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Abstract:  Background:  Mild  cognitive  impairment  (MCI)  is  considered  the  early  stage  of
Alzheimer's Disease (AD). The purpose of our study was to analyze the basic characteristics and
serum and imaging biomarkers for the diagnosis of MCI patients as a more objective and accurate
approach.

Methods: The Montreal Cognitive Test was used to test 119 patients aged ≥65. Such serum bio-
markers  were  detected  as  preprandial  blood  glucose,  triglyceride,  total  cholesterol,  Aβ1-40,
Aβ1-42, and P-tau. All the subjects were scanned with 1.5T MRI (GE Healthcare, WI, USA) to ob-
tain DWI, DTI, and ASL images. DTI was used to calculate the anisotropy fraction (FA), DWI was
used to calculate the apparent diffusion coefficient (ADC), and ASL was used to calculate the cere-
bral blood flow (CBF). All the images were then registered to the SPACE of the Montreal Neuro-
logical Institute (MNI). In 116 brain regions, the medians of FA, ADC, and CBF were extracted by
automatic anatomical labeling. The basic characteristics included gender, education level, and pre-
vious disease history of hypertension, diabetes, and coronary heart disease. The data were random-
ly divided into training sets and test ones. The recursive random forest algorithm was applied to the
diagnosis of MCI patients, and the recursive feature elimination (RFE) method was used to screen
the significant basic features and serum and imaging biomarkers. The overall accuracy, sensitivity,
and specificity were calculated, respectively, and so were the ROC curve and the area under the
curve (AUC) of the test set.

Results: When the variable of the MCI diagnostic model was an imaging biomarker, the training ac-
curacy of the random forest was 100%, the correct rate of the test was 86.23%, the sensitivity was
78.26%, and the specificity was 100%. When combining the basic characteristics, the serum and
imaging biomarkers as variables of the MCI diagnostic model, the training accuracy of the random
forest was found to be 100%; the test accuracy was 97.23%, the sensitivity was 94.44%, and the
specificity was 100%. RFE analysis showed that age, Aβ1-40, and cerebellum_4_6 were the most
important basic feature, serum biomarker, imaging biomarker, respectively.

Conclusion: Imaging biomarkers can effectively diagnose MCI. The diagnostic capacity of the ba-
sic trait biomarkers or serum biomarkers for MCI is limited, but their combination with imaging
biomarkers can improve the diagnostic capacity, as indicated by the sensitivity of 94.44% and the
specificity of 100% in our model. As a machine learning method, a random forest can help diag-
nose MCI effectively while screening important influencing factors.
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1. INTRODUCTION

Mild cognition impairment (MCI) is well recognized as
the early stage of Alzheimer's Disease (AD) [1-3]. Especial-
ly, about 38.2% of MCI patients developed AD within 5-10
years, while 2017 meta-analysis demonstrated that 5-15% of
those aged over 65 and had MCI (amnestic MCI) developed
AD every year [4, 5]. With aging, the incidence rate of MCI
grows higher,  the prevalence rate of  aMCI in people aged
≥60  being  approximately  17%-25%  in  different  countries
[6-9]. It is important that screening be conducted for MCI;
however, up till now, the diagnostic method of MCI has tak-
en the form of scale, which is known to be subjective and
heterogeneous [10, 11].

Since the imaging and serum demographic characteris-
tics have been considered the risk factors of MCI, research-
ers  have  never  stopped  pursuing  the  biomarkers  of  MCI,
which indicate the progress to AD [12-14].  Neuroimaging
biomarkers  are  considered promising as  they are  noninva-
sive and convenient [15]. The common neuroimaging bio-
markers are found across different MRI modalities and se-
quences,  such  as  Diffusion  Tensor  Imaging  (DTI),  Diffu-
sion-Weighted Imaging (DWI), and Arterial Spin Labeling
(ASL). As previously reported, DTI is used to examine the
correlation between dynamic Vasomotor Reactivity (DVR),
indicating the dysregulation of the cerebral microcirculation,
which is considered an early cause of cognitive impairment
[16]. DTI can help find microstructural changes; for exam-
ple,  reduced anisotropy always indicates MCI or the early
stage of AD [17, 18].

Gyebnár et al. found that when voxel-wise and region of
interest (ROI) analyses of fractional anisotropy (FA) were
performed  with  ANOVA,  FA  was  found  to  be  lower  in
white matter ROI of individuals with MCI and that as logis-
tic regression showed, measuring FA of the crus of fornix
along grey matter volumetry improved the discrimination of
aMCI from non-MCI individuals [17]. Tu et al. concluded
that FA measures appeared to be more sensitive DTI parame-
ters than MD values in detecting microstructural changes be-
tween subjective cognitive decline and MCI, suggesting that
MCI  had  significant  inverse  correlations  with  FA  value
within the genu of the corpus callosum and left forceps mi-
nor and that based on regression analysis, MCI was best pre-
dicted by the FA value within the left  forceps minor [19].
Ray et al. evaluated the regional alterations in the ADC of
cortical  gray  and  white  matter  and  subcortical  structures,
which are known to be involved in MCI, stating that ADC
from gray and white matter of different brain regions could
be  analyzed  by  applying  an  automated  template-masking
method in conjunction with a skeleton-based region competi-
tion segmentation algorithm [20]. Moreover, DTI-based net-
work measures were found to be novel predictors of AD pro-
gression [21], which supports the evidence that the vascular
mechanism  is  considered  as  an  underlying  component  of
cognitive  impairment  [22].  Recently,  new  mathematical
methods have been proposed to utilize multi-modality MRI
imaging  to  identify  the  potential  imaging  biomarkers  of
MCI  or  pre-AD,  such  as  binary  network  matrices  derived
from DWI and DTI [23].

Considering  serum  biomarkers,  some  studies  have
suggested that elevated total cholesterol (TC), triglycerides
(TG), and low-density lipoprotein (LDL-C) levels were the
potential risk factor for cognitive impairment [24-27]. Glu-
cose has also been considered the biomarker of MCI or AD
[28, 29]. Considering the basic characteristics, age, gender,
education, and hypertension are also regarded as the risk fac-
tors and biomarkers of MCI or AD [30-33]. However, fewer
studies have explored why imaging and serum biomarkers
and basic characteristics can be considered the best variables
for diagnosing MCI. The purpose of our study was to apply
the random-forest algorithm to analyze the basic characteris-
tics and serum and imaging biomarkers to develop a better
diagnostic model of MCI, which is to be more accurate and
objective.

2. MATERIALS AND METHODS

2.1. Ethical Statement

This study was approved by the Medical Ethics Commit-
tee of Shanghai Pudong New Area People’s Hospital, Shang-
hai, China (Prylz-2020-085). Written informed consent was
obtained from all participants or their legally acceptable rep-
resentatives.

2.2. Subject Recruitment

MCI was defined according to the following criteria: 1)
cognitive  concern  or  complaint  by  the  subject,  informant,
nurse,  or  physician,  with  CDR 5  0.5;  2)  objective  impair-
ment in at least 1 cognitive domain based on performance
1.5 SD below the mean using the norms obtained in the pilot
study; 3) essentially normal functional activities, determined
by the CDR and the ADL evaluation; and 4) absence of de-
mentia, decided by DSM-IV.

For  the  study,  all  subjects  were  chosen  from the  local
community.  The Montreal  Cognitive  Assessment  (MoCA)
was used to assess MCI in individuals aged ≥65 without a
medical history of schizophrenia, mental retardation, Parkin-
son's disease, stroke, or other medical conditions that could
cause any problem to the assessment. Those defined as MCI
patients  and  normal  persons  received  MRI  examinations
based on their  informed consent  forms signed voluntarily.
We excluded those who had vascular  disease,  Parkinson’s
disease, tumors, mental disorders, abnormal hearing and vi-
sion,  and  drug  abuse  based  on  history,  MRI  examination,
and blood biomarker testing.

2.3. Medical and Neurological Examination

The  questionnaire  survey  of  MoCA/CDR/ADL  and
score calculation were performed by the five physicians who
received unified training on MoCA-testing. The demograph-
ic data referred to age, gender, and medical history involv-
ing hypertension, diabetes, and heart disease. To begin with,
the participants were screened by MoCA, with the score of
26 being the threshold of normal and MCI [34].



78   Current Alzheimer Research, 2022, Vol. 19, No. 1 Yang et al.

2.4. MRI Examination

MRI 1.5T (GE Healthcare, WI, USA) examination was
performed  at  the  Department  of  Image,  Shanghai  Pudong
New  Area  People’s  Hospital  in  Shanghai,  China.  The  se-
quences included T1, DTI, ASL, and DWI. The indexes se-
lected were fractional anisotropy (FA), cerebral blood flow
(CBF), and apparent diffusion coefficient (ADC).

2.5. Brain Imaging Segmentation

The skull-stripped images were obtained using the mix-
ture models before registering to the Montreal Neurological
Institute (MNI) space using the SyN method [35]. FA, ADC,
and CBF median values were extracted from 116 brain re-
gions  using  automated  anatomical  labeling  parcellation
(AAL)  [36].

2.6. Serum Examination

Whole blood after overnight fasting was collected from
all participants using venipuncture; 4ml of blood was collect-
ed into an anticoagulant tube (BD vacutainer, USA), which
was kept for 1h at room temperature (RT) before centrifuged
at  1,000g  for  10  mins  at  RT.  The  resultant  supernatant
(serum) was divided into 2 Eppendorf tubes (1ml each) to be
temporarily stored at -80°C until examination. Eight compo-
nents were selected for this study (Aβ1-40, Aβ1-42, P-tau,
preprandial blood glucose, high-density lipoprotein choles-
terol (HDL), low-density lipoprotein cholesterol (LDL).

The  enzyme-linked  immunosorbent  assay  (ELISA)-
based  techniques  were  used  to  assess  serum
Aβ1-40/Aβ1-42/P-tau.  The  serum  levels  of  Aβ1-40  (Cat.
No: DAB140B, Sensitivity: 1.31-8.17pg/ml), Aβ1-42 (Cat.
No: DAB142, Sensitivity:0.762-4.73pg/ml), and P-tau (Cat.
No: CSB-E17929h, Sensitivity:<7.8pg/ml) were quantified
using  commercial  ELISA  kits  purchased  from  R&D  Sys-
tems (MN, USA) according to the manufacturer’s protocol.

The  concentrations  of  serum HDL/LDL/preprandial  blood
glucose were determined by a Cobas C501 automatic bio-
chemistry analyzer using the enzymatic conversion method.
The  kit  was  supplied  by  the  Roche  Diagnostics  GmbH
(Mannheim,  Germany).

2.7. Random-forest Algorithm

All  the  data  were  randomly  split  into  the  training  and
test set. Recursive random forest algorithm, a method of su-
pervised machine learning, was applied to the diagnosis of
MCI, by screening the basic characteristics and significant
biomarkers  of  serum  and  imaging  using  recursive  feature
elimination (RFE) as well as calculating the overall accura-
cy, sensitivity, and specificity by receiver operating charac-
teristic curves (ROC) and areas under the curve (AUC) of
the test set.

The diagnostic models of MCI based on the basic charac-
teristics,  serum  biomarkers,  and  imaging  biomarkers,  se-
parately and as a whole based on all the biomarkers involv-
ing the basic characteristics and serum and imaging biomark-
ers  were  established.  We  examined  the  superiority  of  the
model  in  terms  of  accuracy,  sensitivity,  specificity,  and
AUC. Afterward, through RFE, we analyzed the significant
basic characteristics and serum and imaging biomarkers in
different models.

Random  forest  algorithm  was  implemented  based  on
Anaconda,  a  Python-based  data  science  platform.

3. RESULTS

A total of 119 people aged over 65 were assessed by MO-
CA before voluntarily being undergone MRI and serum ex-
amination.  Of  119  subjects,  55  and  64  were  placed  under
MCI and NC groups, respectively; a list of their basic charac-
teristics was made (Table 1).

Table 1. The basic characteristics and serum biomarkers of MCI and NC groups.

- MCI (N=55) NC (N=64)

Gender (Female) 32 (43.8%) 40(54.8%)

Hypertension (Yes) 41(51.2%) 39 (48.8%)

Diabetes (Yes) 8 (57.1%) 6 (42.9%)

Coronary heart disease (Yes) 14 (60.9%) 9 (39.1%)

Age (year) 72±5.24 70.20±4.77

Fasting plasma glucose (mmol/l) 5.25±1.38 6.12±7.73

High density lipoprotein cholesterol (mmol/l) 1.43±0.45 1.45±0.42

Low density lipoprotein cholesterol (mmol/l) 2.37±0.82 2.54±0.82

Total cholesterol (mmol/l) 4.13±1.00 4.43±1.24

Triglycerides (mmolL) 1.27±0.82 1.34±0.80

Aβ1-40 (pg/ml) 171.93±90.45 141.58±49.31

Aβ1-42 (pg/ml) 58.69±87.03 38.49±37.06

P-tau (pg/ml) 177.77±78.30 175.46±98.37
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With  the  brain  regions  segmented,  116  cerebral  areas
were extracted (Attached in accessory), accounting for FA
value of DTI, ADC value of DWI, and CBF value of ASL.
In the case of the basic characteristics as the variables of the
diagnostic model of MCI, the random forest indicated train-
ing accuracy to be 96.38%, test accuracy to be 38.88%, sen-
sitivity  to  be  63.15%,  and  specificity  to  be  58.82%  with
AUC=0.56. In the case of serum biomarkers as the variables
of the diagnostic model of MCI, the random forest indicated
training accuracy to be 100%, test accuracy to be 38.99%,
sensitivity  to  be  44%,  specificity  to  be  27.27%  with
AUC=0.35.  In  the  case  of  the  imaging  biomarkers  as  the
variables of the diagnostic model of MCI, the random forest
indicated training accuracy to be 100%, test accuracy to be
86.23%,  sensitivity  to  be  88.89%,  and  specificity  to  be
94.44%  with  AUC=0.97.

When the three sets of variables of the diagnostic model
of  MCI  were  combined,  the  random  forest  demonstrated
training accuracy to be 100%, test accuracy to be 97.23%,
sensitivity  to  be  94.44%,  and  specificity  to  be  100%.  All
ROC of the test set was achieved using the three sets of vari-
ables of the diagnostic model of MCI (Fig. 1).

According to the observation made on the importance of
the  basic  characteristics  as  the  variables  of  the  diagnostic
model of MCI, the random forest algorithm sorted an order:
age > hypertension > education > gender > diabetes > coro-
nary heart  disease (Fig.  2).  Considering the importance of
serum characteristics, the random forest algorithm presented
an order as: Aβ1-42/1-40 > Aβ1-42 > TAU > triglycerides >
Aβ1-40 >LDL cholesterol (Fig. 3). In the case of the impor-
tance of  imaging biomarkers,  the  random-forest  algorithm

presented an order as top ten imaging biomarkers: FA of left
cerebellum_4_6, DWI of right insula, DWI of left olfactory,
FA of left inferior frontal gyrus-opercular part, CBF of ver-
mis_7, DWI of the posterior cingulate gyrus, DWI of right
fusiform, FA of the left rolandic operculum, DWI of right ol-
factory,  and  FA  of  left  insula.  Especially,  FA  of  cerebel-
lum_4_6_L was the most important variable of the diagnos-
tic model of MCI (Fig. 4).

4. DISCUSSION

Considering  the  scale-depended  diagnostic  method  of
MCI, which is known to be subjective and heterogeneous,
our study aimed to pursue the biomarkers that could serve as
a more objective approach to identifying MCI in aged indivi-
duals to develop a more effective diagnostic model of MCI.

In our study, we chose a random forest algorithm to ana-
lyze the basic characteristics and biomarkers of serum and
imaging as the variables of our diagnostic model of MCI, in-
vestigating which variables were more accurate and reliable.
Random-forest  algorithm in virtue of a backward elimina-
tion  random  forest  (BWERF)  improved  the  accuracy  be-
cause  it  used  backward  elimination  to  exclude  the  noise
genes and aggregated the individual importance values to de-
termine the transcription factors (TFs) retention [37]. Guo L
et al. used a random-forest algorithm to analyze biomarkers
to predict prognosis in the patients with hepatocellular carci-
noma so that they developed the valuable model verified by
external  authentication  [38].  Our  findings  also  suggested
that the diagnostic model of MCI based on a random-forest
algorithm  was  accurate  by  sorting  out  the  important  vari-
ables of the diagnostic model.

Fig. (1). The ROC of different diagnostic models of MCI. (A higher resolution / colour version of this figure is available in the electronic
copy of the article).
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Fig. (2). The indexes sorted according to the importance in the model with basic characteristics. (A higher resolution / colour version of this
figure is available in the electronic copy of the article).

Fig. (3). The indexes sorted according to the importance in the model with serum biomarkers. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article).

In our study, we screened out the basic characteristics,
serum biomarkers, and imaging biomarkers using a random
forest algorithm. The imaging biomarkers as the variables of
the diagnostic model of MCI were found to be more accu-
rate and reliable than the basic characteristics and serum bio-
markers, with the sensitivity of 88.89% and the specificity
of 94.44%. Moreover,  when the three dimensions of basic
characteristics and serum and imaging biomarkers were com-

bined,  the  diagnostic  model  of  MCI came to  be  optimum,
with the sensitivity of 94.44% and the specificity of 100%.
The findings suggest that the random-forest  algorithm can
be quicker, more effective, and more accurate in screening
out the diagnostic variables from many variables by sorting
them into order according to the significance. This further
suggests  that  in  applying the random forest  algorithm, the
more variables the diagnostic model  has,  the  better  it  will
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Fig. (4). The indexes sorted according to the importance in the model with imaging biomarkers. (A higher resolution / colour version of this
figure is available in the electronic copy of the article).

be. Thus, it is safe to conclude that random forest algorithms
can have superiority over the traditional statistical methodol-
ogy in terms of diagnostic or prediction models.

In the current study, we analyzed through RFE the signif-
icant biomarkers of the basic characteristics, serum biomark-
ers, and imaging biomarkers in different models and found
that in the diagnostic model of MCI in which we chose the
basic  characteristics  as  variables,  the  random  forest  algo-
rithm helped sort out such an order of importance as age>hy-
pertension> education > gender> diabetes> coronary heart
disease.  Although  these  demographic  characteristics  have
been reported in different studies, in which they were consid-
ered intimate correlative with MCI or AD [28, 39-42], fewer
research works have reported an order of importance. In the
diagnostic  model  of  MCI  in  which  the  serum  biomarkers
were chosen as variables, the random forest algorithm sorted
out  an  order  of  importance  as  Aβ1-42/1-40  >  Aβ1-42  >
TAU >  triglycerides  >  Aβ1-40  >  LDL cholesterol.  Serum
Aβ and P-tau and LDL cholesterol have been considered ef-
fective biomarkers of MCI or AD [43-45]; however, we fur-
ther evaluated their importance through RFE.

Considering  the  imaging  biomarkers  in  the  current
study,  FA,  ADC,  and  CBF  median  values  were  extracted
from 116 brain regions using an automated anatomical label-
ing parcellation template, which differed from the traditional
selection of image regions of interest (ROI), as indicated by
its ability to obtain more comprehensive information about
the whole brain, thus providing more accurate image infor-
mation for machine learning and higher-quality image mark-
ers for the establishment of a diagnostic model. This could
be  ascribed  to  the  use  of  brain  image  segmentation  tech-
niques. Thus, our random-forest-based diagnostic model of
MCI was found to be highly sensitive and specific.

The top ten imaging biomarkers were found to be FA of
left cerebellum_4_6, DWI of right insula, DWI of left olfac-
tory, FA of left inferior frontal gyrus-opercular part, CBF of
vermis_7,  DWI  of  the  posterior  cingulate  gyrus,  DWI  of
right fusiform, FA of the left rolandic operculum, DWI of
right olfactory, and FA of left insula. Especially, FA of cere-
bellum_4_6_L was found to be the most important variable
of the current diagnostic model. The FA of the left cerebel-
lum was considered as the most important imaging biomark-
er, suggesting that the FA impairment of the left cerebellum
could be a significant indicator in MCI individuals, which to
some extent corresponds with the previously reported find-
ings  that  abnormal  cerebellum  was  correlated  with  MCI
[46], but different from AD in which the hippocampus was
found to be impaired [47]. In general, hippocampus atrophy
is accepted as an imaging biomarker for AD diagnosis [48];
however, in our study, the cerebellum_4_6 of the MCI pa-
tients was found to be altered. Thus, we hypothesized that
the cerebellum_4_6 could be altered earlier than the hippo-
campal atrophy.

CONCLUSION

Based  on  the  random  forest,  the  diagnostic  model  of
MCI with imaging features as variables is found to be superi-
or to the model with serum biomarkers and basic features.
With  the  basic  characteristics  combined  with  the  imaging
and  serum  biomarkers,  the  diagnostic  model  of  MCI  is
found  to  be  optimum.  The  FA  of  left  cerebellum  through
RFE is considered as the most important imaging biomarker.
Moreover, the order of importance of the basic characteris-
tics can be listed through RFE as age > hypertension > edu-
cation > gender > diabetes > coronary heart disease, and the
order of importance of the serum biomarkers is as follows:
Aβ1-42/1-40 > Aβ1-42 > TAU > triglycerides > Aβ1-40 >
LDL cholesterol.
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LIMITATION

This was a small sample size study, which, to a great ex-
tent, made it a little difficult to obtain the serum and imag-
ing biomarkers at the same time. Considering the diagnostic
model, the validation was only internal, lacking external vali-
dation. The serum biomarkers were relatively fewer, which
could  show disadvantages  when  compared  to  the  imaging
ones as the features of the diagnostic model of MCI. Further
investigations  are  needed to  decide  whether  adding serum
biomarkers could be useful as the serum-biomarker diagnos-
tic model.
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