Hindawi Publishing Corporation
Autoimmune Diseases

Volume 2012, Article ID 836519, 13 pages
doi:10.1155/2012/836519

Review Article

Impact of Exercise and Metabolic Disorders on Heat Shock
Proteins and Vascular Inflammation

Earl G. Noble! and Garry X. Shen?

I School of Kinesiology, University of Western Ontario, London, ON, Canada
2 Diabetes Research Group, Department of Internal Medicine and Physiology, University of Manitoba, 835-715 McDermot Avenue,

Winnipeg, MB, Canada R3E 3P4

Correspondence should be addressed to Garry X. Shen, gshen@ms.umanitoba.ca

Received 30 June 2012; Revised 20 September 2012; Accepted 6 November 2012

Academic Editor: Boel de Paepe

Copyright © 2012 E. G. Noble and G. X. Shen. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Heat shock proteins (Hsp) play critical roles in the body’s self-defense under a variety of stresses, including heat shock, oxidative
stress, radiation, and wounds, through the regulation of folding and functions of relevant cellular proteins. Exercise increases the
levels of Hsp through elevated temperature, hormones, calcium fluxes, reactive oxygen species (ROS), or mechanical deformation
of tissues. Isotonic contractions and endurance- type activities tend to increase Hsp60 and Hsp70. Eccentric muscle contractions
lead to phosphorylation and translocation of Hsp25/27. Exercise-induced transient increases of Hsp inhibit the generation of
inflammatory mediators and vascular inflammation. Metabolic disorders (hyperglycemia and dyslipidemia) are associated with
type 1 diabetes (an autoimmune disease), type 2 diabetes (the common type of diabetes usually associated with obesity), and
atherosclerotic cardiovascular disease. Metabolic disorders activate HSF/Hsp pathway, which was associated with oxidative stress,
increased generation of inflammatory mediators, vascular inflammation, and cell injury. Knock down of heat shock factor-1
(HSF1) reduced the activation of key inflammatory mediators in vascular cells. Accumulating lines of evidence suggest that the
activation of HSF/Hsp induced by exercise or metabolic disorders may play a dual role in inflammation. The benefits of exercise

on inflammation and metabolism depend on the type, intensity, and duration of physical activity.

1. Introduction

The stress response is a self-protective mechanism against
environmental stresses which is mediated via a group
of evolutionally conserved proteins, heat shock proteins
(Hsp). Hsp regulate the conformation and functions of a
large number of cellular proteins in order to protect the
body from stress [1]. The expression of Hsp is mainly
modulated by a common transcription factor, heat shock
factor-1 (HSF1). The activity, translocation, and expression
of HSFI respond to environmental stresses, such as heat
shock, wounds, oxidative stress, and radiation [2]. Exercise
is associated with transient elevations of Hsp expression,
body temperature, hormones, and oxidative stress, which
may reduce inflammatory mediators [3]. Metabolic disorders
in common chronic diseases (diabetes, metabolic syndrome,
and atherosclerotic cardiovascular disease) are associated

with a prolonged stress response as a consequence of oxida-
tive stress, altered hormone levels, vascular inflammation,
and cell injury [4]. Type 1 diabetes is a common autoimmune
disease characterized by pancreatic f-cell destruction and
insulin deficiency which can lead to poor circulation and
vascular disease [5]. This paper summarized up-to-date
knowledge on the relationship between stress responses,
oxidative stress, and vascular inflammation under exercise
or metabolic disorders. Selected literature searched using
PubMed over a period from 1981 to 2012 is provided.

2. Heat Shock Proteins

Hsp has evolved to perform multiple roles within cells,
organs, and organisms [1]. These ubiquitous proteins, which
are found both inside and outside the cell [7], have a general-
ized function of interacting with other proteins, hence their



designation as molecular chaperones [8]. These interactions
may influence the structure of the client protein(s) so that
it may be maintained in a conformation appropriate for
functional folding, targeted for degradation, or altered as
part of a signaling pathway. Most Hsp have a multitude
of activities based upon their cellular location (including
extracellular), the client proteins they interact with [9],
and their phosphorylation status which may modulate their
aggregation [10], their localization [11], or their activation
of enzymatic pathways [12]. As a consequence, Hsp not
only protect cells and organisms against proteotoxic stresses,
but these proteins are also critical in normal functioning
of several cellular processes [13]. Amongst those signaling
pathways which involve Hsp are several which are implicated
in regulation of immune and inflammatory systems [14, 15].
Although there is some controversy regarding their exact role
[16], Hsp may activate the immune response [17] but also
dampen the inflammatory pathways [14].

Hsp have normally been classified according to their
molecular mass with small Hsp, such as aA- and aB-
crystallin, Hsp20, 22, 25/27, and other Hsp60, the Hsp70 and
90 families and Hsp110, and their cochaperones (Table 1),
often working in concert to maintain cell structure and
function [6]. A new nomenclature has more recently been
introduced for Hsp [18]; however, for the purposes of
this paper, we will refer to the more common mass-based
nomenclature (see Table 1).

3. Regulation of the Transcription of Hsp

The regulation of the transcription of Hsp is mainly through
heat shock factors (HSF). HSF represents a family of tran-
scription factors induced by both stressful and nonstressful
stimuli. The fundamental structure of HSF has been well
conserved from yeast to humans [2, 19]. Four isoforms
of HSF have been reported. HSF1, 2, and 4 are present
in humans. HSF1 is ubiquitously expressed in mammalian
tissues and relatively abundant in heart, ovary, brain, and
placenta [20]. HSF2 is expressed in very low levels in
postnatal tissue [21], and HSF4 is mainly expressed in brain
and lung [22]. Under basal conditions, HSF1 exists as a
monomer. Under stress, HSF1 is converted to a trimer which
is required for the binding to the responsive element (heat
shock element) of HSF1 in the Hsp promoter. Phosphoryla-
tion of specific HSF1 residues is also required for activation
[23, 24], and the multiple pathways potentially involved in
these phosphorylations [25-28] probably provide tissue and
stress specificity. A variety of stresses beside heat shock may
activate or upregulate HSF1 [19, 29, 30]. Indeed, activation
of HSF1 was detected in diet-induced atherosclerotic lesions
in rabbits and humans [31, 32].

Given the importance of the heat shock response, it is
not surprising that there are multiple redundant pathways
by which the response may be activated [33]. Following
exercise, it is likely that these pathways converge with the
HSF1 through the translocation of the transcription factor
from cytoplasm to nucleus [34, 35]. With exercise, likely
candidates are the adrenergic stimuli associated with exercise
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TaBLE 1: Heat shock protein nomenclature. Comparison of the
old molecular-weight-based names with the new nomenclature as
outlined in Kampinga et al. [18].

Weight-based nomenclature New name
Hsp20 HSPB6
Hsp22 HSPBS
Hsp25/27 HSPBI
aA-crystallin HSPB4
aB-crystallin HSPB5
Hsc70 (cognate isoform) HSPAS8
Hsp70, Hsp72 (inducible isoform) HSPAIA
Hsp90 HSPC1
Hsp110 HSPH2

operating through a- and f-adrenergic receptors [36-38]
as well as elevated temperature and its attendant changes
[39, 40] (see Figure 1).

4. Exercise and Hsp

Locke et al. [3] were the first to demonstrate that vigorous
physical activity is associated with the induction of Hsp70
in rodents. Subsequently, increased expression of Hsp in
humans following exercise was confirmed [41, 42]. As noted
above, exercise is associated with many stressors, including
elevated temperature, metabolic disturbances, altered cal-
cium fluxes, increased production of reactive oxygen species
(ROS), changed hormonal environment, and mechanical
activation or deformation of tissues [13]. Exercise has also
been described as inducing a mild inflammatory state [43].
The magnitude of the exercise stress, including whether it is
acute or chronic, plays a major role in inducing the stress
response. Generally, the more vigorous the exercise was,
the greater the response was [40, 44-46]. Further, isotonic
nondamaging contractions, such as these associated with
endurance type activities, tend to lead to increases in Hsp60
and 70 with more limited responses in the small Hsp [3, 47].
In contrast, eccentric (often damaging) muscle contractions,
also lead to increases, phosphorylation, and translocation of
Hsp 25/27 and aB-crystallin [10, 48, 49]. These exercise-
induced changes may be associated with protection of the
mitochondria [50, 51], the sarcoplasmic reticulum [52],
cytoskeletal protection [49], maintenance of enzymatic activ-
ity [53], and insulin sensitivity and glucose transport [54,
55]. With repetitive exercise (exercise training), an exercise-
induced increase of Hsp70 is maintained whereas the initial
response of other Hsp to exercise is diminished as training
progresses [39].

Exercise involves the activation of specific muscles for
movement but also requires the support of the neural,
cardiovascular, and respiratory systems. The primary focus
of investigators to date has been on skeletal and cardiac
muscles. Such studies have suggested that in the sedentary
state Hsp are expressed in a tissue-specific fashion [56].
Exercise is associated with changes in Hsp expression which
are also specific to the Hsp in question [47, 49]. For example,
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FIGURE 1: Schematic representation of activation of HSF1 with exercise and accompanying increases in vascular stress. Exercise initiates
a number of factors, including elevations in temperature, reactive oxygen species (ROS), intracellular calcium (Ca?"), and decreased
energy status [1], which may result in intracellular protein modification leading to dissociation of the heat shock transcription factor
(HSF1) and heat shock proteins Hsp in the cytoplasm [2]. In addition, exercise activates adrenergic and shear stress intracellular
signaling pathways [3]. Consequently HSF1 trimerizes and binds to heat shock elements (HSE) of nuclear DNA [4], whereupon specific
phosphorylation/dephosphorylation events lead to a heat shock response [5]. Adapted from Noble, Melling, and Milne [6].

Hsp70 almost always increases with exercise, whereas the
cognate Hsc70 is not normally altered [57-60]. In a similar
fashion, some tissues, such as myocardium, may demonstrate
a more general response whereas skeletal muscle responds
with fiber-specific changes [61, 62]. It is likely that differences
in temperature reached during exercise [40] and the specific
patters of muscle fiber activation [45] are responsible for
some of these tissue-specific observations.

5. Exercise and Vascular Inflammation

Physical activity, or exercise, is known to improve overall
health and protect against, delay the progress of, or amelio-
rate many common chronic diseases [63, 64], in particular
those associated with whole body inflammation, including
cardiovascular disease [65]. Although those individuals with
the greatest cardiorespiratory fitness appear to benefit most
[66], simply engaging in regular physical activity seems to be
protective [67]. One of the primary targets that may benefit
from increased physical activity is the vasculature [68—71].
Amongst the benefits of exercise on the vasculature are
increased vasodilation and improved vascular compliance
[72] which are likely a result of shear stress and cell stretch
on both the endothelium and underlying smooth muscle 73,
74]. Exercise may protect the vasculature through a number
of mechanisms [63, 68, 75] including reduced inflammation
[76-79]. Short-term exercise reduces the levels of TNF-a,
IL-6, plasminogen activator inhibitor-1 (PAI-1) [80], and
cell adhesion molecules [81], protects against media-intimal
hyperplasia [82, 83] and smooth muscle cell hypertrophy
[83], and strengthens the endothelial barrier [84]. The anti-
inflammatory role of exercise [43, 65, 78] is complicated;
however, as intense unaccustomed exercise may be associated
with increased cortisol [85], C-reactive protein [86], and
modest increases in other proinflammatory cytokines [87].
Interestingly, heat shock exhibits beneficial effects on
the vasculature which are similar to exercise, with reduced

inflammation [88], reduced endothelial interaction with
leukocytes [89], enhanced smooth muscle cell survival
[90], and inhibition of myointimal hyperplasia and smooth
muscle cell hypertrophy [91-95]. Although both heat shock
and exercise are complex stressors likely leading to many
changes in the integrated physiology of an organism, they
both have some common characteristics including activation
of stress hormones, ROS, and elevated temperatures leading
to the activation of the heat shock response in a variety
of tissues including the vasculature. Exercise increases ROS
production, and ROS may play a signaling role to initiate
the stress response [96]. Also, there is evidence that elevated
temperature is critical for the activation of the heat shock
response in exercising mammals [39, 40, 97, 98]. These
similarities suggest that the protection conferred by exercise
against myocardial ischemia-reperfusion injury [99] could
be partially a consequence of the vascular expression of Hsp
[100, 101]. Indeed, exercise leads to a rapid transcription
of Hsp70 mRNA in the vasculature of rodents [62] which
eventually results in protein accumulation [102, 103].

6. Vascular Function of Hsp

As throughout the rest of the body, Hsp likely play specific
roles within the vasculature. The response of the vasculature
to shear stress is complicated. Laminar flow, such as that
associated with exercise, induces positive vascular remodel-
ing, whereas turbulent or low flow, such as that associated
with vascular inflammation and atherosclerosis, leads to
adhesion of blood borne molecules and inflammation [104]
(see Figure 2). The increased laminar flow associated with
exercise causes endothelial cell remodeling which includes
the activation of a number of signaling pathways and either
activation or enhanced expression of Hsp [73, 105-107].
Hsp25/27, which is phosphorylated in association with shear
stress [105], is involved in cytoskeletal organization [108].
Hsp20 is associated with aB-crystallin in cardiac tissue [109],
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FIGURE 2: Scheme for relationships between exercise-associated hemodynamic changes, inflammatory response, and Hsp. (a) Low or
turbulent flow is associated with leukocyte extravasation [1] and expression of adhesion molecules [2], resulting in intimal hyperplasia,
cell apoptosis [3] and inflammatory signaling [4]. The associated inflammatory signaling leads to increased oxidative stress, induction of
inflammatory pathways such as c-Jun NH,-terminal kinase (JNK) [5] and NF-«B [6], and suppression of endothelial nitric oxide (eNOS)
and oxidation of nitric oxide (NO) [7]. (b) In contrast, an exercise induced increase in laminar shear stress activates eNOS [1] and HSF1
[2]. HSF1 activation leads to increased heat shock proteins 25, 70, and 90 (Hsp25, Hsp70, and Hsp90) [3] which may inhibit many of
these inflammatory processes indirectly via activation of eNOS signaling (Hsp90) [4] and directly through suppression of oxidative stress
(Hsps 25, 70, and 90) [5] and inflammatory signaling including via the NF-«B pathway (Hsps 25 and 70) [6]. (c) Hsp may also directly
reduce apoptosis (Hsps 70 and 90) [1] and hyperplasia (Hsp 70) [2]. Hsp70 has further been implicated in decreased expression of adhesion
molecules [3] leading to a reduction of leukocyte extravasation [4] and expression of inflammatory cytokines [6]. Hsp70 also suppresses
JNK signaling [5] further inhibiting inflammatory signaling and cytokine release. See text for a more complete description. — — represents

activating role; |— represents inhibitory role; - - - -: Hsp90 effects; ——: Hsp70 effects; -------- : Hsp25 effects.

and both are involved in flow-mediated smooth muscle
relaxation [110-112]. Indeed, Hsp25/27 and Hsp20/aB-
crystallin may reciprocally assist in controlling venous tone
[113]. Hsp70 may modulate vascular contractility through
thick filament regulation [114], and Hsp90 is intricately
involved in activation of endothelial nitric oxide synthase
(eNOS) and the subsequent release of nitric oxide (NO) and
vascular relaxation [115].

7. Activation of the Vasculature

Normal endothelium provides an effective barrier to foreign
materials and does not interact with circulating factors.
With a variety of chronic diseases, including atherosclerosis,
metabolic syndrome, and diabetes, there is a subtle change
in the endothelium which leads to their “activation” (see
Figure 2(a)). Initially, increased membrane permeability
leads to the accumulation and modification of proteins,

lipids, and lipoproteins on endothelium [116]. The endothe-
lium then becomes “sticky,” exhibiting proinflammatory
markers such as monocyte chemotactic protein-1 (MCP-1),
vascular and intracellular cell adhesion molecules (VCAM-
1 and ICAM-1, resp.,) and greater nitrotyrosine content
[117, 118]. This leads to the recruitment of blood borne
cells which infiltrate the intima resulting in macrophages
evolving to foam cells leading to further inflammation
and release of pro-coagulant factors, smooth muscle cell
death and migration, and the eventual formation of an
atherosclerotic plaque [116, 119]. During the course of
this progressive dysfunction, NO availability plays a key
role, as it is responsible for limiting many of the above
processes. However, elevated oxidative stress associated with
vascular inflammation leads to diminished NO availability
[120]. Oxidation of the eNOS cofactor, tetrahydrobiopterin,
uncouples eNOS such that superoxide rather than NO is
formed [121]. This leads to NO scavenging to peroxynitrites



and ultimately reduced activation of eNOS and an overall
reduction in eNOS content [120, 122].

Although there are a variety of pathways by which
inflammation can influence this vascular dysfunction, the
nuclear factor kappa light chain enhancer of activated B cells
(NF-«xB) pathway plays a critical role in this process [123—
125] (see Figure 2(a)). NF-«B has both anti- and proinflam-
matory roles; however, with progression of vascular damage,
it primarily activates inflammatory pathways [123, 124, 126].
Members of the NF-«B family, including p50, p52, p65, relB,
and C-Rel, form homo- or heterodimers which are found in
the cytoplasm in an inactive state bound to the inhibitor IxB.
Various stressors can release the IxkB from NF-xB through a
pathway which involves phosphorylation of 1B by the IKK
complex (IKKa, IKKS, and IKKy). The phosphorylation of
IxB leads to its degradation by the ubiquitin proteasome
pathway. The degradation of IxB allows translocation of the
NF-«B dimer to the nucleus, where depending on the NF-
kB composition, recruited cofactors, and the sequence of
targeted genes, variable responses may be observed [124,
127]. NF-«kB may also be activated via an IKKa-specific,
noncanonical pathway [127]. Knockdown of HSF1 reduced
Hsp27 expression and increased angiotensin II-induced NF-
kB activation in vascular smooth muscle cells [88]. This
suggests that HSF1/Hsp 27 may mediate stress-activated
vascular inflammation.

8. Anti-Inflammatory Actions of Hsp

It should be noted that Hsp, particularly extracellular Hsp,
may play a key role in activating and exacerbating inflamma-
tion including vascular inflammation [17, 128-131] (see the
following); however, given the anti-inflammatory phenotype
associated with exercise and heat shock, it is likely that the
predominate role in the progression of vascular disease is
protective under these circumstances.

Both heat shock and exercise increase the vascular
content or alter the phosphorylation status of various Hsp
and both of these conditions are associated with anti-
inflammatory states [14, 132]. Although exact mechanistic
activities are often difficult to identify, activation of HSF1,
which is the primary transcription factor involved in Hsp
induction, may directly reduce general inflammation in
vascular tissue [133], but most effects are probably through
HSF1-induced increases in expression of Hsp [134] (see
Figure 2(b)).

Hsp25/27 and Hsp70 can directly stimulate anti-
inflammatory cytokines [135, 136], while Hsp70 can inhibit
release of a variety of inflammatory cytokines including
TNFa, HMGBI, and IL6 and IL1p [137-139]. This Hsp
modulation of cytokine profile also reduces the presence of
cell adhesion molecules and thereby leucocyte infiltration
of the vascular wall [140, 141]. Hsp may reduce oxidative
stress by a variety of mechanisms including facilitation of
antioxidant pathways [10, 142, 143]. Of course the reduction
in oxidative stress helps maintain NO bioavailability and
reduces peroxynitrite formation [120]. In addition, increased
Hsp90 in the vasculature has a direct positive effect on eNOS
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activation [115, 144-146], thereby maintaining vascular
function (see Figures 2(b) and 2(c)).

9. Regulatory Role of Hsp on Apoptosis

As the inflammatory process progresses, a progressive cycle
of intima expansion occurs with the death, proliferation,
and migration of smooth muscle cells [147]. Accumulating
lines of evidence suggest that Hsp intervene at multiple
locations to inhibit cell death pathways including inhibition
of death receptor signaling. Hsp25/27, 70, and 90 are
involved in suppression of the mitochondria-dependent
apoptosis, by directly limiting cytochrome ¢ release [148,
149] and activation of various caspases [150, 151], by
inhibiting caspase-independent pathways [152], and by
inhibition of stress [153] and cell death receptor pathways
[154, 155]. Hsp directly impacts on this pathway in several
ways (Figures 2(b) and 2(c)). Hsp70 and Hsp25/27 can
directly interact with IKKa, stabilizing it and preventing
the inflammatory activation of the NF-xB pathway [156—
158]. These effects appear to be dose and time dependent
[159]. Secondly, the stabilization of the cytoskeleton and
antiproliferative effects of Hsp25/27 processes negatively
influenced by LDL [11] may inhibit inflammation-induced
vascular damage [160]. Lastly, although the effects of Hsp on
vascular health have been separated by the individual Hsp
involved, there is evidence that effective vascular protection
requires interaction of multiple types of Hsp [161].

10. Metabolic Disorders and
the Stress Response

Metabolic disorders, including hyperglycemia, hyperc-
holesterolemia, hypertriglyceridemia, modified low den-
sity lipoproteins (LDL), and insulin resistance, are often
associated with diabetes, metabolic syndrome, vascular
inflammation, and atherosclerotic cardiovascular disease.
Hyperglycemia interrupts the colocalization of Hsp90 and
eNOS in endothelial cells, which may affect the production of
NO and endothelium-dependent vascular relaxation [162].
Circulating levels of Hsp60 are correlated with triglycerides
and small dense LDL in patients with untreated peri-
odontitis [4]. Restriction stress increases the production of
Hsp70, MCP-1, PAI-1, and monocyte adhesion but decreases
adiponectin in mice [163]. The levels of Hsp27 antigen and
antibody in serum of diabetic patients are associated with
cardiovascular complications and insulin resistance [164].
Oxidized LDL (oxLDL) has been considered as a circulating
marker for coronary artery disease [165]. Glycation increases
lipid peroxidation of LDL [166]. The levels of glycated LDL
(glyLDL) and oxLDL are increased in diabetic patients [167].
GlyLDL treatment increases the abundance of HSF1 and
Hsp70 in endothelial cells [128]. GlyLDL or oxLDL increases
the binding of HSF1 to the PAI-1 promoter and PAI-1
expression in endothelial cells [128, 168]. PAI-1 is not only a
physiological inhibitor of tissue and urokinase plasminogen
activator but also a marker for inflammation. Reduced
fibrinolytic activity is associated with coronary artery disease
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and diabetic vascular complications [169]. Elevated levels
of PAI-1 were detected in acute and chronic inflammatory
conditions [170, 171]. Increased levels of circulatory PAI-1
have been considered as a marker of inflammation. However,
the precise role of PAI-1 in inflammation remains to be
determined. Antioxidants inhibit oxLDL or glyLDL-induced
increases of HSF1, PAI-1, and ROS in endothelial cells,
which suggests that oxidative stress may play a regulatory
role in metabolic stress-induced activation of the stress
response and vascular inflammation [168]. In certain stress
conditions, such as massive bleeding and wounds, HSF1-
mediated PAI-1 production may be protective for the
body through its prothrombotic and antifibrinolytic effects.
However, chronic elevation of PAI-1 production induced
by metabolic disorders may lead to thrombotic tendency
and ischemic events. GlyLDL or oxLDL impairs activities
of mitochondrial respiratory chain enzymes in vascular
endothelial cells [172, 173]. OxLDL induced oxidative stress,
activation of HSF1 [168], and apoptosis and the imbalance
between caspase-3 and Bcl-2 in endothelial cells [174]. The
role of HSF1/Hsp in metabolic disorders-induced vascular
inflammation and injury remains to be further investigated
but as noted above appears to be both pro- and anti-
inflammatory.

11. Inflammatory Imbalance in Type 1 Diabetes
and Effects of Exercise

The major underlying mechanism for insulin deficiency in
type 1 diabetes is -cell destruction induced by an autoim-
mune response. Imbalance between autoreactive Thl lym-
phocytes and protective Th2 lymphocytes is found in type
1 diabetes, which leads to both proinflammatory cytokines
(IL-2, IL-12, TNF-B, and IFN-y) and anti-inflammatory
cytokines (IL-4, IL-6, IL-10, and IL-13) [175]. Interactions
between proinflammatory cytokines (TNF-f and IFN-y) and
the receptors on membrane of $-cells may activate the cas-
pase cascade and result in apoptosis. TNF-f and IFN-y may
also activate macrophages, which leads to the release of TNF-
a, IL-1f3, NO, and superoxide, which may increase oxidative
stress and downregulation of Bcl-2, which activate NF-xB
and f-cell apoptosis leading to insulin deficiency [176].
Active macrophages may increase iNOS activity. Elevated
NO generation in f-cells may cause oxidative stress, insulin
resistance, and f-cell damage [177]. Oxidative stress may
reduce insulin secretion from f-cells through stimulating
the expression of uncoupling protein 2 (UCP2). UCP2 may
inhibit electron transport in mitochondria and increase
ROS production. Prolonged hyperglycemia may increase
UCP2 in f-cells, which may contribute to insulin deficiency
in both type 1 and type 2 diabetes [178]. Relatively less
literature is available on the impact of exercise on the clinical
outcome or inflammatory mediators in type 1 diabetic
animals or humans. A recent study demonstrated resistance
exercise before aerobic exercise improved glycemic stability
throughout exercise and reduced postexercise hypoglycemia
in type 1 diabetic patients [179]. Exercise induced less
increase of Hsp70 in insulin-deficient diabetic rats than in

control rats [180]. The impact of exercise on inflammatory
mediators and the relationship with glucose metabolism in
type 1 diabetes remain to be more fully investigated.

12. Conclusion

Both exercise and metabolic stress activate HSF1/Hsp
pathway in the body. Transient stress responses induced
by regular and moderate exercise tend to downregulate
vascular inflammation and protect vessels from injury.
Chronic stress responses induced by metabolic disorders
upregulate inflammatory mediators, which leads to vascu-
lar inflammation, apoptosis, and injury. The HSF1/Hsp-
mediated stress response to exercise and metabolic disorders
play, distinguishable and possibly opposite roles in vascular
inflammation, which may be related to the involvement
of different types of Hsp, body temperature, or shear
stress of blood flow. The consequences of stress responses
induced by exercise and metabolic disorders, particularly of
autoimmune diseases such as type 1 diabetes, on vascular
inflammation require further investigation.
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