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Abstract: The advent of the ‘lab-on-fiber’ concept has boosted the prosperity of optical fiber-based
platforms integrated with nanostructured metasurface technology which are capable of controlling
the light at the nanoscale for multifunctional applications. Here, we propose an endless single-mode
large-mode-area photonic crystal fiber (LMA-PCF) integrated metalens for broadband and efficient
focusing from 800 to 1550 nm. In the present work, the optical properties of the substrate LMA-PCF
were investigated, and the metalens, consisting of dielectric TiO2 nanorods with varying radii, was
elaborately designed in the fiber core region with a diameter of 48 µm to cover the required phase
profile for efficient focusing with a high transmission. The focusing characteristics of the designed
metalens were also investigated in detail over a wide wavelength range. It is shown that the in-fiber
metalens is capable of converging the incident beams into the bright, symmetric, and legible focal
spots with a large focal length of 315–380 µm depending on the operating wavelength. A high and
average focusing efficiency of 70% was also obtained with varying wavelengths. It is believed the
proposed fiber metalens may show great potential in applications including fiber laser configuration,
machining, and fiber communication.

Keywords: optical fiber; metalens; fiber-integrated device; broadband; focusing efficiency

1. Introduction

Since the first demonstration of silica optical fiber with a low transmission loss of
20 dB/km in the early 1970s [1], low-loss optical fibers have revolutionized the telecom-
munication industry in the last five decades and have continued to evolve toward an
extremely low level with a value of 0.14 dB/km at 1550 nm [2]. To date, various types of
optical fibers have been developed and serve as a well-established platform for efficient
light guiding and transmission. A large number of applications based on optical fiber
technology have been realized, such as optical sensing for various physical parameters [3,4],
fiber lasers and amplifiers [5,6], and astrophysics [7]. Despite the tremendous success of
optical fiber technology, there exist some drawbacks hindering the widespread application
of optical fibers. The optical properties of optical fibers (amplitude, phase, polarization,
etc.) are difficult to alter once they are fabricated. Moreover, the transmitted modes in
the fiber core tend to diverge which are restricted by the diffraction limit of the core size.
As a result, extensive research has been conducted into the direction of fiber-integrated
devices. A variety of functionalized fiber-based devices, such as plasmonic sensors [8],
biosensors [9–11], and ultrafast fiber lasers [12,13], have been successfully fabricated by
implanting periodic nanostructures on the facets of the optical fibers. Particularly, in-fiber
focusing lenses have also been demonstrated in recent years, with the specially designed
plasmonic concentric annulus on the fiber end facet [14,15]. However, these optical devices
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operate in a very short focal length, and their focusing performance was strongly affected
by high-order diffraction patterns, limiting their potential in a range of optical applications.

Fortunately, the emergence of metasurface technology has attracted enormous atten-
tion due to its superior features in tuning the properties of the incident light wavefront
by controlling the phase polarization and amplitude with the spatially designed flat and
periodic arrays in subwavelength scale. Until now, a large number of optical meta-devices
have been developed with multiple functions including beam splitter [16,17] and light-field
imaging [18–20]. The use of fiber-integrated meta-devices, with the ‘lab-on-fiber’ paradigm,
has also recently been demonstrated in applications such as an in-fiber polarizer [21],
scanning microscopy [22,23], and laser mode-locking [24]. In particular, the in-fiber plane
metalens with the focusing effect has also been reported recently [25]. However, the fo-
cusing function was polarization-dependent with a focusing efficiency of only 16% due to
metal loss. Moreover, the focal length was only several tens of micrometers with a narrow
operating bandwidth of 100 nm, which limits its practical application. In this regard, we
propose an endless single-mode photonic crystal fiber (PCF) integrated metalens which
operates in a broadband wavelength range from 800 to 1550 nm. The carefully designed
in-fiber metalens is composed of spatially arranged dielectric titanium dioxide (TiO2) with
varying diameters and provides sufficient phase coverage for efficient focusing of fiber
guided modes with high efficiency of 70%. We believe that the proposed large-mode-area
PCF metalens show great potential in a number of in-fiber applications such as fiber laser
configuration, fiber sensing, and fiber communication.

2. Materials and Methods
2.1. Design of Endless Single-Mode LMA-PCF

To select the substrate for loading of the multifunctional metalens array, one of the
key criteria is to ensure a large core mode area to place a large number of nano units
for sufficient modulation of phase. In this regard, photonic crystal fibers (PCFs) are one
of the most efficient media where the endless single-mode propagation can be achieved
by the special geometry arrangement of cladding and core. In this work, instead of the
conventional air-hole PCF structure in which precisely controlling the dimension of air
holes in fiber fabrication is quite demanding and labor-intensive, the all-glass PCF structure
is proposed where the air holes are replaced by the commercially available fluorine-doped
silica rods, similar to the ones reported in [26,27]. The core and cladding have an extremely
low refractive index difference of ∆n ~1.2 × 10−3. Theoretically and experimentally [28,29],
for a well-constructed PCF, the normalized frequency parameter V can be written as

VPCF =
2πΛ

λ

[
n2

c(λ)−n2
cl(λ)

] 1
2 (1)

where nc(λ) and nc(λ) represents the refractive index of the core and cladding at a given
wavelength, respectively. Λ is the lattice constant, namely the pitch between the hole
spacing. For single-mode guiding of a standardized PCF, the VPCF number should be
controlled as VPCF ≤ π. Taking into the refractive index difference from our design, the
ratio of incident wavelength to the pitch (λ/Λ) should be set above ~0.117. On the other
hand, from the multipole solutions of Maxwell’s equations, it has been found the phase
boundary distinguishing the single from the multimode propagation is well fitted by the
following equation [30]:

λ

Λ
= α

[
d
Λ

− d∗
Λ

]γ

(2)

where the d*/Λ is the empirical critical parameter (~0.406) for standardized PCF. Consid-
ering the critical value of λ*/Λ (~0.117) and the optimal fitting with α = 0.18, γ = 0.89,
the phase diagram illustrating the single-mode and multi-mode regimes of the designed
all-glass PCF is plotted, as shown in Figure 1a. As can be seen, for the region d/Λ < d*/Λ,
the PCF has the endless single-mode propagation. For d/Λ > d*/Λ and λ/Λ > λ*/Λ, the
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single-mode transmission is still supported whereas the second-order mode is confined in
the core where λ/Λ < λ*/Λ.
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Figure 1. (a) Simulated curve for single-mode and multi-mode boundaries of designed photonic crystal fibers (PCFs). (b)
Geometry and key parameters of the designed all-glass PCF.

Following the phase diagram illustrated in Figure 1a, we have configured the all-glass
endless single-mode PCF, as indicated by the green rectangle. The all-glass PCF is designed
with Λ = 30 µm, d = 10 µm, and core diameter of 2ρ = 50 µm, as shown in (see Figure 1b). It
is worth noting that the core area of the designed PCF is approximately 1.6 times larger than
the commercially available large-mode-area-25 (LMA-25) PCF. The operating wavelength
is then implemented from 800 to 1550 µm to cover three typical fiber communication
windows. Firstly, the transmission properties of the designed PCF are analyzed and
shown in Figure 2a. It is seen that with the increase in the operating wavelength, both
the effective mode area and the mode field diameter (MFD) of the fundamental mode
increase monotonically and reach the maximum at 1550 nm. It is worth noting that the
mode area for the designed fiber at 1550 µm has been enlarged nearly 60 times compared
to the Corning single-mode fiber 28 (SMF-28), making it suitable for the application of fiber
amplifiers and lasers because of its capability of loading high power levels with the ease
of nonlinear limits. The wavelength dependence of the effective refractive index of the
fundamental mode is also plotted in Figure 2b. As expected, the effective refractive index
of the guided mode decreases with the increase in wavelength. The dispersion properties
of the designed PCF are also illustrated in the inset of Figure 2b. It is seen that the material
dispersion dominates the waveguide dispersion in the desired spectral range, and the
waveguide dispersion is negligibly small for this kind of LMA-PCF.
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2.2. Design of Broadband Focusing Metalens

After careful design of the endless single-mode LMA-PCF as the substrate, the metal-
ens array was also designed based on the core region of the LMA-PCF. In general, there
are two kinds of phase modulation that would lead to the convergence of incident light
beam, namely the propagation phase and geometry phase. The geometry phase, which is
also called the Pancharatnam–Berry (PB) phase, originates from the rotation (i.e., rotation
angle θ) of the nano unit through which the cross-polarized beam carries an additional
phase change of 2θ [31].By contrast, the propagation phase is modulated by the size (i.e.,
height, radius) of each unit cell. As a result, the propagation phase covering from 0 to
2π can be achieved by continuously tuning the dimension of the unit cell along a certain
orientation, say, the x axis. By using this method, the desired optical path difference is
attained by changing the optical path of the light, which is independent light polarization.
Theoretically, to achieve the focusing effect for the incident beam, the phase profile of the
designed metalens should satisfy the following equation [32]:

ϕ(x, y) =
2π
λ

(√
f 2+x2+y2 − f ) (3)

where f is the designed focal length, λ is the wavelength of the incident beam, and x and
y are the coordinates in the plane of metalens array. To achieve the 2π phase retardation
from the center to the edge of the metalens array, the relationship between the focal length
and the radius of metalens can be rewritten as

f =
R2

2λ
− λ

2
(4)

where R is the radius of the designed metalens. From Equation (4), it is clear that the
focal length depends tightly on the radius of the metalens. Therefore, it is apparent that
the LMA-PCF supports a larger focal length with a higher focusing efficiency. Here, the
dielectric titanium oxide (TiO2) nanorod with an effective index of ~2.55 is employed as
the unit cell of the metalens for tuning the propagation phase since the loss of TiO2 is
negligible at the optical communication wavelengths. It should be noted that in addition to
the requirement of phase retardation, the transmission level through the nanorods should
also be high enough to reduce the transmission loss and allow for high focusing efficiency.
In this regard, both the radius and height of the nanorod have to be tailored to fulfill these
two requirements. Figure 3a,b illustrate the transmission and the phase change induced by
the radius of nanorod with the given optimal height (H ~1.4 µm) and period (Λ ~1 µm) of
the nanorods.
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It is seen that at the predefined height and period, the phase delay induced by the
nanorod increases along with the radius and achieves full 2π phase coverage by varying the
radius from 50 to 140 nm, whereas a high transmission coefficient (T ~0.98) is maintained
for the whole radius range. This suggests that the designed parameters of the metalens
on top of the LMA-PCF can substantially act as an efficient focuser which may find great
potential in the fiber communication domain. Based on the phase versus radius relation
and the target hyperbolic phase versus position relation, the required nanorod radius at a
given spatial position is calculated. It should be noted that the diameter of the designed
metalens should be smaller than that of the core region of the PCF since the guided mode
is tightly confined in the center of the PCF. Taking into account the relationship between
radius and position, Equation (4), and the core size of the endless single-mode LMA-PCF,
the proposed PCF-based metalens is elaborately constructed for efficient focusing of the
broadband wavelength range used in the fiber-optic communication systems, as shown in
Figure 4a. It is seen that, with the well-established relation between the nanorod radius and
the spatial position (Figure 4b), the diameter of the nanorods decreases radially and orderly
from the center to the edge of the metalens (Figure 4c,d), fulfilling the 2π propagation
phase change over the radial direction of metalens. Since we are interested in the focusing
effect in the short wavelength region, the metalens is primarily designed to converge the
incident beam at a short wavelength of 0.8 µm with a lens diameter of 48 µm and a large
focal length of 360 nm.
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3. Results and Discussion

To verify the focusing effect of the designed metalens, the guided fundamental mode
of the LMA-PCF was selected and launched into the metalens to monitor the optical path
traveling through it. The numerical simulation was carried out using the finite difference
time domain (FDTD) method, and the incident light is assumed to propagate along the +z
axis. Firstly, the phase retardation of the incident beam across the x axis is computed and
plotted in Figure 5.
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It is seen that the simulated phase profile well coincides with the required phase
retardation, exhibiting 2π variation across the radial direction of the metalens. Still, it
should be noted that some ripples are observed in the simulated phase profile which is
caused by the discretization using the phase-to-radius mapping with a periodicity of 1 µm,
and the precision of phase retardation modulated by the nanorod array is expected to be
improved with a shorter periodicity.

To visualize the focal point at a certain distance with the designed in-fiber metalens,
the near to far-field projection method was applied with the period matched layer (PML)
boundary conditions along the propagation direction (+z axis). Figure 6a presents the
focusing characteristics of the designed metalens in the propagation (x–z) plane at the
desired wavelength λd = 800 nm. It is seen that the incident beam traveling through
the metalens becomes converged and reaches the maximum intensity at a distance of
z = 380 µm. Moreover, the light intensity profile along the z-direction at x = 0 is also
plotted in Figure 6b. It can be seen that the light intensity firstly oscillates in the region of
z = 0 to 225 µm, which may be caused by the stray lights which are not tightly focused.
Thereafter, the light intensity increases sharply from z = 225 to 380 µm and gradually
decreases as the light beam propagates farther, confirming that the incident light beam
is well focused at a distance of 380 µm. The simulated focal length is similar to the
presumed value of 360 µm obtained by Equation (4) with a small discrepancy, which may
be attributed to the limited number of nanorods and spatial distance acquired by the
discretized phase-to-radius mapping method. In addition, the intensity distribution of the
focal spot across the focal (x–y) plane is presented in Figure 6c. Clearly, a tightly focused,
bright, and symmetric focal spot is observed in the center of the focal plane. Furthermore,
the normalized intensity profiles of the focal spot along the x- and y-direction are present
in Figure 6d,e. Clearly, the same intensity profile is observed along the two orthogonal
directions at the focal plane with the maximal intensity located in the center. This further
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manifests the central symmetric of the focal spot with the well-focused characteristics of
the designed in-fiber metalens. By calculation, the focused beam waist, defined as the
full width at half maximum (FWHM), is also obtained with a value of 5 µm at the target
wavelength of 800 nm.
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In addition to the target wavelength in the short wavelength region, the focusing
performance of the in-fiber metalens is also investigated with the second and third telecom-
munication windows at 1300 and 1550 nm. The far-field intensity distribution of the
in-fiber metalens in the x–z plane at various incident wavelengths is shown in Figure 7a–c.
It is seen that with the increase of operating wavelength, the focal length is moderately
decreased, which is in agreement with the relationship shown in Equation (4). However,
the focal region is seen to be notably enlarged at longer wavelengths; this is because the 2π
phase coverage is designed for the target wavelength of 800 nm and less phase coverage
is achieved across the metalens for longer wavelengths, resulting in a weaker focusing
effect as compared to the optimized wavelength. The intensity distribution of the focal spot
in the x–y plane at three wavelengths is also illustrated in Figure 7d–f. Correspondingly,
the cross-section of the focal spot is increased dramatically with increasing incident wave-
length, and the electric field intensity of the focal spot decreases radially and smoothly
from the center to the edge, showing the good beam quality of the focal spot.

To further quantify the focusing performance of the designed in-fiber metalens, the
focal length and FWHM of the focal spot at various wavelengths are extracted and calcu-
lated, as shown in Figure 8a,b. It can be seen that the focal length has blueshifted from 380
to 310 µm when the incident wavelength is varied from 800 to 1550 nm (Figure 8a), and
it shows a decreasing trend with the increase of wavelength. By contrast, the change in
FWHM exhibits a reverse trend (Figure 8b), and the value of FWHM is increased mono-
tonically from 5 to 11 µm with the increase of incident wavelength. Based on the optical
performance of the designed metalens, it is revealed that the input fundamental mode
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from the LMA-PCF at all optical communication wavelengths are well focused with the
compatible dielectric metalens, manifesting the broadband functionality of this in-fiber
meta-device. However, due to the chromatic aberration caused by the different phase
accumulation through light propagation with various wavelengths, the potential of the
designed in-fiber metalens is limited for full-color optical applications such as long-haul
communication, high-precision imaging, and broadband detection. In the near future,
achromatic broadband metalens should be created to enable the widespread applications
of fiber-integrated meta-devices.
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The focusing efficiency of the in-fiber metalens, which is defined as the ratio of the
optical power of the measured focused beam to that of the incident beam [33], has also been
investigated at various operating wavelengths from 800 to 1550 nm. The results are shown
in Figure 9. It is seen that the focusing efficiency remains negligible change with an average
high value of 70% for all the investigated wavelengths, showing steady performance in the
broadband wavelength range. The focusing efficiency of the designed in-fiber metalens can
be further improved by employing the silicon (Si) nanopillar as the metalens element as Si
possesses an even lower transmission loss in the desired transmission wavelength range.
The maximal focusing efficiency can be achieved as high as 86% at the incident wavelength
of 800 nm.
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4. Conclusions

In conclusion, this paper has presented an all-dielectric LMA-PCF integrated metalens
that operates in a broadband wavelength range from 800 to 1550 nm, including the three
typical telecommunication windows. The designed metalens is comprised of periodic
circular arrays of high-aspect-ratio TiO2 nanopillars, which are placed on a specially
designed endless single-mode LMA-PCF. By arranging the radius of the unit cell with the
optimal height and periodicity, the sufficient phase coverage and high transmission have
been obtained in the target wavelength range. The focusing performance of the designed
in-fiber metalens at various incident wavelengths has also been studied. It is found that
the in-fiber metalens is capable of tightly focusing various incident lights with legible,
symmetric, and bright spots with a large focal length ranging from 310 to 280 µm, and
the focusing efficiency is calculated to be as high as 70% and is almost identical for the
target wavelength range. It is believed that the proposed fiber-integrated meta-device will
pave the way for the creation of miniaturized and multi-functionalized fiber-based devices,
which show great potential in a large number of optical applications including in-fiber
optical imaging, laser machining, and laser systems.
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