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Applications of machine learning 
in pine nuts classification
Biaosheng Huang1,2,5, Jiang Liu1,5, Junying Jiao3, Jing Lu1, Danjv Lv1, Jiawei Mao1, 
Youjie Zhao1,2* & Yan Zhang4*

Pine nuts are not only the important agent of pine reproduction and afforestation, but also the 
commonly consumed nut with high nutritive values. However, it is difficult to distinguish among 
pine nuts due to the morphological similarity among species. Therefore, it is important to improve 
the quality of pine nuts and solve the adulteration problem quickly and non-destructively. In this 
study, seven pine nuts (Pinus bungeana, Pinus yunnanensis, Pinus thunbergii, Pinus armandii, Pinus 
massoniana, Pinus elliottii and Pinus taiwanensis) were used as study species. 210 near-infrared (NIR) 
spectra were collected from the seven species of pine nuts, five machine learning methods (Decision 
Tree (DT), Random Forest (RF), Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Naive 
Bayes (NB)) were used to identify species of pine nuts. 303 images were used to collect morphological 
data to construct a classification model based on five convolutional neural network (CNN) models 
(VGG16, VGG19, Xception, InceptionV3 and ResNet50). The experimental results of NIR spectroscopy 
show the best classification model is MLP and the accuracy is closed to 0.99. Another experimental 
result of images shows the best classification model is InceptionV3 and the accuracy is closed to 0.964. 
Four important range of wavebands, 951–957 nm, 1,147–1,154 nm, 1,907–1,927 nm, 2,227–2,254 nm, 
were found to be highly related to the classification of pine nuts. This study shows that machine 
learning is effective for the classification of pine nuts, providing solutions and scientific methods for 
rapid, non-destructive and accurate classification of different species of pine nuts.

There are more than 113 formally recognized species of Pinus Linn mainly distributed in the northern 
hemisphere1, 2, they form an important part of forest ecosystems. Pine nuts are the seeds of pine trees, they are 
a commonly consumed nut, and an important agent of afforestation and reproduction3. Pine nuts are rich in 
protein, fatty acids, minerals and vitamins. They also contain oleic acid, linolenic acid and other unsaturated fatty 
acids, which facilitate the prevention of cardiovascular disease4. Species recognition of pine nuts is important for 
food safety and pine nut quality. In recent years, the rising price of pine nuts has brought huge economic benefits. 
The global output of pine nuts in 2020–2021 is about 381,700 tons. China is the main import and export country 
of pine nuts in the world. Considering the visual similarity between pine nuts, the possibility of adulteration of 
products is very high, and the adulteration problem has a great impact on health and economy. Therefore, how 
to detect adulterated products in pine nuts in a convenient, fast and non-destructive way is a challenge to the 
food safety of pine nuts.

Presently, common methods of species identification include morphological analysis5, molecular marker 
technology6–9, protein electrophoresis10, liquid chromatography11, spectral analysis12–14 and image recognition15. 
Morphological analysis requires a high level of expertise that is not easily acquired and as such, due to large 
morphological similarity between some species, the rate of accurate identification is low16. Although the use of 
molecular markers returns a higher recognition rate and more accuracy, it is a destructive methodology, time-
consuming, and limited by the number of published markers in the public databases. Therefore, this study estab-
lishes machine learning models for pine nut classification based on near-infrared (NIR) spectroscopy and images.

NIR spectroscopy is a methodology that makes use of molecular vibrations in the infrared spectrum in the 
material. The process of NIR spectroscopy involves the NIR apparatus emitting an infrared light that enters the 
sample. Here it is reflected, refracted, diffused and absorbed and finally carries the sample information back into 
the detector. This methodology is convenient, rapid, non-destructive, and cost-effective. It has been used in many 
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agricultural fields, including research into wheat17, soybean18, cowpea19 and rice12 production. So far, there are 
few reports on the application of NIR spectroscopy in forestry and pine nut research. Specifically, Tigabu et al.20 
collected visible-NIR spectral data of Pinus sylvestris nuts in different areas and preprocessed the spectral data 
by means of Multiplicative Scatter Correction (MSC). The nuts source was constructed through Soft Independ-
ent Modelling of Class Analogy (SIMCA) and Partial Least Squares Discriminant Analysis (PLS-DA). Loewe 
et al.21 collected NIR spectral data of Mediterranean Pinus pinea from Chilean plantations for classification. 
Moscetti et al.22 collected the NIR spectral data of the nuts of P. pinea and Pinus sibirica in different regions and 
established a spectral classification model by using PLS-DA and Interval PLS-DA (IPLS-DA) methods. However, 
the effects of other different classification models still need to be further discussed in more species of pine nuts.

Machine learning based on image has been successfully applied to rice pest identification23, Dendroli-
mus punctatus Walker damage detection24 and other agricultural and forestry fields. Deep learning, a type of 
machine learning, uses hierarchical analysis and multilevel calculation to obtain results. Deep convolutional 
neural network (CNN) has been successfully applied in image recognition for applications such as tomato pesto 
recognition25, fish image recognition26. Moscetti et al.22 collected the image data of the nuts of P. pinea and P. 
sibirica in different regions, carried out feature extraction, obtained 10 features based on image data, and used 
these features to construct image-based classification model. Although the feasibility of pine nuts classification 
has been proved based on manually extracted image-features, the automatic classification model is still worthy 
of further research in more species of pine nuts.

Therefore, the use of modern computer technology to classify pine nuts greatly promotes the research of non-
destructive, rapid and accurate classification of pine nuts. In this study, machine learning technology is adopted, 
and the application potential of machine learning in pine nut classification is verified. The contributions of the 
current work are: (1) Molecular markers were used to identify pine nuts species; (2) NIR spectroscopy and images 
of 7 pine nuts (two kinds of edible pine nuts (Pinus bungeana and Pinus armandii) and five common species 
(Pinus yunnanensis, Pinus thunbergii, Pinus massoniana, Pinus elliottii and Pinus taiwanensis)) were collected. 
(3) NIR spectroscopy uses five machine learning methods for classification, while image recognition chooses 
five CNN models. This study verifies the potential of machine learning in pine nuts classification and provides a 
practical method for faster, non-destructive and accurate identification of pine nut species.

Results
Molecular markers.  The assembled ITS2 and rbcL sequences were used to molecular markers by com-
paring to the GenBank database (https://​www.​ncbi.​nlm.​nih.​gov/​search/​all/?​term=​blast). Table 1 shows that the 
ITS2 sequence length ranges from 477–482 bp while the rbcL gene length ranges from 677–720 bp (Table 2). 
The GenBank accession numbers are OK274058-OK274066 and OK271114-OK271122. The results show that P. 
massoniana, P. armandii, P. thunbergii and P. bungeana were recognized while P. taiwanensis (Synonyms is Pinus 
hwangshanensis) was not recognized. There were not the same species in GenBank compared with the ITS2 gene 
sequences of P. yunnanensis and P. elliottii. It is evident that ITS2 and rbcL are the suitable molecular markers 
for the species recognition of some pine nuts and molecular analyses are limited by data publicly available in 
GenBank. Then by consulting Kunming Institute of Botany, Chinese Academy of Sciences, the labels were car-
ried out again to confirm the reliability and authenticity of pine nut species.

Classification model based on NIR spectral data.  The collected pine nut NIR spectra were analyzed 
and are represented in Fig. 1. It is apparent from all original NIR spectra (Fig. 1a) that the amplitude, peaks and 
troughs of the NIR spectra of the seven pine nuts have similar changes. Among them, the value of P. armandii 
is at a higher position (indicating the highest absorbance value) compared to the whole range, and the value of 
P. massoniana is at a lower position. The normalized NIR spectra (Fig. 1b) show that the NIR spectrum of each 
pine nut is more distinct after normalization, and the changes between the pine nut values can be observed 
more clearly. Among them, P. armandii and P. bungeana are highly mixed in the range of 9,000–4,000  cm−1 
(1,111–2,500 nm).

Ten independent analyses were carried out on normalized and non-normalized NIR spectral data using the 
five traditional machine learning models i.e., the Decision Tree (DT), Random Forest (RF), Multilayer Percep-
tron (MLP), Support Vector Machine (SVM) and Naive Bayes (NB) (Table 3). It is evident from Table 3 that the 

Table 1.   ITS2 sequence markers results.

Sample_name Gene length (bp) GenBank species name Query_Covera (%) Per_Identb (%) Accession numberc

P. massoniana 479 P. massoniana 98 100 MH444832.1

P. yunnanensis 481
NAd NA NA NA

P. thunbergii 97 100 MH444826.1

P. elliottii 478 NA NA NA NA

P. armandii 479 P. armandii 97 100 MH444830.1

P.taiwanensis 477
P. taiwanensis 84 100 JF829701.1

P. thunbergii 98 100 MH444826.1

P. thunbergii 480 P. thunbergii 97 100 MH444826.1

P. bungeana 482 P. bungeana 79 100 MH703244.1

https://www.ncbi.nlm.nih.gov/search/all/?term=blast
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classification of pine nuts is effective using these models. When the data are not normalized, the accuracy of the 
DT and RF classification models is greater than 0.83. For normalized data, the classification accuracy of the five 
models is > 0.80, with MLP and SVM providing an accuracy of > 0.93. With pre-process of data, the performance 
of the MLP and SVM models have been greatly improved, the accuracy of the MLP model reaches 0.99, while the 

Table 2.   rbcL sequence markers results. a Query_cover, the percentage of the sample sequence covered by the 
GenBank sequence. b Per_Ident, the percentage similarity of the sample and GenBank sequences. c Accession 
number, the GenBank accession number. d NA, no match for the same species.

Sample_name Gene length (bp) GenBank species name Query_Covera (%) Per_Identb (%) Accession numberc

P. massoniana 698 P. massoniana 100 100 MF564195.1

P. yunnanensis 677
P. yunnanensis 100 100 MK135067.1

P. thunbergia 100 100 MH612862.1

P. elliottii 703

P. elliottii 100 100 NC_042788.1

Pinus teocote 100 100 NC_039586.1

Pinus taeda 100 100 KC427273.1

P. armandii 705 P. armandii 100 99.86 KP412541.1

P.taiwanensis 701
P.hwangshanensis 100 100 JN854194.1

P. thunbergii 100 100 MH612862.1

P. thunbergii 704 P. thunbergii 100 100 JQ512594.1

P. bungeana 720 P. bungeana 100 100 MH612857.1

Figure 1.   Pine nut NIR spectral data. (a) All of the original NIR spectra; (b) The normalized NIR spectra, R 
stands for reflectivity and log(1/R) represents absorbance. Vertical straight stripes represent the sensitive bands 
at 10,506.29–10,452.29 cm−1, 8712.813–8658.815 cm−1, 5241.572–5187.575 cm−1 and 4489.471–4435.474 cm−1 
(951–957 nm, 1,147–1,154 nm, 1,907–1,927 nm, 2,227–2,254 nm) selected by moving sliding windows.
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SVM model reaches 0.94. Overall, these results show that the RF model is a better classification method when 
the data are not normalized, while the MLP model is the best for normalized data.

The precision (Pre) and F1-score (F1) are presented in Table 4 (non-normalized data) and Table 5 (normal-
ized data). In Table 4, the precision and F1-score of P. armandii and P. bungeana are higher, and the precision 
of P. bungeana is the highest, reaching 0.97. However, the precision and F1-score of P. taiwanensis and P. mas-
soniana are quite low reaching precision scores of 18% and 22% respectively. In Fig. 1a, the distinction between 
P. armandii and P. bungeana is clear, while the P. taiwanensis and P. massoniana are less distinct and thus more 
difficult to classify. However, Table 5 shows that the precision and F1-scores of the seven pine nut species are 
greatly improved after normalization. This indicates that data normalization is a necessary step for spectral data 
processing.

Table 3.   Classification model results based on full spectrum data.

Type Model Acc_max Acc_min Acc_avg

Non-normalized

DT 0.90 0.74 0.84

MLP 0.71 0.36 0.54

RF 0.95 0.79 0.86

SVM 0.55 0.36 0.46

NB 0.86 0.67 0.76

Normalized

DT 0.90 0.81 0.87

MLP 1.00 0.98 0.99

RF 0.90 0.86 0.89

SVM 0.95 0.88 0.94

NB 0.86 0.69 0.80

Table 4.   Precision and F1 scores of five pine nut classification models with non-normalized NIR spectral data.

Number Type

DT MLP RF SVM NB

Pre F1 Pre F1 Pre F1 Pre F1 Pre F1

1 P. yunnanensis 0.92 0.90 0.89 0.80 0.90 0.90 0.36 0.43 0.89 0.83

2 P. armandii 0.83 0.89 0.55 0.66 0.81 0.89 0.83 0.76 0.82 0.84

3 P.taiwanensis 0.77 0.77 0.45 0.28 0.84 0.84 0.23 0.18 0.71 0.70

4 P. elliottii 0.93 0.78 0.34 0.28 0.94 0.81 0.24 0.32 0.78 0.77

5 P. bungeana 0.97 0.96 0.71 0.74 0.89 0.93 0.92 0.93 0.85 0.89

6 P. massoniana 0.82 0.86 0.37 0.43 0.86 0.87 0.22 0.31 0.68 0.75

7 P. thunbergii 0.81 0.70 0.79 0.45 0.89 0.78 0.04 0.07 0.81 0.54

Average 0.86 0.84 0.59 0.52 0.88 0.86 0.41 0.43 0.79 0.76

Accuracy 0.84 0.54 0.86 0.46 0.76

Table 5.   Precision and F1 scores of five pine nut classification models with normalized NIR spectral data.

Number Type

DT MLP RF SVM NB

Pre F1 Pre F1 Pre F1 Pre F1 Pre F1

1 P. yunnanensis 0.89 0.87 0.99 0.99 0.86 0.87 0.94 0.97 0.82 0.83

2 P. armandii 0.91 0.91 1.00 1.00 0.90 0.93 0.94 0.95 0.94 0.95

3 P.taiwanensis 0.85 0.85 0.98 0.99 0.93 0.90 0.90 0.88 0.64 0.69

4 P. elliottii 0.87 0.80 1.00 0.99 0.91 0.83 0.97 0.93 0.87 0.83

5 P. bungeana 0.96 0.93 0.98 0.95 0.90 0.93 0.95 0.95 0.89 0.88

6 P. massoniana 0.86 0.90 1.00 1.00 0.97 0.93 0.88 0.93 0.75 0.80

7 P. thunbergii 0.80 0.77 0.95 0.96 0.86 0.87 0.98 0.92 0.71 0.51

Average 0.88 0.86 0.99 0.98 0.90 0.89 0.94 0.93 0.80 0.78

Accuracy 0.87 0.99 0.89 0.94 0.80
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Classification model based on image data.  Three pre-processing methods were run for the datasets 
of image_clip (clipped images), image_trans (transformed images), and image_gray (grayscale transformed 
images). The image_clip data is used to explore the results of the deep learning model on the original data, 
image_trans and image_gray are obtained by extending the image_clip transformation. VGG16, VGG19, Xcep-
tion, ResNet50 and InceptionV3 models were selected with the options of 100 epochs, and accuracy and loss 
were used as evaluation indicators. Figures 2, 3 and 4 present the accuracy and loss values of the five trained 
and verified models. From these figures, Xception and InceptionV3 have the best performance with the highest 
accuracy and lowest loss compared to the VGG16, VGG19 and ResNet50 models. Additionally, among the three 
pre-processing methods, image_trans outperforms image_gray and image_clip. Therefore, Xception and Incep-
tionV3 models are best suited for image-based classification of pine nuts and images should be transformed but 
not set to grayscale (Table 6).

Discussion
Previous studies have shown that genus Pinus originated in the early Cretaceous (116–83 Mya) and diverged into 
two subgenera Pinus (P. massoniana, P. thunbergii, P. yunnanensis, P. taiwanensis and P. massoniana, etc.) and Stro-
bus (P. armandii and P. bungeana, etc.)2, 27. During the long evolutionary history, it may have experienced many 
events such as plate movement, sea-land transition and climate changes2, 28, 29. The chemical composition of plant 
organs is the result of the interaction between plants and the environment in the long process of evolution30–32. 
Our results suggested that the species P. armandii and P. bungeana of subgenus Strobus have higher bands in 
regions 9,000–4,000 cm−1 (1,111–2,500 nm) than other five species of subgenus Pinus (Fig. 1). These bands were 
found to be associated with proteins, amino acids, moisture, lipids and carbohydrates in previous studies20, 22. 
Notably, our results also showed that three sensitive bands (1,147–1,154 nm, 1,907–1,927 nm, 2,227–2,254 nm) 
in these regions (1,111–2,500 nm) have great influence on the model accuracy based on sliding window method 
(Fig. 1). Different with subgenus Pinus, the species P. armandii and P. bungeana of subgenus Strobus were mainly 

Figure 2.   Accuracy and loss for five different models using image_clip data.

Figure 3.   Accuracy and loss for five different models using image_trans data.

Figure 4.   Accuracy and loss for five different models using image_gray data.
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distributed in Northern China (Table S1). The difference of some substances could be caused by certain geograph-
ical distribution and environmental conditions such as altitude, average annual temperature, soil characteristics, 
precipitation, and sunshine22. Compared with previous studies based on SVM, RF and PLS-DA methods in seed 
classification12, 18, our results showed that MLP model presented excellent performance, which could be explained 
that the collected NIR spectra were different in sensitivity to the model due to different chemical components.

We also found some morphological differences among two subgenera in pine nut images. The seeds of subge-
nus Strobus probably have a smoother shape and texture than subgenus Pinus (Fig. 7), which would be conducive 
to the feature extraction of machine learning model. Previous studies have shown that the PLS-DA and IPLS-
DA models were achieved good results to recognize the multiple varieties of two species22. However, our results 
suggested that the InceptionV3 model performed best on the pine nut images of seven species with the fastest 
convergence speed and highest accuracy. The similar model was found to be successfully used to diagnosis of 
nutrient deficiencies in rice33 and classification of multiple weed species34. The different recognition accuracy of 
multiple models may be related to the morphological features (shape, color and texture) of nuts between datasets.

There are different advantages in three recognition methods of molecular markers, NIR and images (Fig. 5). 
In terms of accuracy, molecular markers have higher recognition rates than NIR and images. However, molecular 
labeling takes a long time, as well as being limited by experimental equipment and public reference databases. In 
terms of cost, image analysis may be better, because it is convenient, fast and free from environmental constraints, 
but this method requires a large amount of images and has a lower recognition rate. In terms of performance, 
NIR spectroscopy may be better duo to its higher recognition rate and smaller amount of data generated, but it 
is costly and requires special devices. In the future, we would take advantage of the ensemble learning approach 
by merging multiple features of molecule, NIR and images for more species.

Table 6.   Precision, F1 scores and accuracy of three pre-process methods. a image_clip, the clipped images. 
b image_trans, the transformed images. c image_gray, the transformed grayscale images.

Model

image_clipa image_transb image_grayc

Pre F1 Acc Pre F1 Acc Pre F1 Acc

VGG16 0.72 0.67 0.692 0.91 0.90 0.905 0.84 0.80 0.803

VGG19 0.72 0.68 0.708 0.87 0.82 0.826 0.86 0.83 0.836

Xception 0.81 0.79 0.785 0.96 0.96 0.957 0.93 0.93 0.931

ResNet50 0.59 0.44 0.477 0.52 0.46 0.485 0.45 0.25 0.311

InceptionV3 0.74 0.71 0.738 0.96 0.96 0.964 0.94 0.93 0.934

Figure 5.   Radar chart of analytical costs, complexity and performance. Time: the time required for the 
analyses; Cost: the financial cost of completing the analyses; Limitation: the degree of limiting factors of 
experimental conditions; Data capacity: the amount of data obtained from the analyses; Accuracy: the accuracy 
of identification. The scale here represents value with 0 indicating the lowest value and 1.0 indicating the highest 
value.
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Conclusions
Based on the present study findings, this study verifies the potential application of machine learning models based 
on NIR spectroscopy and images to recognition among different species of pine nuts. We collected seven species 
of pine nuts as the research object, constructed classification models based on NIR spectroscopy and image data. 
Compared with different models, MLP and InceptionV3 were proved to achieve better classification effect. At the 
same time, sensitive bands of NIR shows the correlation with some special molecular vibrations of functional 
groups. The results will provide solutions and scientific methods for the convenient, rapid and nondestructive 
classification of different species of pine nuts, and provide a new idea in the field of species classification, as well 
as a methodological and technical scheme for reference.

Materials and methods
Sample collection and pre‑process.  The academic permission to collect and study pine nuts was granted 
by the director of the Key Laboratory of Southwest Mountain Forest Resources Conservation and Utilization, 
Ministry of Education, Southwest Forestry University. The study met all relevant guidelines.

Used in the study of P. bungeana | Junying Jiao 01 |, P. armandii | Kunming Institute of Botany, Chinese 
Academy of Sciences, ZuoZh271 |, P. yunnanensis | Kunming Institute of Botany, Chinese Academy of Sciences, 
MY259|, P. thunbergia | Kunming Institute of Botany, Chinese Academy of Sciences, Lilan898 |, P. massoniana | 
Kunming Institute of Botany, Chinese Academy of Sciences, LWY2020020 |, P. elliottii | Junying Jiao 02 |and P. 
taiwanensis | Kunming Institute of Botany, Chinese Academy of Sciences, Jiangxc0597 | were prepared from the 
Kunming Institute of Botany, Chinese Academy of Sciences and Yunnan Forest seedling work station preparation 
plants. The pine nuts used in the study were formally identified by Junying Jiao, director of the Key Laboratory of 
Forest Resources Conservation and Utilization in Southwest Mountainous Region of the Ministry of Education, 
College of Forestry, Southwest Forestry University. P. bungeana and P. elliottii were registered and preserved in 
the herbarium of Southwest Forestry University, with code access number: 0000651 and 0,000,652. P. armandi, 
P. yunnanensis, P. thunbergia, P. massoniana and P. taiwanensis were registered and preserved in the Germplasm 
Bank of Kunming Institute of Botany, Chinese Academy of Sciences, with code access number: ZuoZh271, 
MY259, Lilan898, LWY2020020 and Jiangxc0597.

Approximately 1.5 kg of nuts from each species were selected and subjected to pre-treatment for image and 
NIR spectroscopy analyses. The seed surface was rinsed with distilled water, and defective nuts were removed. 
The cleaned pine nuts were then dried in an oven (Model DHG-9245A, Shanghai Hengke Instrument Co., Ltd., 
Shanghai, China) at 40 °C for 8 h. After pre-process, the nuts were randomly divided into 30 groups for sub-
sequent acquisition of NIR spectra. One or two nuts from each group were photographed to obtain the origin 
images (Table 7).

Molecular markers.  In order to identify pine nuts species, the primers of ITS2 and rbcL were designed 
based on the known sequences in a previous study35 (Table 8). Fragment genes were located and sequenced using 
an ABI 3730 sequencer. SeqMan tool was used to assemble the overlapping fragments.

Spectral data acquisition and pre‑process.  The NIR spectra were acquired using the Antaris Fourier 
Transform NIR spectrometer (Thermo Fisher Scientific, Massachusetts, USA) equipped with an InGaAs detec-
tor with diffuse integrating sphere, a 7.78 cm quartz sampling cup and sample rotary table within the range of 
12,800 to 3,800 cm−1 (781 nm-2632 nm) at a resolution of 8 cm−1. Samples were scanned 48 scanning times, and 
2335 bands were obtained. The data were transformed using log(1/R) to represent absorbance.

Table 7.   Pine nut images and NIR spectra. a NIRs, the number of NIR spectra.

Number Species NIRsa image_clip image_trans image_gray

1 Pinus bungeana 30 42 210 210

2 Pinus yunnanensis 30 38 190 190

3 Pinus thunbergii 30 45 225 225

4 Pinus armandii 30 41 205 205

5 Pinus massoniana 30 52 260 260

6 Pinus elliottii 30 44 220 220

7 Pinus taiwanensis 30 41 205 205

Table 8.   Primer reference for ITS2 and rbcL sequence.

Gene Forward primer Reverse primer

ITS2 5′-ATG​CGA​TAC​TTG​GTG​TGA​AT-3′ 5′-GAC​GCT​TCT​CCA​GAC​TAC​AAT-3′

rbcL 5′-ATG​TCA​CCA​CAA​ACA​GAA​AC-3′ 5′-TCG​CAT​GTA​CCT​GCA​GTA​GC-3′
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The NIR spectra were normalized using a min–max normalization method to eliminate the adverse effects 
caused by outliers. The original data were normalized to the range of 0 and 1 using Eq. (1).

where x represents absorbance values, min(x) and max(x)represent the lowest and absorbance highest absorb-
ance values, respectively.

Image acquisition.  The pine nut images were captured using a LEICA EZ4 microscope with a white back-
ground and eightfold magnification through a Huawei Mate 30 mobile phone with a 40 MP ultrasensitive cam-
era (wide angle, f/1.8) supporting auto focus and manual focus. The shooting angle was set to 90°, the height was 
50 cm, and 52 images were taken for each species of pine nut.

Image pre‑process.  During the image capturing process, irregularities arise. These include the size varia-
tion of pine nuts, inconsistent positions, and appearance of color, all of which will affect the recognition models 
and accuracy of classification. Thus, image pre-processing for standardization involved the following two steps:

(1) Edge detection and clipping
The edge position of the pine nuts was detected with the Sobel method on the OpenCV platform. Once the 

top, bottom, left, and right vertices of the seed were de-fined, the image was cropped through a matrix frame 
connecting the four vertices (Fig. 6). In order to maintain a uniform image background (Fig. 6d), further manual 
cutting was sometimes necessary (Fig. 6e).

(2) Data augmentation and image grayscale
The clipped images were oriented using the ‘flip’ and ‘resize’ functions in OpenCV. The formula (2) was used 

to transform these aligned images into grayscale images (Fig. 7). The OpenCV’s color was used conversion func-
tion in this study: CV_BGR2GRAY to perform image grayscale processing.

(1)x
∗
=

x −min(x)

max(x)−min(x)

(2)Gray = R ∗ 0.299+ G ∗ 0.587+ B ∗ 0.114

Figure 6.   Sobel edge detection and clipping process.

Figure 7.   Results of image pre-processing for pine nuts of each species. Images have been clipped, flipped, 
resized and color transformed to grayscale.
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Structural design of pine nuts classification model.  In order to further study the pine nut classifica-
tion model, two experimental approaches were employed (Fig. 8). For the first approach involved traditional 
machine learning methods such as DT, RF, MLP, SVM and NB which were used to classify nuts based on the 
NIR spectroscopy. The classification model based on NIR spectra includes five steps (Fig. 8a). Data were first 
prepared and then divided into a training set and a validation set according to the ratio of 8:2. The DT, RF, MLP, 
SVM and NB learning methods were then used to establish classification models. Following training and valida-
tion, the accuracy (Acc), Pre, and F1 were selected as performance evaluation indicators of each classification 
model.

The second approach, five CNN models (VGG16, VGG19, Xception, InceptionV3 and ResNet50) were con-
structed and trained to classify the images of pine nuts (Fig. 8b). First, the original images in the dataset were 
of different sizes. Before the experiment, the original images were pre-processed and then cut into 224 × 224 
sizes. Second, the pine nut images were divided into a training set and a validation set according to the ratio of 
8:2. Then, the VGG16, VGG19, Xception, ResNet50 and InceptionV3 models were loaded on the experimental 
platform for training and validation. The epochs were set to 100 times, the Stochastic Gradient Descent (SGD) 
optimization method was adopted, and the initial learning rate was set to 0.005. The learning rate changes with 
training turns, with attenuation of 1e-6 per turned, and the momentum parameter was set to 0.9. The loss func-
tion was sparse_categorical_crossentropy, and the activation function was Rectified Linear Units (ReLU). Finally, 
the Acc, Pre, and F1 were selected for model evaluation.

These two experimental approaches were designed to compare and analyze the performance of different 
models to evaluate which one would best serve future research of pine nut classification. CNN models were 
built using the Python libraries Keras-nightly 2.6.0, TensorFlow-nightly-GPU 2.6.0, and Scikit-learn 0.24.2 run 
in Python v.3.7.

Data availability
The data and codes presented in this study are available in https://​github.​com/​SWFU-​Jiang​Liu/​Recog​nition-​of-​
pine-​nuts.​git. The GenBank accession numbers are OK271114-OK271122 and OK274058-OK274066.

Received: 18 November 2021; Accepted: 16 May 2022

Figure 8.   Experimental design process for image recognition and NIR spectroscopy. (a) Process of traditional 
machine learning classification model establishment using NIR spectroscopy data. (b) Process of deep learning 
classification model establishment using image data.

https://github.com/SWFU-JiangLiu/Recognition-of-pine-nuts.git
https://github.com/SWFU-JiangLiu/Recognition-of-pine-nuts.git
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