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Abstract: Blood vessels are essential for the formation and maintenance of almost all functional
tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development
and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently,
research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. En-
dothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular
development in normal and pathological processes. Studies on gene regulation in endothelial cells
demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis
and vascular development. In particular, it has been revealed that JunB (a member of the AP-1
transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and
controls them on tip cells specification during vascular development. Moreover, JunB plays a role
in tissue-specific vascular maturation processes during neurovascular interaction in mouse embry-
onic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces
endothelial cell migration and sprouting particularly in neurovascular interaction during vascular
development. In this review, we discuss the recently identified role of JunB in endothelial cells and
blood vessel formation.

Keywords: AP-1 transcription factors; JunB; angiogenesis; tip cell specification; vascular develop-
ment; neurovascular interactions

1. Vascular Endothelial Cells and Activator Protein 1 (AP-1) Transcription Factors
1.1. Endothelial Cell Heterogeneities and Gene Expression

Vascular endothelial cells represent the principal cells of blood vessels in most tissues.
They display heterogeneity and different characteristics depending on the state of angio-
genesis and tissue type. The differences noted between vascular endothelial cells include
the basic properties of arteries, veins, capillaries, tip cells, and stalk cells. In addition, they
include a wide variety of tissue-specific endothelial cells, such as the blood-brain barrier
structure bearing cerebral blood vessels, and liver sinusoidal vascular endothelial cells that
have a loose basement membrane structure. It has been shown that these differences are re-
lated to differences in gene expression. For example, blood-brain barrier transporters major
facilitator superfamily domain containing 2A (Mfsd2a) and solute carrier family 2 member
1 (Slc2a1) are specifically expressed in endothelial cells of the central nervous system [1].
Moreover, GATA binding protein 4 (GATA4) is involved in the formation of sinusoidal
blood vessels in the liver [2]. There is accumulating evidence regarding gene expression
in vascular endothelial cells. Recently, a large-scale transcriptome analysis of tissue-type
vascular endothelial cells isolated from various tissues identified various tissue-specific
vascular endothelial cell gene transcriptomes [3–5]. These data are available in the public
vascular endothelial cell transcriptome database EndDB, hosted by VIB-KU Leuven Center
for Cancer Biology (Leuven, Belgium; URL: https://vibcancer.be/software-tools/endodb,
accessed on 1 February 2021) [6]. The transcription of vascular endothelial cells, similar
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to that of other cells, is regulated by a number of transcription factors and epigenetic
regulation. A recent comprehensive analysis of the chromatin states of human vascular
endothelial cells identified 3765 endothelial-specific enhancers [7]. They also identified
nine endothelial cell groups divided into two subgroups based on the epigenomic land-
scape. In addition, numerous homeobox genes and some other transcription factors were
differentially activated across the endothelial cell types [7].

The process of vascular development, termed vasculogenesis, is initiated at the early
developmental stages by the formation of a primitive vascular plexus, a beehive-like struc-
ture of endothelial progenitor cells. In the process of angiogenesis, the primordial vascular
plexus invades the vascular-free area in response to angiogenic cues, such as hypoxia
and vascular-inducing factors. Budding, branching, and fusion occur repeatedly to create
more complex capillary networks. The vascular endothelial growth factor (VEGF) is a
primary regulator of angiogenesis and blood vessel formation that controls endothelial
cell proliferation, survival, and migration to form blood vessels. VEGFA controls angio-
genic sprouting by guiding filopodia extension from tip cells at the vascular-sprouting
frontier [8]. At the protrusion tip of the vascular elongation, the first cells which receive
VEGF signals, become “tip cells” through VEGF intracellular signaling, thereby forming
numerous filopodia and enhancing cell motility. In addition, tip cells express the Notch
ligand delta-like canonical Notch ligand 4 (DLL4). Moreover, vascular endothelial cells
adjacent to tip cells bind to their membrane receptor Notch1, which transmits signals
into the cells and causes them to become stalk cells. Stalk cells lack filopodia, are pro-
liferative, and regulate the number of cells in the subsequent vascular network [8]. Tip
and stalk cells maintain plasticity in the formation of the vascular network. Stalk cells
may become tip cells or, conversely, tip cells may degenerate into stalk cells by retracting
their filopodia. Thus, DLL4-Notch1 signaling regulates the specification of tip cells and
stalk cells to maintain proper vessel density [9]. From the primordial vascular plexus,
through a process termed remodeling, mature vessels with hierarchical structure are finally
constructed in each tissue and organ. These steps include arterial and venous specifica-
tion, vessel remodeling in the coordination with neurovascular parallel alignment, and
formation of functional blood vessels. Numerous previous studies have described the
regulation of VEGFA gene expression. Many transcription factors have been identified as
VEGF-positive and -negative regulators, including hypoxia-inducible factor 1 subunit alpha
(HIF1a) [10,11], Sp transcription factors [12], NF-κB [13], SMAD [14], SRY-box transcription
factor 9 (SOX9) [15], forkhead box O3 (FOXO3) [16,17], signal transducer and activator of
transcription 3 (STAT3) [18,19], cAMP responsive element binding protein 1 (CREB1) [20],
and AP-1 transcription factors [21–28]. In recent years, research has focused on the function
of AP-1 factors in endothelial cells. In this review, we focused on the AP-1 transcription
factor JunB in endothelial cells in VEGF signaling during angiogenesis.

1.2. AP-1 Transcription Factors in Endothelial Cells

The AP-1transcription factor family consists of Jun (c-Jun, JunB, and JunD), Fos (c-Fos,
FosB, Fra-1, and -2), and ATF (ATF-2, -3, -4, and ATFa). These factors form homodimers
or heterodimers at the N-terminal leucine zipper common motif, which bind to DNA
through the DNA binding motif, thereby regulating the transcription of target genes [29–31].
AP-1 factors control both the basal and inducible transcription of several genes which
contain AP-1 sites (consensus sequence 5′-TGAG/CTCA-3′) on their promoter. These
consensus sequences are also termed 12-O-tetradecanoylphorbol-13-acetate-responsive
elements [29]. In the case of Jun, it is known that the heterodimer Jun/Fos has higher
DNA affinity and transcriptional activity than the homodimer Jun/Jun, suggesting that
Jun functions as a heterodimer in vivo [30,32]. AP-1 transcription factors are involved in
numerous physiological and pathological processes, including the cell cycle, development,
and tumor progression. AP-1 transcription factors are also known as immediately early
genes, which are transiently and rapidly activated in response to a wide variety of cellular
stimuli. These genes are involved in the regulation of gene activity following the primary
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growth factor response, including VEGFs [33,34]. AP-1 transcription factors are reportedly
involved in regulating VEGF expression and endothelial cell gene expression in response
to VEGF stimulation [35,36]. In endothelial cells, VEGF stimulation induces its target
genes during angiogenesis, and AP-1 transcription factors regulate the expression of
these genes by binding to their promoters [26,37–39]. AP-1 transcription factors also
reportedly regulate gene expressions implicated in angiogenesis, including VEGFs and
matrix metalloproteinases (MMPs) [40–43].

2. AP-1 Transcription Factor JunB in Angiogenesis
2.1. JunB Expression in Endothelial Cells

Previously, it was found that JunB is involved in the differentiation of erythroid
cells [44] and T cells [45], as well as tadpole tail regeneration by positively regulating cell
proliferation [46]. JunB also positively regulates the proliferation of embryonic fibroblast
cells by promoting S to G2/M transition through cyclin A activation [47]. However, the
negative regulation of cell proliferation by inhibition of G1-S transition in HeLa cells
through inhibition of the cyclin D1 promoter has also been reported [48]. In human
umbilical vein endothelial cells (HUVEC), dominant negative c-Fos blocks endothelial cell
proliferation by inhibiting cyclin D expression and also inhibits cell migration. In contrast,
JunB knockdown in HUVEC attenuated endothelial cell migration but did not affect
the proliferation of endothelial cells [33]. These findings indicated that JunB is required
primarily for cell migration but may not control the proliferation of endothelial cells.

Expression of JunB in human tissues/organs during different developmental, nor-
mal, and pathological conditions has been described. Moreover, human placental JunB
expression in JunB/cyclin-D1 imbalance in placental mesenchymal stromal cells derived
from pre-eclamptic pregnancies with fetal placental complications has been described [49].
Amplification and overexpression of JunB are associated with primary cutaneous T-cell lym-
phomas [50]. JunB is an essential transcription factor for the differentiation of inflammatory
T-helper 17 (Th17) cells [51–53], which demonstrates that JunB plays roles in T-cell program-
ming. A case study on leukemia demonstrated that JunB expression levels significantly
decreased in human chronic myelogenous leukemia (CML) [54]. Abnormally expressed
JunB transactivated by IL-6/STAT3 signaling promotes uveal melanoma aggressiveness via
epithelial–mesenchymal transition [55]. The role of JunB in psoriasis-like skin disease and
arthritis was also reported. The JunB loss in keratinocytes induces chemokine/cytokine
expression, attracts neutrophils and macrophages to the epidermis, and contributes to
phenotypic changes in psoriasis [56]. A recent study using integrated bulk and single-cell
RNA sequencing identified disease-relevant monocytes and a gene network module under-
lying systemic sclerosis (SSc). Four inflammatory genes from CD16+ monocytes, including
JunB, showed the greatest differential expression between SSc and the healthy controls [57].
The defective degradation of JunB in patients with systemic sclerosis contributes to the
overproduction of type I collagen and the development of dermatofibrosis [58].

JunB has been implicated in angiogenesis, and its expression is induced by hypoxia
and VEGF. In endothelial cells, JunB regulates endothelial cell functions as a downstream
factor of VEGF signaling [33]. Moreover, JunB is a hypoxia-inducible factor, its levels are
elevated via the translocation and activation of NF-κB under hypoxic conditions [59]. In
addition to transcriptional regulation, JunB activities are regulated via its translational
regulation and phosphorylation [48,60]. VEGF is an upstream regulator of JunB [33] and
also JunB regulates VEGF transcription [26,27,59]. Thus, JunB is implicated in angiogenesis
by controlling the transcription upstream and downstream of VEGF-signaling. Mecha-
nistically, the VEGF promoter contains two AP-1 transcription factor-binding sites, and
induced JunB binds to the VEGF promoter to positively regulate VEGF expression under
hypoxia [59]. In HUVEC, JunB induces VEGF expression, miR-3133 functions as a negative
regulator of the JunB/VEGF pathway, thereby affecting angiogenesis [27]. There have also
been reports of epigenetic regulation, specifically, JunB exhibits protein–protein interaction
with BRG1 in the target gene promoter in HeLa cells [61,62]. Yeast two-hybrid screening
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has shown that BAF60a of the SWItch Sucrose non-fermentable (SWI/SNF) complex binds
to c-Jun, JunB, and c-Fos [63]. In addition, it was reported that breast cancer type 1 sus-
ceptibility protein (BRCA1) interacts with JunB and regulates the transcription activity of
the activation domain (AD) of BRCA1 in HEK293T cells [64]. In particular, the coiled-coil
domain of BRCA1 interacts with the basic leucine zipper (bZIP) domain of JunB, and
this interaction enhances BRCA1 AD activity, which affects BRCA1 transcription activity
in HEK293T cells [64]. BRCA1 plays important roles in maintaining chromatin stability
via its functions in transcriptional regulation and DNA repair [65,66]. BRCA1 is also
known to interact with SWI/SNF chromatin remodeling complexes in breast cancer [67].
In retinal vascular development, the genome-wide accessibility of AP-1-binding sites is
epigenetically controlled by sphingosine-1-phosphate (S1P) signaling. This process alters
the chromatin composition of the AP-1-binding site to become closed and inaccessible,
resulting in the inhibition of JunB-related gene expression during vascular maturation in
the mouse retina [68].

JunB is expressed in endothelial cells and regulates their morphogenesis by regulating
the core-binding factor beta subunit (CBFβ), which controls MMP13 expression, cell migra-
tion, and tube formation [42]. In this case, both the JunB–JunB homodimer and JunB–ATF2
heterodimer regulate CBFβ expression in endothelial cells [42].

2.2. JunB Is a Tip Cell Factor in Response to VEGF Signaling

In the sprouting region of the primordial vascular plexus, vascular endothelial cells
located at the tip of the growing vessel extend numerous filopodia toward the vessel-free
region. The endothelial cells that extend these filopodia are termed tip cells, and the
endothelial cells that proliferate behind the tip cells and support vascular growth are
called stalk cells [69]. The morphology of tip cells is similar to that of the growth cone
in nerve axon elongation. Tip cells migrate by extending their filopodia in response to
the concentration gradient of VEGF expressed in vascular-free areas, which determines
the direction of vascular growth. However, stalk cells actively proliferate and define the
number of cells in the subsequent vascular network. Tip cells and stalk cells maintain
plasticity in the construction of the vascular network and can switch morphology. The tip
cell and stalk cell specification mechanisms have been clarified [9]. Tip cells express the
DLL4, while stalk cells express the Notch receptor Notch1. This DLL4-Notch1 signaling
regulates the equilibrium between the tip and stalk cells, as well as the extension of the
filopodia of tip cells to maintain a proper vessel density. Therefore, in DLL4-knockout
mice, the number of filopodia extending from the tip cells increases along with the ratio
of tip cells to stalk cells, resulting in the formation of hyperplasia of the vascular network
with compressed vessel spacing. Nevertheless, the growth rate of blood vessels decreases.
Eventually, with the emergence of blood flow, the primitive vascular plexus infiltrates
the tissue and undergoes a process termed remodeling, resulting in the emergence of a
hierarchical mature vascular network.

JunB is reportedly upregulated in tip cells at the angiogenic frontier and contributes to
vascular development in mouse embryonic skin [26] and retinal vasculatures [68] (Figure 1).
The induction of JunB expression is temporal and spatial in tip cells at the angiogenic fron-
tier or at the branching points during vascular development. In vitro analysis using human
primary microvascular endothelial cells (HMVEC) showed that the induced expression
of JunB results in marked changes in cell morphology [26]. Specifically, JunB expression
has a profound effect on the cell morphology of vascular endothelial cells, causing them
to change to a fibroblast-like spindle cell morphology. This morphological change can
be positively or negatively regulated by controlling JunB expression alone. In addition,
studies using a three-dimensional collagen matrix angiogenesis assay demonstrated that
JunB-expressing vascular endothelial cells enhance cell motility and regulate vascular
formation. In the development of retinal blood vessels, JunB is strongly induced in the
characteristic tip cells located at the angiogenic frontier of the process of radial extension
of the primitive vascular plexus into retinal tissue. When JunB expression is abolished
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by conventional JunB knockout or endothelial cell-specific knockout in mice, the number
of tip cells decreased in retinal vasculature, which resulted in a marked suppression of
vascular progression and branching [68].

Figure 1. In the event of angiogenesis in embryonic skin and retina, endothelial cells respond to
angiogenic cues, such as hypoxia or other signals, to produce new vessel branches at the angiogenic
frontier. The vascular endothelial growth factor (VEGF) plays a central role in this process. The VEGF
signals that induce JunB expression (small upper arrow) result in the conversion of endothelial cells
to tip cells. JunB activation is involved in the vessel parallel alignment with neurons in developing
skin, retinal tissue-specific radial vessel expansion, and deep plexus expansion in retinal vessel
development. Both vessel-wiring processes in embryonic skin and the retina include neurovascular
interactions. The arrows indicate the relationship of signaling directions. Large green arrow indicates
direction of vascular elongation.

3. Endothelial JunB Functions in Vascular Development In Vivo
3.1. JunB Is Required for Placentation and Heart Vascular Development in Mice

The in vivo functional study of JunB using conventional JunB knockout mice was
the first to describe the loss of JunB resulting in embryonic lethality through placental
malformation and failure of cardiac vasculogenesis [70]. More specifically, mouse embryos
with conventional JunB knockout die between E8.5 and E10 due to the abnormal formation
of the placenta. Knockout of JunB does not affect cell proliferation, however, embryo growth
was retarded due to a failed connection of maternal circulation. These results indicated
that JunB is a transcription factor required for correct vascular development [42,59,70].

3.2. JunB Is Involved in Retinal Vascular Outgrowth and Retinal Special Vascular Differentiation

Retinal vasculature has been widely used as an analysis system for angiogenic sprout-
ing and vascular development due to its postnatal development and ease of tissue accessi-
bility. VEGF plays a central role in retinal vascular development [8], and it has been shown
that VEGF receptor 2 (VEGFR2) and VEGFR receptor 3 (VEGFR3) are required for vessel
sprouting [71,72]. VEGFR3 is particularly highly expressed in tip cells and induces angio-
genesis and vessel growth in the absence of VEGFR2 in a Notch-independent manner [73].
The VEGFR3 signaling pathway is essential for the development of angiogenesis, with
VEGFR3 expression being characteristically induced in developing vascular endothelial
cells and is later restricted in lymphatic endothelial cells [74,75]. VEGFR3, which binds
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to VEGFC and VEGFD, is essential for angiogenesis, particularly in the developmental
stages [76] (Figure 2, right). Recently, it was shown that JunB is involved in the pathological
process of hypoxia-mediated retinal neovascularization [77]. In retinal endothelial cells,
VEGFA signaling phosphorylates intracellular protein kinase C theta (PKCθ), and retinal
endothelial cells form tip cells, thereby positively regulating cell migration, sprouting, and
tube formation. In hypoxia-induced VEGFA signaling, PKCθ phosphorylation upregulates
JunB expression, which induces VEGFR3 expression, thereby inducing tip cell formation,
sprouting, and neovascularization of retinal capillaries via STAT3 activation. VEGFR3 is a
key regulator of retinal neovascularization, while endothelial-specific knockout of JunB
inhibits VEGFR3 expression, inhibiting retinal neovascularization. Mechanistically, it was
shown that JunB acts downstream of PKCθ, and JunB directly binds to the promoter of
VEGFR3 to regulate VEGFR3 expression (Figure 2).

Figure 2. Tip cell phenotype expression in response to angiogenic cues in endothelial cells at the
vasculogenesis frontier. In endothelial cells at the angiogenesis frontier during vascular development,
JunB expression is induced by angiogenic cues including hypoxia and vascular endothelial growth
factor A (VEGFA) through hypoxia-inducible factor 1 subunit alpha (HIF1α) or phosphorylation
of protein kinase C theta (PKCθ). “P” indicates phosphorylation of the molecule. (left). In the
developing skin vasculatures, the direct interaction of endothelial cells with peripheral neurons
can also stimulate JunB expression and coordinate neurovascular parallel alignment (left). In tip
cells, JunB is involved in the upregulation of vascular endothelial growth factor receptor 3 (VEGFR3)
expression which is a key VEGFR for angiogenesis at specific developmental stages. VEGFR3 binds
vascular endothelial growth factor C and D (VEGFC/D), while signaling cascades are required for tip
cell migration and sprouting of endothelial cells by signal transducer and activator of transcription
3 (STAT3) activation at the angiogenic frontier (right). The arrows indicate the relationship of
signaling directions.
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Another study on retinal angiogenesis demonstrated that JunB is involved in the pro-
cess of retina-specific vascular network development [68]. Retinal blood vessel networks
are produced by vascular endothelial cells that invade into the eye retina tissue from the op-
tic nerve papilla. In the early stage of retinal vascular development, radial retinal structures
are produced along the superficial nerve fiber layer of the retina to form the superficial
plexus. Later, around P8 in mice, retinal blood vessels begin to invade into the retinal nerve
tissue vertically toward the retinal deep layer, forming a deep plexus, which is followed by
the formation of the middle layer plexus. Yanagida et al. focused on S1P receptor signaling
in retinal vascular development and found that it regulates the open-chromatin state of the
AP-1 binding motif of retinal endothelial cells genome-wide [68]. Postnatally, following the
complete abolishment of S1P receptor signaling by the receptor triple knockout, the AP-1
motif in the open-chromatin region was strongly accumulated. Furthermore, the investiga-
tors confirmed that JunB was the AP-1 transcription factor involved in this process. JunB
was highly expressed in tip cells at the tip of angiogenesis and promoted angiogenesis until
the activation of S1P receptor signaling. Following blood perfusion, the serum-derived S1P
induces vascular endothelial-cadherin (VE-cadherin) expression in endothelial cells and
results in the suppression of JunB expression in endothelial cells. At the same time, S1P
also induces chromatin remodeling to close the AP-1 motif in endothelial cells, which have
a lumen structure with blood flow. Reportedly, VE-cadherin is induced by S1P signaling in
mature retinal vasculature with lumen structures where blood flow is present, resulting in
decreased expression of JunB. In other words, S1P signaling converts the tip cell-like state
activated by JunB to a retinal-specific vascular maturation state. Interestingly, in retinal
angiogenesis, JunB expression is activated at the sprouting point, i.e., at the branching
point where blood vessels extend vertically into the deep retinal layers. Although the
initiation of vertical branching is unclear, some stimuli (partial weakening of S1P signaling
or interaction of endothelial cells with retinal neurons) causes JunB induction and chro-
matin remodeling in vascular endothelial cells, thereby exposing the AP-1 site. As a result,
JunB target genes (including tip cell genes) can be induced, and the cell converts to a tip
cell, extending the retinal plexus invasion into the deeper layers of retinal tissue. During
developmental vasculogenesis, JunB expression is specifically observed in endothelial cells.
The role of JunB in this directional angiogenesis during retinal vasculature development is
consistent with its function in cutaneous vascular development, as described below.

3.3. JunB Regulates Neurovascular Parallel Alignment in Developing Skin Vasculture in Mice

It is established that nerves and blood vessels align parallel to each other. However,
until recently, the molecular mechanism involved in this process was unclear. Recent
reports described that both neuronal signaling to the blood vessels [78] and vascular signal-
ing to the nerves [79] are involved in the regulation of this juxtaposition process. Moreover,
the nerves and blood vessels co-operatively form mature and correct neural and vascu-
lar network structures. In zebrafish, it has been reported that inhibition of the function
of VEGFR3 results in the loss of nerve-vessel parallelism. Furthermore, the trapping of
VEGFC secreted by arterial vascular endothelial cells using VEGFR3-Fc recombinant pro-
tein results in abnormal aortic ventral motor nerve function [80]. These findings suggested
that VEGFC-VEGFR3 signaling plays an important role in nerve-vessel parallelism. In the
development of the subcutaneous vascular network in mouse embryos, peripheral nerve
fiber bundles align parallel to arterial blood vessels while retaining a certain distance from
nerves, and form a mature vascular network. In 2013, Li et al. reported that VEGF and
CXCL12 secreted by nerves act on the primitive vascular plexus, which is the initial struc-
ture of blood vessels. This induces vascular remodeling to form neurovascular parallelism,
resulting in the formation of a proper mature vascular network [81]. Using a co-culture
system of dorsal root ganglion cells and primary HMVEC, it was found that JunB was
strongly and specifically induced in endothelial cells during neurovascular interactions [26].
In addition, the knockdown of JunB resulted in disruption of the neurovascular parallelism
in vivo. This evidence indicated that induction of JunB in endothelial cells is required
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for neurovascular parallel alignment during vascular development in mouse embryonic
skin [26]. Furthermore, we found that JunB induction is mediated by direct cell-cell con-
tact with nerves-vessels rather than soluble factors secreted by the nerves. Interestingly,
vascular endothelial cells with force-induction of JunB expression adopt a spindle-like
morphology, show increased motility, and exhibit a unique phenotype which is very similar
to that of tip cells found at the angiogenic frontier. In fact, vasculogenesis assays using a
three-dimensional collagen matrix and endothelial sphere outgrowth assays revealed that
JunB expression is activated in tip cells at the angiogenic frontier [26]. It is clear that JunB is
involved in vascular remodeling by conversion of vascular endothelial cells to tip cells, and
JunB expression is required for the juxtapositional alignment of the blood vessel to neurons
(Figure 2, left). However, the mechanisms through which directional remodeling is in-
duced remains unclear. The candidate molecule(s) of this mechanism may be the upstream
molecule(s) of JunB, which are supplied by nerves at the neurovascular interaction.

3.4. JunB also Controls Lymphangiogenesis

During lymphatic vessel development in vertebrates, Prospero homeobox protein 1
(PROX1) expressing endothelial cells in cardinal veins eventually differentiate into lym-
phatic endothelial cells during lymphangiogenesis, which is considered the master reg-
ulator of lymphatic endothelial cell fate specification [82,83]. Forkhead box protein O1
(FOXO1) is required for proper lymphatic vessel development and maturation by upreg-
ulating C-X-C chemokine receptor 4 (CXCR4) expression in lymphatic endothelial cells
in mouse tail dermis [84]. The functions of JunB in lymphatic vascular development in
zebrafish have been described by Kiesow et al. [85]. JunB directly regulates miR-182 expres-
sion, which downregulates its downstream FOXO1 expression in lymphatic endothelial
cells. The loss of JunB leads to the failure of parachordal lymphangioblast and thoracic
duct formation in zebrafish, indicating that JunB plays an important role in lymphatic
vascular morphogenesis in zebrafish by negatively regulating JunB/miR-182/Foxo1 axis
signaling. The endothelial-specific deletion of Foxo1 in mice results in embryonic lethality
at approximately E10.5 due to vascular remodeling defects [86,87]. Its phenotype is sim-
ilar to that of JunB knockout mice [70]. Nevertheless, currently, the involvement of the
JunB–miR-182–FOXO1 axis in blood vessel development remains unknown. In addition,
VEGFC–VEGFR3 signaling is implicated in the survival, proliferation, and migration of
lymphatic endothelial cells [88,89]. Thus far, the role of JunB in the regulation of VEGFR3
expression in lymphatic endothelial cells is unclear.

4. Conclusions

The main original articles that describe the functions of JunB in angiogenesis and
vascular development, discussed in this review, are summarized in Table 1. A variety
of angiogenesis-related factors have been identified, including exogenous angiogenesis-
inducers (e.g., hypoxia and VEGF), transcription factors in vascular endothelial cells that
are induced in response to these inducers, and angiogenesis-related genes transcribed
by these transcription factors. Some transcription factors induce the expression of tissue-
specific endothelial cell phenotypes in specific endothelial cells. In angiogenesis, tip cells
appear at the tip of angiogenesis after receiving angiogenesis-inducing cues (e.g., VEGF)
and induce sprouting with migration of vascular endothelial cells to form a proper vascular
network. The expression of AP-1 transcription factor JunB is induced in tip cells during
vascular development of skin capillaries and retinal vessels, leading to the induction of tip
cell-specific characteristics (e.g., cell migration and angiogenic sprouting).

The mechanism of vascular “directional” control appears to be maintained mainly
through the signaling balances between attractive and repulsive effectors from various
tissues during vascular formation. For example, arterial and venous juxtapositional align-
ment is controlled by the balance of two types of action: Repulsive effects between arterial
EphrinB2 and venous EphB4 [90,91] and attractive action between arterial apelin and the
venous apelin receptor (APJ) [92]. The transient induction of tip cells at the frontier of
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angiogenesis has a dynamic response to various angiogenic attractors (e.g., hypoxia and
VEGF), which elongate and remodel the blood vessels according to the location and timing
to form a proper vascular network. We and others have shown that JunB induction in
tip cells is a novel angiogenic machinery that regulates the motility, filopodia formation,
invasion, and remodeling of tip cells in response to angiogenic cues. By controlling the
temporal and spatial induction of JunB in tip cells, we may be able to control the elongation
of blood vessels. This suggests that the tip cell factor JunB is a determinant of vascular
directionality. Nevertheless, the involvement of JunB in tip-stalk cell sorting signaling by
Notch-DLL4 intercellular signaling remains unclear.

Table 1. Original articles which describe JunB functions in angiogenesis and vascular development.

JunB Functions in Endothelial Cells Reference

Angiogenesis [26,27,42,59,68,70,77]
Neurovascular parallel alignment [26]
Filopodia formation and tip cell specification [26,68,77]
Retinal vascular development [68,77]

Lymphangiogenesis [85]

In the process of retinal vascular development, JunB is specifically upregulated in
tip cells at the angiogenic frontier in the upper layer of retinal nerve tissue and migrates
radially on the upper layers of the retina. Expression of JunB is also observed specifically
in tip cells vertically protruding into the deep retinal plexus layer, leading to the formation
of longitudinally oriented retinal blood vessels [68]. In the remodeling process of mouse
embryonic skin vascular development, JunB is induced in endothelial cells in contact with
the nerves and enhances the invasiveness of the endothelium to create a vascular network
that aligns parallel to the nerves [26]. A common feature of JunB-mediated vascular
network formation in both embryonic skin and retina vasculature is that the regulation of
the directional vascularization is based on the interaction with nerve cells. Probably, the
angiogenic attractors of extracellular matrix produced by neurons or neuronal membrane
proteins play a role in determining the direction of blood vessels. In response to this, JunB
is induced in vascular endothelial cells to increase migratory activity and determine the
direction of extension. However, at present, the factor(s) on the neural side that play a role
in this guidance are unknown. Hence, further extensive research is warranted.
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