
Journal of Orthopaedic Translation 36 (2022) 177–183
Contents lists available at ScienceDirect

Journal of Orthopaedic Translation

journal homepage: www.journals.elsevier.com/journal-of-orthopaedic-translation
ORIGINAL ARTICLE
A novel image-based machine learning model with superior accuracy and
predictability for knee arthroplasty loosening detection and clinical
decision making

Lawrence Chun Man Lau a, Elvis Chun Sing Chui a,*, Gene Chi Wai Man a, Ye Xin a,
Kevin Ki Wai Ho a, Kyle Ka Kwan Mak a, Michael Tim Yun Ong a, Sheung Wai Law a,
Wing Hoi Cheung a, Patrick Shu Hang Yung a

a Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong
A R T I C L E I N F O

Keywords:
Artificial intelligence
Machine learning
Xception model
Predictive modeling
Total knee arthroplasty
loosening
Abbreviations: TKA, Total Knee Arthroplasty; CN
* Corresponding author.
E-mail addresses: lawrencelau@link.cuhk.edu.hk

https://doi.org/10.1016/j.jot.2022.07.004
Received 29 March 2022; Received in revised form
Available online xxxx
2214-031X/© 2022 The Chinese University of Hong
under the CC BY-NC-ND license (http://creativecom
A B S T R A C T

Background: Loosening is the leading cause of total knee arthroplasty (TKA) revision. This is a heavy burden
toward the healthcare system owing to the difficulty in diagnosis and complications occurring from the delay
management. Based on automatic analytical model building, machine learning, may potentially help to auto-
matically recognize the risk of loosening based on radiographs alone. The aim of this study was to build an image-
based machine-learning model for detecting TKA loosening.
Methods: Image-based machine-learning model was developed based on ImageNet, Xception model and a TKA
patient X-ray image dataset. Based on a dataset with TKA patient clinical parameters, another system was then
created for developing the clinical-information-based machine learning model with random forest classifier. In
addition, the Xception Model was pre-trained on the ImageNet database with python and TensorFlow deep
learning library for the prediction of loosening. Class activation maps were also used to interpret the prediction
decision made by model. Two senior orthopaedic specialists were invited to assess loosening from X-ray images
for 3 attempts in setting up comparison benchmark.
Result: In the image-based machine learning loosening model, the precision rate and recall rate were 0.92 and
0.96, respectively. While for the accuracy rate, 96.3% for visualization classification was observed. However, the
addition of clinical-information-based model, with precision rate of 0.71 and recall rate of 0.20, did not further
showed improvement on the accuracy. Moreover, as class activation maps showed corresponding signals over
bone-implant interface that is loosened radiographically, this confirms that the current model utilized a similar
image recognition pattern as that of inspection by clinical specialists.
Conclusion: The image-based machine learning model developed demonstrated high accuracy and predictability of
knee arthroplasty loosening. And the class activation heatmap matched well with the radiographic features used
clinically to detect loosening, which highlighting its potential role in assisting clinicians in their daily practice.
However, addition of clinical-information-based machine-learning model did not offer further improvement in
detection. As far as we know, this is the first report of pure image-based machine learning model with high
detection accuracy. Importantly, this is also the first model to show relevant class activation heatmap corre-
sponding to loosening location.
Translational potential: The finding in this study indicated image-based machine learning model can detect knee
arthroplasty loosening with high accuracy and predictability, which the class activation heatmap can potentially
assist surgeons to identify the sites of loosening.
N, Convolutional Neural Network; AI, Artificial Intelligence; ROC, Receiver Operating Characteristic.
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Fig. 1. The above schematic depicts how random forest is undergone.
Random forest is composed of individual trees where each of them initially
makes a class prediction. When generated predictions from each tree are
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1. Introduction

Total knee arthroplasty (TKA), as one of the most frequently per-
formed operation in orthopedics currently and anticipated to become the
commonest elective operation in the near future, can become heavy
burdens to the healthcare system with its accompanied risk of failure and
revision [1,2]. Loosening is the leading cause of revision among various
complications, and it tends to occur many years after the initial surgery
[3]. With the summative effect of longer life expectancy, late occurrence
of loosening, and increasing number of patients living with TKA, the
early detection of loosening in patients with TKA has become a major
importance and interest in the orthopedic field. A delay in diagnosis of
loosening and hence a prolonged period of walking with an unstable
implant can result in loss of bone stock and deterioration of surrounding
soft tissues, which may entail a larger scale of revision surgery with
poorer outcome. A system that can automatedly detect loosening may
relieve the burden of orthopedic surgeons and further safeguard their
practice.

As loosening is hard to diagnose, various imaging modalities, such as
scintigraphy, arthrogram, MRI and fluorodeoxyglucose-positron emis-
sion tomography (FDG-PET) scans, have been investigated and shown
various limitations, such as high cost, insensitivity, invasiveness in na-
ture, and low accuracy [4]. Owing to uncertainty in diagnosis by these
various imagingmodalities, patients would often need further testing like
various blood tests, repeated imaging and possibly subsequently false
reassurance or unnecessary revision [4].

Machine learning has been successfully applied in various medical
field. This includes the automatic detection of strokes, retinopathies, and
cancerous histology, with same level of accuracy as the relevant field
experts [5–10]. Actualized by advanced computational power, machine
learning can self-teach and self-develop its pattern recognition by reading
a vast number of relevant labelled images and/or data and does not
necessarily follow clinical criteria set by the medical experts. Shah et al.
reported an attempt in application of machine learning in detection of
arthroplasty loosening using radiographs [11]. However, their model's
performance for TKA is relatively poor and it depends heavily on his-
torical, demographic, and comorbidity information, instead of isolated
image analysis [11]. However, in reality, many of those cases that had
their TKA performed many years ago, especially in outside tertiary
referral centers, would often have their historical and demographic in-
formation, such as operation details and particulars of surgeons, to be
unknown. In addition, the heavy dependence of non-image details would
also limit the system ability to work as mass screening or applicable to
various joint replacement centers owing to being unavailable or incom-
plete. Besides, the system reported by Shah et al. failed to indicate the
region of the implant–bone interface on determining the position of
loosening. This would limit its purpose on providing an accurate position
of the loosening for early clinical management.

Therefore, the current study aimed to build and evaluate an opti-
mized image-based machine-learning model that could effectively detect
TKA loosening based on radiographs alone. Additional clinical-
information-based machine-learning models were developed and com-
bined with image-based machine-learning model for further evaluation
and comparison. Class activation heatmap was generated to represent
machine-learning model focused on detection of loosening based on
analysis of radiographs, and to generate the probability of loosening.

2. Materials and methods

2.1. Ethical statement

This study complied with the Declaration of Helsinki after obtaining
approval from the Institutional Review Board of the local institution's
Research Ethical Committee (CREC 2018.544).
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2.2. Machine learning model

Image-based machine-learning model was developed based on
ImageNet which is an open-source project that could classify an Input
Image into 1000 separate object categories. The model was trained using
approximately 1.2 million images, with another 100,000 images for
testing and 50,000 images for validation. In addition, Xception model, an
extension of the Inception Architecture which replaced the standard
Inception modules with Depthwise Separable Convolutions, was
employed [12]. The development of this deep learning-based prosthesis
loosening estimating system was based on Xception pre-trained model
and a TKA patient X-ray image dataset. In brief, random forest, consisted
of a large amount of individual decision trees that operate as an
ensemble, were created. Then, each individual tree in the random forest
generated a class prediction. Whereas, the class with the most votes
became our model's prediction. The process of random forest is shown in
Fig. 1. A classification system based on a dataset with TKA patient clinical
parameters was developed using random forest classifier.
2.3. Dataset

A total of 440 X-ray images displaying the distal femur and proximal
tibia regions of TKA patients, were included in this study. Among these,
206 images were derived from prosthesis loosening patients with TKA
loosening. Loosening was diagnosed by intraoperative finding during
collected, a general voting will be undertaken where class prediction with the
most votes will prevail and be selected as the prediction of our model.
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revision surgery of TKA in which the TKA was found loosened from the
surrounding bone and with compatible X-ray finding of loosening before
surgery. The remaining 234 images were derived from early images
(after initial TKA surgery) of patients that have been followed up for 10
years and without TKA loosening. We included X-ray images that have
complete coverage of the whole TKA implant, and derived from patients
with aseptic loosening of the TKA. We excluded X-ray images that have
incomplete coverage of the TKA implant, substandard resolution/satu-
ration and/or brightness, interference by other radio-opaque objects. We
also excluded those images that were derived from TKA loosening due to
infection or fracture extending into the TKA prothesis. As shown in Fig. 2,
convolutional Neural Network (CNN) (Xception Model) was pre-trained
on the ImageNet database with python and Tensorflow deep learning
library for prediction of loosening.
2.4. Optimization configuration

Stochastic gradient descent (SGD) was used as Optimizer. Momentum
set at 0.9. Initial learning rate and the learning rate decay were 0.45 and
0.94 every 2 epochs, respectively. The Xception network was imple-
mented using the TensorFlow framework and trained on Nvidia GTX
1080 Ti GPUs. Data parallelism with synchronous gradient descent was
used to achieve the best classification performance. And 5000 iterations
(70 h) were undergone for data training process.
2.5. Visualization classification

Class activation maps, shown in Fig. 3, were used to interpret the
prediction decision made by CNN. It generated heatmaps representing
class activation over input images. A class activation heatmap is a 2D grid
of scores associated with a specific output class, computed for every
location in any input image, considering the contribution of specific lo-
cations to the class. Verification of visualization classification was carried
out retrospectively by orthopedic specialists in joint replacement surgery.
2.6. Clinical information based model

A dataset encompassing 4major areas of clinical details was collected.
They were as followed:
Fig. 2. The Architecture of Convolutional Neural Network (CNN) [30]. At first
pooling layers. Convolutional layer consists of multiple types of kernel (represented
image features which allow object categorization. Next, pooling layer where max po
convolutional layer and the return of maximum aggregate value from matrix in conv
fully connected (FC) layer where flattening is undergone. Flattening is the process w
plays a role in determining the probability of the specific class the image is belonge
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(1) patient background: sex, age, body weight, steroid usage, smoker,
and medical comorbidities.

(2) pre-operative details of the knee: diagnosis, previous knee oper-
ation, pre-operative deformity, degree of deformity, pre-operative
flexion contracture and pre-operative flexion range.

(3) operative and post-operative details: side of TKA performed, insert
size, degree of distal femur cut, patellar resurfacing, augment and
stem usage, operation time, drain output if any, hemoglobin drop,
post-operative transfusion, duration of post-operative antibiotics,
intra-operative complications, and discharge difficulties.

(4) follow-up details: total duration of follow-up, symptoms, Knee
Society knee score and function score (initial and latest), flexion
range, tibial, femoral, and overall lower limb alignment.

Data were exploited for training of random forest, a machine learning
method.

2.7. Detection comparison benchmark

To setup comparison benchmark, two senior orthopaedic specialists
with 15–20 years’ experience were invited to join the study for prosthesis
loosening assessment from X-ray images for 3 attempts, with each
attempt performed separately with a 2-week-interval. During each
attempt, 95 X-ray images with knee prosthesis (21.5% of the data in the
study) was randomly selected for assessment of prosthesis loosening.

3. Results

Evaluation was run by a single model on a single crop of input X-ray
images. Approximately, 75% of X-ray images (345 X-ray images) in the
dataset were used as the test set and 25% of X-ray images (95 X-ray
images) in the dataset were used as validation set. Only the findings on
validation set were reported subsequently. Image-based machine-
learning model (Xception Model with pre-trained ImageNet database)
was assessed. The current model resulted in precision rate and recall rate
of 0.924 and 0.961, respectively (Fig. 4). Accuracy rate of 96.3% for
visualization classification was observed. The corresponding sensitivity
is 96.1% and specificity is 90.9%. The positive predictive value is 92.4%
and the negative predictive value is 95.2% (Table 1). The Receiver
Operating Characteristic (ROC) curve for the test output and the Accu-
racy & Error Graph of the model are illustrated in Fig. 5 and Fig. 6
, the input image – radiographs with TKA will be passed to convolutional and
by different colored filters here), each is responsible for extraction of specific
oling is carried out. Max pooling is sub-sampling of image outputted from the
olutional layer. At the end, the matrix in pooling layer will be processed by the
here a pooled feature map (vector) is transformed into a column. FC layer also
d to.



Fig. 3. Diagram of the Machine Learning Process (A) displays class activation map of the TKA X-ray, highlighting region of suspicion by machine learning model
(B) Loosening prediction of the X-ray showing probability of 99.96% chance of loosening (C) Same X-ray as shown in Fig. 3A but without the class activation map.

Fig. 4. Confusion Matrix for loosening. Precision rate and recall rate were
0.92 and 0.96 respectively. Accuracy rate of 96.3% for visualization classifica-
tion was observed.

Table 1
Image-Based Machine Learning Model performance on test set.

Performance criteria Overall (%)
Accuracy 96.3
Sensitivity 96.1
Specificity 90.9
Positive predictive value 92.4
Negative predictive value 95.2
AUC 93.5

Fig. 5. The Receiver Operating Characteristic (ROC) curve of the test
output. The area under the dotted line is 0.5. The Area Under Curve of ROC
(blue line) is an indicator of the diagnostic capability of the deep learning
model, which is 93.5%.
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respectively. According to the ROC curve (shown in Fig. 5), it was sug-
gested that the model was with high diagnostic capability as its AUC was
greater than 0.9. With respect to the model Accuracy and Error graph
(shown in Fig. 6), the model demonstrated high accuracy and low error
when undergone for a set amount of epoch.

Clinical-information model (Random forest classifier) was imple-
mented for estimating the occurrence of prosthesis loosening. It resulted
in precision rate of 0.71 and recall rate of 0.20. The difference between a
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combined model of image-based and clinical-information-based model to
image-based model alone was insignificant. It was observed that using X-
ray images alone as input and deep learning for estimation could achieve
greater precision and recall rates, thus a better estimation for prosthesis
loosening. Such examples of loosening prediction were shown in Fig. 7.
As shown, both the probability of loosening predicted by the model and
the class activation maps concentrate on the tibial tray bone-implant
interface were found to increase with time (Fig. 7). Importantly, there
was a serial increment in the probability of loosening detected by the
model in the span of 14 years from initial post-operation to time prior to
revision (Fig. 7).

The comparison benchmark set by two senior orthopaedic specialists
on detection of prosthesis loosening assessment from X-ray images in 3
attempts are listed (Table 2). The benchmark accuracy by senior ortho-
paedic specialists ranged from 89.09% to 94.54% in the attempts, sug-
gesting comparable accuracy of the Image-based machine-learning
model in this study suitable for clinical use (96.3%). Class activation
maps of individual X-ray images were also assessed by orthopaedic sur-
geons to confirm the relevant sites for clinical consideration.

As there was an increase in probability of loosening on sequential X-
rays from initial post-op to time prior to revision in the image series and



Figure 6. Training accuracy and validation accuracy with respect to epoch (A) It illustrated the training accuracy (blue) and validation accuracy (orange) with
respect to epoch (B) It illustrated error during the training (blue) and validation period (orange) with respect to epoch.

Fig. 7. Recognition of Knee Arthroplasty Loosening by the Machine Learning Model. A-F) Radiographs with superimposed class activation maps, also known as
heatmaps, of a single patient taken after initial operation in 2005 to the time prior to revision due to loosening in 2019, with the corresponding time of radiographs
taken and probability of loosening were shown. From left to right (i.e. from A to F), the probability of loosening predicted by the model increased with time and the
class activation maps increasingly concerned on the tibial tray bone-implant interface with time.

Table 2
Comparison Benchmark of detecting loosening from X-ray by senior orthopaedic
specialists.

Attempt Surgeon 1 Accuracy Surgeon 2 Accuracy

First 92.72% 90.9%
Second 89.09% 94.54%
Third 93.63% 91.8%
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class activation maps, shown in Figs. 3 and 7, this represent the contri-
bution of specific locations to the class which reflect potential sites of
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loosening under consideration. With increasing probability of loosening,
there was trend that there are increasing class activation signals over
bone-implant interface that is loosened radiographically. This further
confirms that the model indeed utilized a similar image recognition
pattern to that of manual human inspection.

4. Discussion

The novel machine learning model developed in this study demon-
strated high accuracy and predictability of knee arthroplasty loosening,
achieving our initial aim of loosening detection based on radiographs
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alone. However, additional clinical-information-based machine-learning
model combining with image-based machine-learning model do not offer
further improvement in detection. On the other hand, the class activation
heatmap, representing the machine-learning model focus of loosening
detection during radiograph analysis, matched well with the radio-
graphic features used clinically to detect loosening, highlighting its po-
tential role in assisting orthopedic surgeons or radiologists. As far as we
know, this is the first report of pure image-based machine learning model
on knee arthroplasty loosening detection that demonstrate such high
accuracy and also the first report showing relevant class activation
heatmap corresponding to loosening location. This is in contrary to
previous report by Shah et al. on using machine learning in detection of
arthroplasty loosening using radiographs [11]. It showed lower perfor-
mance for TKA loosening detection and depended heavily on historical,
demographic, and comorbidity information instead of isolated image
analysis [11]. The improvement could be contributed by the focused
training of the machine learning model using TKA X-rays and a difference
in the machine learning architecture. Besides those, the quality and
quantity of clinical information in both studies are likely different, which
possibly generate the difference in performance of the clinical
information-based model. However, this difference and difficulty in
obtaining similar quality and quantity of clinical information as in Shah
et al. study indeed illustrate the reality of developing machine learning
model to diagnose loosening would be simpler and easier by using X-rays
images alone.

This machine-learning model has huge translational potential in the
current healthcare system, given the gigantic amount of TKA being
performed globally. Based on a consensus, 1.2 million TKA are performed
annually in US alone and is expected to rise to 3.4 million per year by
2030 [1]. With the ever-growing number of TKA being performed, this
further implies a likely increase on the number of follow-up cases and
patients living with TKA. Despite the advancement of surgical techniques
(e.g., use of robot and navigation), some centers have begun to offer
lifelong follow-ups for these patients in considering the likelihood on the
occurrence of common complications, such as loosening, fracture and
wearing, to appear after many years of TKA [3,13–16,31]. This post TKA
follow-ups have significant burden to the healthcare systems given the
late occurrence of loosening and cumulative increase on the number of
patients living with TKA. Herein, the machine-learning model in this
study may potentially reduce workloads of surgeons by allowing detec-
tion of early TKA loosening to enable prompt follow-up at an earlier stage
with less stringent support. In fact, our study noted a phenomenon that
there was an increase in probability of loosening on sequential X-rays
from initial post-op film to time prior to revision and together with
increasing relevant localization of class activation map signals (Fig. 7).
This may allow clinicians to focus on potential film and relevant area of
loosening earlier than before to facilitate prompt management. However,
it currently remains difficult to truly determine whether this model can
achieve a clinical benefit on providing earlier diagnosis on TKA loosening
when compared to standard clinician-based radiographical diagnosis,
which would require a separate cohort with a large sample size for
verification.

In an attempt to further enhance the diagnostic performance, we have
computed another model based on clinical information. However, this
model alone (or in combination with the image-based model) did not
outperform the image-based model. The lack of improvement can be
attribute to multiple factors. These factors might include variation in
surgical procedures, preferred use of specific implant types and loss or
alteration in method of documentation. Likewise, high heterogeneities
are present in subjective measurements such as the patient-reported
outcome measures and knee scores. On the other hand, development of
image-based model was based on objective data, which is based on pixels
by pixels (with higher visual clarity than human eyes) over the X-rays.
Moreover, in-depth analysis was carried out by the “past learning expe-
rience” of the model, which far exceeded the power of manual
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interpretation. It is also possible that the earliest sign of loosening can be
detected by the AI prior to patient's report on their bodily sensations
using knee scores [17]. Moreover, an image-based machine-learning
model alone might actually be easier to be integrated into different
clinical practice. As often, the documented clinical information is usually
highly heterogenous between different assessors, hospitals, and even
healthcare system. To make matter worse, those patients having their
TKA to be performed by private sectors or in other part of the world, the
clinical information may be lacking or not retrievable. Yet, a standalone
image-based machine-learning model can work well in these settings and
easily applied to various healthcare system.

Nevertheless, the Image-based machine-learning model developed in
this study has a few limitations. Firstly, the TKA X-ray images employed
in this study are derived from cemented TKA. Recently, there is a surge of
interest in the use of cementless TKA [18]. It is currently unknown the
image characteristics of these cementless TKA when they are loosened in
the future, and it is unknown whether our model can detect their loos-
ening comparable to detect loosening in cemented TKA. By the same
token, if future TKA designs employ a significant different shape and
fixationmechanism, the performance of the machine learning model may
not be as just as shown in this study. Similarly, this limitation may be
applicable on using this model for the detection of unicompartmental
knee arthroplasty or TKA with additional implants like a previous high
tibial osteotomy plate [19–22]. Secondly, there are upcoming thera-
peutic modalities to improve bone health, osteoarthritis, and integration
of implants that patients with TKA may receive in the future, which in-
cludes the use of bisphosphonates and magnesium-based coating over
implants [23–28]. Hence, these may lead to subtle alternation of the
radiographical appearance of bone, such as increased bone density with
bisphosphonates, to potentially affect the detection accuracy of the ma-
chine learning model. Although this study has already employed 440
images for the development of the model, using more images may still
further enhance the performance of the model. The use on using a larger
quantity of images from territory-wide data source can be used toward
the verification of the model or to provide more raw images for the
training of the model, which these would significantly help to improve
the precision of this model [29].

5. Conclusion

The novel image-based machine learning model developed in this
study demonstrated high accuracy and predictability of knee arthroplasty
loosening. Addition of clinical-information-based machine-learning
model did not offer further improvement in detection. Importantly, the
class activation heatmap matched well with the radiographic features
used clinically to detect loosening, which highlights its potential role to
facilitate current clinical practice.
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