.02 0.56 ± 0.02

pLM-based
 ESM-1v 0.49 ± 0.02 0.53 ± 0.02
 VESPA 0.51 ± 0.02 0.53 ± 0.02
 VESPAl 0.47 ± 0.02 0.47 ± 0.02
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conservation without using MSAs, but that it captured posi-
tions biophysically “marked by constraints”, i.e., residues 
with higher contact density in protein 3D structures (Weiße-
now et al. 2021). This assumption would explain how pre-
dicted conservation (ProtT5cons) not using evolutionary 
information could predict SAV effects better than a slightly 
more correct approach (ConSeq) using MSAs to extract evo-
lutionary information (Fig. 4: ProtT5cons vs. ConSeq).

Substitution probabilities from pLMs capture aspects 
measured by DMS experiments: Using embeddings to 
predict SAV effects through conservation prediction suc-
ceeded but appeared like a detour. ESM-1v (Meier et al. 
2021) pioneered a direct path from reconstruction/substitu-
tion probabilities of pLMs to SAV effect predictions. When 
comparing the ESM-1v encoder-based with the ProtT5 
encoder–decoder-based Transformer, we encountered sur-
prising results. Previously, ProtT5 usually performed at least 
on par with previous versions of ESM (e.g., ESM-1b (Rives 
et al. 2021)) or outperformed them (Elnaggar et al. 2021). In 
contrast, the substitution probabilities of ProtT5 were clearly 
inferior to those from ESM-1v in their correlation with the 
39 DMS experiments (Fig. 6). This reversed trend might 
have resulted from a combination of the following facts: 
(1) ProtT5 is a single model, while ESM-1v is an ensem-
ble of five pLMs potentially leading to a smoother substitu-
tion score. (2) ESM-1v was trained on UniRef90 instead 
of BFD/UniRef50 (ProtT5) possibly providing a broader 
view on the mutability landscape of proteins. In fact, the 
ESM-1v authors showed a significant improvement when 
pre-training on UniRef90 instead of UniRef50 (Rives et al. 
2021). (3) ESM-1v is a BERT-style, encoder-based Trans-
former, while ProtT5 is based on T5’s encoder-decoder 
structure. In previous experiments (Elnaggar et al. 2021), 
we only extracted embeddings from ProtT5’s encoder (e.g., 
ProtT5cons is based on encoder embeddings), because its 
decoder fell significantly short in all experiments. However, 
only T5’s decoder can output probabilities, so we had to 
fall back to ProtT5’s decoder for SAV effect predictions. 
This discrepancy of encoder and decoder performance can 
only be sketched here. In short, encoder-based transformer 
models always see the context of the whole sequence (as 
does ProtT5 ‘s encoder and ESM-1v), while decoder-based 
transformer models (such as ProtT5’s decoder or GPT (Rad-
ford et al. 2019)) see only single-sided context, because they 
are generating text (sequence-to-sequence models (Sutsk-
ever et al. 2014)). This is crucial for translation tasks, but 
appeared sub-optimal in our setting. Despite this shortcom-
ing in performance, we trained VESPA based on log-odds 
derived from ProtT5 substitution probabilities, mainly 
because we started this work before the release of ESM-
1v. Also, we hoped for synergy effects when implementing 
VESPA into the PredictProtein webserver, because ProtT5 
is already used by many of our predictors. Finding the best 

combination of pLM substitution probabilities for SAV 
effect prediction will remain subject for future work.

Fast predictions save computing resources? Our simple 
protocol introduced here enabled extremely efficient, speedy 
predictions. While pre-training pLMs consumed immense 
resources (Elnaggar et al. 2021), this was done in the past. 
The new development here was the models for the 2nd level 
supervised transfer learning. Inputting ProtT5 embeddings 
to predict residue conservation (ProtT5cons) or SAV effects 
(VESPA/VESPAl) for predictions in the future will consume 
very little additional resources. When running prediction 
servers such as PredictProtein (Bernhofer et al. 2021) que-
ried over 3000 times every month, such investments could 
be recovered rapidly at seemingly small prices to pay even 
if performance was slightly reduced. How to quantify this? 
At what gain in computing efficiency is which performance 
reduction acceptable? Clearly, there will not be one answer 
for all purposes, but the recent reports on climate change 
strongly suggest to begin considering such questions.

Quantitative metrics for hypothetical improvements 
over MSA-based methods? If methods using single 
sequences without MSAs perform as well as, or even better 
than, SOTA methods using MSAs, could we quantify met-
rics measuring the hypothetical improvements from embed-
dings? This question raised by an anonymous reviewer opens 
an interesting new perspective. Gain in speed, reduction of 
computational costs clearly could evolve as one such met-
ric. A related issue is related to protein design: for some 
applications, the difference in speed might open new doors. 
Although we have no data to show for others, we could 
imagine yet another set of metrics measuring the degree 
to which embedding-based methods realize more protein-
specific than family averaged predictions.

Conclusions

Embeddings extracted from protein Language Models 
(pLMs, Fig. 1), namely from ProtBert and ProtT5 (Elnag-
gar et al. 2021) and ESM-1b (Rives et al. 2021), contain 
information that sufficed to predict residue conservation 
in protein families without using multiple sequence align-
ments (MSAs, Fig. 3). Such predictions of conservation 
combined with BLOSUM62 scores predicted the effects of 
sequence variation (single amino acid variants, or SAVs) 
without optimizing any additional free parameter (ProtT5b-
eff, Fig. 6). Through further training on binary experimen-
tal data (effect/neutral), we developed VESPA, a relatively 
simple, yet apparently successful new method for SAV effect 
prediction (Fig. 4). This method even worked so well on 
non-binary data from 39 DMS experiments that without 
ever using such data nor ever using MSAs; VESPA appeared 
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competitive with the SOTA (Fig. 5, Fig. 6), although for 
SAV effect predictions, embedding-based methods are still 
not yet outperforming the MSA-based SOTA as for other 
prediction tasks (Elnaggar et al. 2021; Littmann et al. 2021a, 
b, c; Stärk et al. 2021). Embedding-based predictions are 
blazingly fast, thereby they save computing, and ultimately 
energy resources when applied to daily sequence analysis. In 
combination, our results suggested that the major signal cap-
tured by variant effect predictions originates from some bio-
physical constraint revealed by raw protein sequences. The 
ConSurf10k dataset is available at https:// doi. org/ 10. 5281/ 
zenodo. 52385 37. For high-throughput predictions, methods 
are available through bio_embeddings (Dallago et al. 2021). 
For single queries VESPA and ProtT5cons will be made 
available through the PredictProtein server (Bernhofer et al. 
2021). VESPA and VESPAl are also available from github 
at https:// github. com/ Rostl ab/ VESPA.
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