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Formation and suppression of acoustic memories
during human sleep

Thomas Andrillon'2, Daniel Pressnitzer® 3, Damien Léger® & Sid Kouider!

Sleep and memory are deeply related, but the nature of the neuroplastic processes induced
by sleep remains unclear. Here, we report that memory traces can be both formed or
suppressed during sleep, depending on sleep phase. We played samples of acoustic noise to
sleeping human listeners. Repeated exposure to a novel noise during Rapid Eye Movements
(REM) or light non-REM (NREM) sleep leads to improvements in behavioral performance
upon awakening. Strikingly, the same exposure during deep NREM sleep leads to impaired
performance upon awakening. Electroencephalographic markers of learning extracted during
sleep confirm a dissociation between sleep facilitating memory formation (light NREM and
REM sleep) and sleep suppressing learning (deep NREM sleep). We can trace these neural
changes back to transient sleep events, such as spindles for memory facilitation and slow
waves for suppression. Thus, highly selective memory processes are active during human
sleep, with intertwined episodes of facilitative and suppressive plasticity.
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ARTICLE

he ability to learn during sleep is both the focus of many

scientific studies as well as an ancient fantasy!. However,

well-controlled studies showing the formation of new
mnesic traces during sleep remain scarce’”® and coexist with
numerous null results’~'!. This paucity of positive results con-
trasts with the vast literature linking sleep to the consolidation of
pre-existing memories!?~1°

Current models of the relationship between sleep and memory
propose specific mechanisms to account for this discrepancg.
According to the active consolidation hypothesis'® 4 16 17,
previously learnt information is replayed during sleep, enabling
the transfer and strengthening of memories for long-term cortical
storage. The gating of sensory information at the thalamic level'®
could prevent interferences from external events in order to
ensure optimal conditions for the consolidation of already
existing memories. Sleep spindles have often been proposed as a
mechanism ensuring such offline hippocampal-cortical dialo-
gue'> 1°. The reversal of the information flow between cortical
and hippocampal structures could also explain the difficulty to
form new memories during sleep!® 1°.

Another influential theoretical proposal, the synaptic home-
ostasis hypothesis'?> 20, proposes that sleep reflects homeostatic
constraints promoting downscaling rather than potentiation of
synaptic connections, leading to a dampening or suppression of
existing memories'?. Because only the strongest memories are
conserved, consolidation would result from a higher signal-to-
noise ratio rather than an absolute increase in memory strength?!,
Another consequence of synaptic downscaling would be an
increased difficulty in forming new mnesic traces. Such account
can seem, at first, opposed to the active consolidation hypothesis,
as it stresses the importance of synaptic downscaling rather than
synaptic potentiation during sleep. However, both types of pro-
cesses could occur during sleep but during distinct phases of
sleep: active consolidation in light NREM and REM sleep and
synaptic downscaling in deep NREM sleep (see ref. 22 for a
review).

What these models have in common is that they all propose
mechanisms explaining how memory consolidation may nega-
tively impact the formation of new memories. However, little is
known about how sleep and its associated rhythms eventually
modulate the ability to learn. Past studies revealed the surprising
ability of the sleeping brain to form new memories® 7> 2% 24 and
to process sensory information in a complex and flexible fash-
ion?>728; these results advocate for a more detailed investigation
of whether and how memories can be formed during sleep. In
particular, the question of how sleep stages modulate environ-
mental learning remains unanswered.

To probe the occurrence of learning across sleep, we investi-
gated the formation of memories for novel sensory stimuli pre-
sented overnight. We used a noise-memory paradigm,?” in which
participants have to detect repeating noise segments embedded
within running white noise. Performance usually increases with
exposure to the same noise exemplar, reflecting perceptual
learning over time?. As learnin% is unsupervised and occurs even
in the absence of attention®” 31, the paradigm is appropriate to
probe memory processes during sleep. The noise samples are fully
novel to listeners, ensuring the formation of new memories and
not consolidation. Importantly, electroencephalographic (EEG)
markers of noise learning during wakefulness have been recently
established®® !; so EEG can be used in the absence of behavioral
report during sleep. We reasoned that by providing sleepers with
sensory information that can be learnt passively, we could probe
neural plasticity during sleep. Indeed, so far, only conditioning
had been evidenced in sleeping animals® 3> or humans> 7> 23 while
declarative forms of memory tend to produce null results® 3.
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Fig. 1 Noise memory paradigm in wakefulness and sleep. a, b Stimuli and
expected results: Participants (N =20) were instructed to discriminate
between trials made of running white noise (N) and trials that contained a
repeated pattern (RN and RefRN), made by the seamless concatenation of
short (0.2's) noise segments (targets) interleaved with 0.3 s fresh white-
noise fillers. RN (within-trial repetition) and RefRN (within- and across-trial
repetition) trials had an identical structure and differed only regarding the
amount of exposure to the target. Participants’ ability to discriminate RN
from N trials evidences shorter-term memory for the novel repeated target.
A better discrimination for RefRN compared to RN trials additionally
indicates longer-term memory processes (a, right). ¢ Full-night recording:.
Each recording session started with a pre-sleep phase, during which
participants were instructed to remain awake. In all, 5 unique randomly
generated RefRN were used in the pre-sleep phase for each participant. In
the sleep phase, participants were lying on a bed while being continuously
exposed to white-noise stimuli. Different sets of unique RefRN targets were
used depending on participants’ vigilance states (wake, non-rapid eye
movement (NREM) and REM sleep). Finally, participants were tested upon
awakening (post sleep) on all RefRN targets heard during the pre-sleep and
sleep phases, along with 5 novel RefRNs (memory test). Each RefRN target
was played in a separate block along new RN and N trials

Here, we show that other forms of implicit memory can be
acquired during sleep. Performance upon awakening is improved,
providing evidence for perceptual learning during REM sleep.
EEG markers of learning computed overnight confirm sleepers’
ability to learn in both REM sleep and light NREM sleep. The link
between this form of perceptual learning and more standard
instances of nondeclarative memory remains to be specified, but
previous data suggests that it contains both shorter-term (hun-
dreds of millisecond) and longer-term (from tens of seconds to
weeks) components®’. Presenting stimuli during deep NREM
sleep, however, can lead to the suppression of previous learning
and can even have a negative impact on subsequent learning
upon awakening. In this study, we link learning or the suppres-
sion of learning to sleep hallmarks such as slow waves and sleep
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spindles in NREM sleep or rapid eye movements in REM sleep.
Thus, both the formation and suppression of new memories can
take place during sleep, depending on sleep stages and rhythms.

Results

Experimental Design. Human listeners were tested in a whole-
night sleep experiment (Fig. 1). In a first pre-sleep phase, parti-
cipants who were awake (N = 20) were instructed to discriminate
Gaussian noise (N) from noise with embedded repeated patterns
(repeated noise, RN), those patterns simply being identical
snippets of Gaussian noise. Unbeknownst to the participants, five
different target noise segments, which repeated within trials, also
reoccurred across several trials (reference-RN, RefRN). A higher
repetition detection rate for RefRN, heard across many trials,
relative to RN, heard only during one trial, indicates perceptual
learning® 30. A subsequent sleep phase started immediately after,
during which participants fell asleep while performing the task.
The sound presentation continued but two new sets of five RefRN
targets were introduced, respectively, during NREM and REM
sleep (i.e., when participants were asleep and unresponsive).
Finally, in the morning, participants started the post-sleep test
with the same discrimination task as for the pre-sleep phase.
Stimuli included all RefRN targets heard during the pre-sleep
wake phase, NREM sleep, and REM sleep, together with a new set
of five RefRN targets for baseline comparison.

We re3plicated previous findings during the pre-sleep wake
phase?~31. Namely, participants reliably reported targets for both
the RefRN and RN conditions (Fig. 2a and Supplementary
Fig. 5a). In addition, RefRNs were detected with higher sensitivity
(d’) and shorter reaction times (RTs) compared to RNs (Fig. 2a).
We combined these two behavioral measures into a Behavioral
Efficacy index (BE, see Methods and ref. 30y An index of
perceptual learning was computed by contrasting the RefRN vs.
RN conditions (BEgen—BERrN)- A greater BE was observed for
RefRN targets compared to RN (paired t-test, #(19) =2.73, P=
0.013, Hedges’ g=0.36), showing robust perceptual learning
when awake after only 16 exposures to a given RefRN.

Learning during sleep impacts performance upon awakening.
The same analysis was performed for the post-sleep test. We
computed the index of perceptual learning separately for the four
different sets of RefRN (i.e., pre-sleep, NREM and REM sets, plus
the new post-sleep list). Because listeners can rapidly learn new
RefRNs, isolating a pure effect of learning due to prior exposure
should be established by focusing on initial trials (i.e., before
additional learning occurs). We thus compared BEs computed
over the initial 3 exposures.

For the pre-sleep list, participants exhibited significantly higher
initial performance for RefRN targets compared to the new RN
targets (two-tailed paired t-test: #(19) = 3.09, P =0.0060, Hedges’
g=0.58), confirming that previous exposure during wakefulness
leads to a persistent form of perceptual learning®®. We then
turned to the analysis of stimuli heard during sleep, and we found
a similar increase in sensitivity for REM sleep (two-tailed paired
t-test: #(19) =3.07, P=0.0063, Hedges’ g=0.54). This result
demonstrates that perceptual learning takes place during REM
sleep and transfers to wakefulness. When inspecting RefRN
targets heard during NREM sleep, however, we found no trace of
such an advantage (two-tailed paired t-test: #(19) = 0.57, P=0.57,
Hedges’ g=0.11). We computed a Bayes factor** (see Methods)
to determine whether this nonsignificant effect can be interpreted
as a genuine null result rather than a lack of sensitivity in our
data. Consistent with the former interpretation, we observed a
Bayes Factor of 8.1, indicating positive evidence for a null effect.
Decomposing BE into accuracy (d’) and speed (RTs) confirmed
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this pattern of results with an increase in repetition-detection
accuracy for the wake and REM lists (Supplementary Fig. 4a, b).
Finally, examining BE for RefRN and RN separately (Supple-
mentary Fig. 6) revealed that the modulations of the RefRN-RN
difference across lists are due to modulations of performance for
RefRN trials, whereas performance on RN trials remained rather
constant. Accordingly, RN trials were equally new for all four lists
while prior exposure varied for RefRN trials.

When examining the results over the course of the whole post-
sleep test (i.e., for the 8 exposures), we found that participants
remained unable to learn RefRN targets that were previously
heard during NREM sleep (Bayes Factor of 34.07 suggesting
strong evidence for a null effect). Strikingly, of all the noises we
tested (i.e., including the novel RefRN), only the ones heard
during NREM did not show any evidence of perceptual learning
(Fig. 3a and Supplementary Fig. 5b). In addition, all differences
between NREM effect and effects in other lists were significant
(two-tailed paired t-tests, all P <0.05, N=20). The increase in
performance for the new list can easily be interpreted as the fact
that, by the end of the post-sleep phase, new RefRNs were not
new anymore and had been learnt. Such learning of new RefRNs
sharply contrasts with the absence of learning for NREM items.
Furthermore, this pattern of results was confirmed when examining
detection accuracy alone (d', Supplementary Fig. 4a, b). The same
pattern of results was also obtained when discarding all NREM
and REM RefRN targets presented around the slightest signs of
awakening (Methods and Supplementary Fig. 4c). Therefore,
hearing a noise during NREM sleep made this exact same noise
harder to learn upon subsequent awakening, even when
compared to completely novel noises. This result reveals a
suppressive effect of NREM sleep on the formation of new
memory traces.

Neurophysiological markers of wake and sleep learning. To
track down the neuroplastic processes underlying perceptual
learning and suppression, we analyzed EEG responses collected
while participants performed the behavioral task and also while
they were asleep. During the pre-sleep phase, we observed neu-
rophysiological markers of perceptual learnin% consistent with
behavioral findings and previous studies’” °!. Event-related
potentials (ERPs), resembling standard auditory ERPs (Supple-
mentary Fig. 7a and ref. %), were time-locked to the repeated
noise snippets (Fig. 2b, Pyster < 0.005). Importantly, these ERPs
were not locked to any salient acoustic landmark in the sounds,
such as amplitude onsets or obvious spectrotemporal features
(Supplementary Fig. 2). In particular, our stimuli were all
constant-amplitude white noise, so no fluctuation of sound
energy at the transition with the target could explain the emer-
gence of evoked potentials. Rather, the ERPs were only present
for snippets of noise that had been heard previously. Because such
ERPs depend on gast exposure, we termed them Memory-Evoked
Potentials (MEPs>?). These MEPs have been modeled as standard
auditory potentials (N1-P2 complex) locked to idiosyncratic
features within the noise, which only became salient after learn-
ing®’. Another marker of perceptual learning is the increase in
intertrial phase coherence (ITPC, Fig. 2c), which may reflect
MEPs or, in addition, modulations of ongoing neural oscilla-
tions>> 31, We observed an increase in ITPC for RefRN targets
compared to RN targets (Fig. 2d, two-tailed paired #-test: #(19) =
2.18, P=0.042, Hedges’ g=0.46). The ITPC increase was
observed around the target presentation rate (2 Hz, Supplemen-
tary Fig. 3a) and was maximal at central electrodes (Supple-
mentary Fig. 3b).

The same MEP analyses were conducted on data collected
during sleep; data from each distinct sleep phase was analyzed
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Fig. 2 Behavioral and electrophysiological indexes of perceptual learning in wakefulness. a Behavioral indexes of memory for noise. Participants could
discriminate RN and RefRN from noise as indicated by the positive sensitivity (d’, top). In addition, performance was better for RefRN compared to RN: d’
was increased while reaction times (RTs, middle) were decreased for RefRN. We combined these two variables into a Behavioral Efficacy (BE, bottom)
index. Error bars denote the standard error of the mean across participants (N = 20). Stars atop graphs refer to the RefRN vs. RN comparison (paired t-test,
here and below: P < 0.01: **; P < 0.05: *). b Target-locked memory-evoked potentials (MEPs). Averaged EEG activity time-locked to the position of targets'
onset for RefRN (orange), RN (blue) compared to N trials during the pre-sleep phase. All targets but the first one from a given trial were used to compute
these MEPs (4 targets per trial). MEPs were temporally smoothed using a 50 ms-wide Gaussian kernel. Shaded areas denote the SEM across participants.
Horizontal orange and blue lines show significant clusters for the RefRN vs. N (orange, [200, 400] ms post target) and RN vs. N (blue, [200, 410] ms)
comparisons (Puster < 0.005). The inset shows the scalp topographies of t-values corresponding to the RefRN vs. N cluster (i.e., t-values obtained via a t-
test of the RefRN vs. N difference for the MEPs waveforms averaged between 200 and 400 ms across participants). White dots show the central electrodes
used in b-d. ¢ Stimulus-locked Inter-Trial Phase Coherence (ITPC). An increase in ITPC ([1.5, 3.5] Hz) was observed for RefRN ([2.3, 3.8]s post stimulus
onset, Pquster < 0.05) and RN trials ([2.2, 3.1]s, Pjuster < 0.05) compared to N. ITPC was here corrected for baseline activity ([-1.3, —=0.3]s). d Averaging
ITPC over the stimulus presentation window ([0.8, 3.81s) revealed higher ITPC values for RefRN values compared to RN (two-tailed paired t-test). ITPC
was correlated with BE (right, Pearson’s correlation)

separately (Fig. 4a). During REM sleep, MEPs for RefRN trials
differed from N trials (P yuger < 0.05). However, the waveform of
the potentials evoked by each target was different from typical
MEPs (Fig. 2b). Rather, this waveform was consistent with the
well-documented transformations of auditory-evoked potentials
during REM sleep, which includes a decrease of N1 amplitude in
favor of larger P1 and P2 potentials*® (Supplementary Fig. 7a).
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During light NREM2 sleep, RefRN trials also differed from N
trials (Pquster < 0.05). The MEPs observed for NREM2 resembled
wake MEPs, with a central negative deflection. Finally, during
NREM3, a difference between RefRN and N was also observed
(Pejuster < 0.05) but with a much larger inter-subject variability. In
addition, the waveform no longer resembled typical MEPs: the
negative deflection, interpreted as an auditory N1 for wake
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Fig. 3 Impact of prior exposure on behavioral performance upon awakening. a Behavioral efficacy indexes of longer-term memory (RefRN—RN) computed
for the beginning (left, 3 first trials) or the entire (right) post-sleep blocks. BE was computed separately for the RefRN heard during wakefulness, REM,
NREM, or for the novel RefRN introduced in the post-sleep phase. Error bars denote the standard error of the mean across participants (N = 20). Stars atop
bars indicate the results of the statistical tests (t-tests against O, P <0.001: ***; P<0.01: **; P< 0.05: *, NS: P> 0.05). Performance is better for RefRN
sounds heard during wake and REM sleep at the beginning of post-sleep blocks. For the whole test analysis, all conditions improve as participants could
learn even new RefRNs during the block, with the notable exception of RefRN sounds heard during NREM sleep: those were not learnt even after the whole
test. b Correlation between the REM sleep longer-term memory index (BEgerrn—BEgrn) and the number of trials played in REM sleep (left), tonic REM sleep
(middle), and phasic REM sleep (right) across participants. ¢ Correlation between the NREM sleep longer-term memory index and the number of trials
played in NREM sleep (NREM2 + NREM3, left), NREM3 (middle) and NREM?2 (right) across participants. For b and ¢, Pearson’s correlation coefficients are
displayed on each correlation plot (P < 0.05: *, NS: P> 0.05). Open circles (¢) show data points detected as outliers (see Methods). The correlation
coefficients obtained when excluding these data points are presented in the Results section. Dotted lines show the linear fit for pairs of variables with

significant correlation

MEPs*, was replaced by a positive deflection with a central scalp
distribution (Fig. 4a). Again, such changes mirror the documen-
ted transformations of auditory potentials during NREM sleep™®
(Supplementary Fig. 7a).

We completed the analyses of MEPs by examining the ITPC
associated with stimulus presentation (Fig. 4b). Here, ITPC was

computed on fixed-size

windows of 20 consecutive RefRN or RN

trials slid across the entire night recordings (see Methods).
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Mixed-effects modeling revealed a significant interaction between
sleep stages (NREM2, NREM3, or REM) and stimulus conditions
(RefRN or RN): }(2(13) =681.9, P< 2.2 x 10710, Post hoc analyses
confirmed the presence of perceptual learning during sleep.
Indeed, RefRN trials elicited significantly higher ITPC levels than
RN trials in NREM2 (unpaired t-test: #7379) =7.13, P=1.1x 10712,
Hedges’ g=0.17 for 3698 and 3683 RefRN and RN windows,
respectively) and REM sleep (#(2406) = 2.59, P =0.0098, Hedges’
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Fig. 4 Evoked activity to repeated noise snippets during sleep. a Target-locked memory-evoked potentials (MEPs) in NREM2 (left), NREM3 (middle), and
REM (right) stages of sleep for RefRN (orange) or RN (blue) trials compared to N trials. Central electrodes were used (circles on scalp topographies) and all
targets but the first one from a given trial were used (9 targets per trial). Note the resemblance between the NREM2 MEPs and the MEPs observed in
wakefulness (Fig. 2b). Horizontal bars show significant clusters (NREM2: ([305, 405] ms; NREM3: ([130, 300] ms; REM: [280, 390] ms; P.juster < 0.05) for
the RefRN vs. N difference (orange; no RN vs. N difference). Dotted lines denote the standard error of the mean across participants (N = 20). Insets: scalp
distribution of t-values (RefRN vs. N, paired t-tests) over temporal windows corresponding to the abovementioned clusters. The gray contour shows the
scalp distribution of the MEPs observed in wakefulness (Fig. 2b). MEPs were temporally smoothed using a 50 ms-wide Gaussian kernel. b Inter-trial phase
coherency (ITPC) extracted over the entire night recordings (N =20) on windows of 20 consecutive RefRN (orange bars) or RN (blue bars) trials. The

corresponding windows were aggregated across participants (NREM2: N=3698 and 3683; NREM3: N =2480 and 2478; REM: N=1190 and 1218 for

RefRN and RN trials, respectively). ITPC was extracted around 2 Hz ([1.5, 3.5] Hz) and during stimulus presentation ([0.8, 5.5]s). Mixed-effects models
revealed a significant interaction between sleep stages and stimulus condition (see Methods for details). Stars atop boxes indicate the results of post hoc
statistical tests (t-tests against O, P < 0.001: ***; P< 0.01: **; P< 0.05: *, NS: P> 0.05). Note the significant increase in ITPC for RefRN compared to RN

trials in stages NREM2 and REM but not in NREM3

g=0.11 for 1190 and 1218 RefRN and RN windows, respec-
tively). However, there was no increase in ITPC for RefRN
compared to RN trials in NREM3 (#(4956) =-0.99, P=0.32,
Hedges’ g=0.03 for 2480 and 2478 RefRN and RN windows,
respectively).

In summary, the EEG analyses during wakefulness showed
clear markers of perceptual learning, replicating previous studies
and consistent with behavioral findings®” 3!. Importantly, the
same EEG analyses could also be performed during sleep. There,
we observed that learning was modulated by sleep stages.

Sleep rhythms. In addition to sound-related analyses, the EEG
signals were used to characterize sleep-related activity patterns so
as to evaluate the impact of stimulation on sleep. We computed a
time-frequency decomposition of the EEG signals, for each dif-
ferent sleep phases and stimulus conditions (Fig. 5). We first
examined the effect of sound onset, which by construction is
equivalent across all stimulus conditions (Fig. 1b and Supple-
mentary Fig. 2). In REM sleep, sound onset robustly modulated
the EEG signal within the € band ([4, 8] Hz), which is a char-
acteristic of this stage of sleep®’, Supplementary Fig. 7b, d). In
NREM2 and NREM3 stages, sound onsets were followed by
evokggl K complexes and sleep spindles, the hallmarks of NREM
sleep”®.

Then, we contrasted the different stimulus conditions for each
sleep phase. During REM sleep, power over the 6 band decreased
over the sound presentation, more so for N trials compared to
RefRN trials (Pgyster < 0.01). During NREM2 sleep, we also
observed a stimulus-specific modulation of characteristic sleep
rhythms (Fig. 5). RefRN trials produced a decrease in power
within the slow-wave band (<5 Hz). Sleep spindles showed only a
marginal modulation ([11, 16] Hz). During NREM3 sleep, no
difference between conditions could be demonstrated.

Thus, in addition to EEG markers of learning, we also
discovered stimulus-specific modulations of sleep rhythms in

6 NATURE COMMUNICATIONS | 8:179

light NREM (NREM2) sleep. Interestingly, the modulations
within the slow-wave and spindle bands were centrally distributed
(Fig. 5b) overlapping with the topography of learning effects in
wake (Fig. 2b) and did not overlap with the typical distribution of
slow-wave and sleep-spindle power (Supplementary Fig. 7c). The
most parsimonious interpretation is that such light NREM effects
reflect local task-dependent modulations of sleep depth, accom-
panying the processing and learning of acoustic information.
Accordingly, we observed a positive correlation (Pearson’s
correlation: 7(18) =0.54, P=0.022) between performance gain
for the NREM list and sleep disruption (computed as the
proportions of trials occurring during wake or NREM1 episodes),
which again suggests that a decrease in sleep depth favors
learning.

The behavioral and EEG analyses we have presented so far
point toward a drastic difference between REM, NREM2, and
NREM3 phases of sleep. However, these broadly defined phases
contain a number of distinct events: REM sleep is composed of a
tonic and a phasic subphase, defined by the respective absence or
presence of rapid eye movements; tonic (tREM) and phasic
(pPREM) REM sleep have been shown to differentially impact
sensory processing”” 4%; NREM sleep contains sleep spindles and
slow waves*!, which are assumed to gate sensory processing*? and
organize memory consolidation'? 3, To better understand the
neural events that led to plasticity during sleep, we correlated
behavioral and EEG data with these various sleep markers.

Learning in REM sleep is predominant in the tonic phase. For
REM sleep, we observed a positive correlation between behavioral
learning (initial performance increase in the post-sleep test) and
the number of trials played in REM sleep (Pearson’s correlation: r
(18) =0.49, P=0.027). However, a stepwise regression analysis
comparing the respective influence of tonic and phasic REM sleep
revealed that only the number of tREM trials was predictive of the
performance upon awakening (tREM: f(18)=0.48, P=0.034;
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Fig. 5 Stimulus-dependent modulations of sleep rhythms. a Time-frequency decomposition of the EEG signal recorded on Cz in response to RefRN (left),
RN (middle), and N (right) trials in NREM2 (top), NREM3 (middle), and REM (bottom) sleep stages. Power is time-locked to stimulus onsets, averaged
across participants (N=20) and expressed in dB compared to a pre-stimulus baseline ([-0.25, 0]s, see Methods). Magenta contours correspond to
significant modulations compared to baseline activity (cluster permutation, Pgjuster < 0.05). Gray horizontal bar shows the stimulus presentation window. b
Average activity in time-frequency bands typically associated to NREM (8 -power, < 5 Hz (corresponding to evoked KC: K-complexes,); o-power, [11, 16]
Hz (corresponding to Sp.: sleep spindles)) and REM rhythms (0: [4, 8] Hz). The power responses were averaged over these frequency bands for NREM2
(top: o, middle: 5) and REM sleep (bottom: 8). Between-condition differences are illustrated with colored horizontal bars (cluster-permutation test, Puuster <
0.05, orange: RefRN vs. N, blue: RN vs. N). Gray horizontal bar shows the stimulus presentation window and dotted lines denote the standard error of the
mean computed across participants (N =20). When comparing RefRN and N trials, NREM2 was characterized by a decrease in 6 power, REM by an
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not resist the cluster permutation (no cluster with P.juster < 0.05). The scalp distribution of the t-values of the RefRN vs. N comparison when averaging the
power in the corresponding frequency band and over a [0.8, 5.5] s window is displayed on the side. The gray contour shows the scalp distribution of the
MEPs observed in wakefulness (Fig. 2b). Note the overlap between the scalp distributions of the effects observed in sleep

pREM: B(18) =0.18, P = 0.45; see also Fig. 3b). We replicated this
pattern of results when considering neurophysiological markers
of learning (Fig. 6a). The EEG index of learning (ITPC difference
between RefRN and RN) was positively correlated with the pro-
portion of tREM within REM sleep (r(18) =0.51, P =0.020).

These results suggest an interesting difference between tREM
and pREM: within REM sleep, only tREM episodes seem
conducive to stimulus-driven neuroplastic changes. However,
more research is needed to confirm the respective influence of
tREM and pREM on memory formation.

Slow spindles correlate with learning in light NREM sleep. A
similar correlational analysis was undertaken for NREM sleep.
We investigated the role of sleep spindles, as they are thought to
trigger neuronal plasticity'>. Here, we discovered a strong and
positive correlation between the percentage of trials containing
slow frontal spindles and the neurophysiological markers of
learning upon awakening (ITPC RefRN-RN; Pearson’s correla-
tion coefficient: r(18) =0.65, P=0.0019, Fig. 6b, right). Impor-
tantly, there was no correlation when considering fast centro-
parietal spindles (Pearson’s correlation coefficient: (18) = 0.02, P
=0.92). In addition, although slow spindles are maximal at
frontal electrodes, the correlation between learning and spindles’
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incidence was maximal at central electrodes, overlapping again
with the effects of learning observed in wakefulness and NREM2
(Supplementary Fig. 8).

Slow waves and suppression of learning in deep NREM sleep.
We attempted to trace back the suppressive effect of exposure
during NREM sleep, observed on the behavioral data in the post-
sleep test, to specific sleep events. Unlike in the analyses of REM
sleep (Fig. 3b), there was no significant correlation between
performance and the number of trials played in NREM sleep
(Pearson r(18) =—0.20, P=0.41; Fig. 3c). However, two data
points (unfilled circles in Fig. 3c) were identified as outliers using
the Median Absolute Deviation method®? (see Methods). When
excluding these data points, we found a significant negative
correlation between performance and the number of trials played
in NREM sleep (Pearson r(16) =-0.55, P=0.018). A stepwise
regression analysis comparing the influence of NREM stages
(NREM1, 2 and 3) showed that only the number of trials played
in deep sleep (NREM3) was predictive performance upon awa-
kening (p(16) =-0.50, P=0.027). Nevertheless, while these
results suggest that deep NREM sleep is predominantly involved
in the suppressive effect of NREM exposure, it is important to
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stress that they were obtained only after discarding the data from
two outlier participants.

The suppressive effect of deep NREM was confirmed by
examining EEG responses to white-noise stimuli during the post-
sleep phase (all 20 participants included, Fig. 6). The ITPC
marker of learning was indeed negatively correlated with the
proportion of NREM3 trials in NREM sleep (r(18) =-0.53, P=
0.016; Fig. 6a). Furthermore, as shown for other sleep rhythms,
there was a negative correlation between the EEG index of
learning upon awakening and the percentage of trials containing
slow waves during exposure (Fig. 6b; r(18) =-0.49, P=0.030).
When mapping this correlation onto scalp sensors, the effect was
localized on frontal electrodes, where slow waves are generally
most prevalent**, and also on central electrodes, where the effect
of learning was observed in wakefulness (Fig. 2b and Supple-
mentary Fig. 3).

The suppressive effect of deep NREM was further linked to the
predominance of slow waves during this phase of sleep®.
Although there was no significant difference in ITPC between
RefRN and RN trials when considering all NREM trials (NREM2
and NREM3, Fig. 7a), mixed-effects models (see Methods)
revealed a highly significant influence of the power in the &

8
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band (<5 Hz. a good proxy for slow wave density?®) on ITPC
values for RefRN trials (comparison with a model not taking into
account 6—power to predict ITPC: 72(1)=19.18, P=22x107%).
Strikingly, this effect was restricted to RefRN and was not present
for RN trials (y*(1) =0.94, P=0.33). We later quantified this
relationship using a Pearson’s correlation and found a clear
negative correlation between § power and ITPC for RefRN trials
(Fig. 7b, r (1392) =-0.12, P=1.2x 10™) but not for RN trials
(r(1392) = —0.026, P = 0.33).

We further examined whether the negative correlation between
ITPC and & -power over the entire night was maintained within
individual sleep cycles. To do so, we normalized the sleep cycles’
durations (see Methods, N=282 cycles in 18 participants; 2
participants did not have clearly identifiable sleep cycles) and
examined the time course of § power and ITPC. A clear increase
in 6 power was visible within the cycle progression, correspond-
ing to the transition from lighter stages of NREM to deep NREM3
(Fig. 7c). At the beginning of the cycles, higher ITPC were
observed for RefRN compared to RN (Pyger < 0.05), consistent
with learning occurring during light NREM sleep (Figs. 3 and 4).
Later in the sleep cycle, the advantage for RefRN decreased and
was eventually canceled out, closely mirroring an increase in &
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baseline ITPC ([-1.3, 0.3]s). b Correlation between ITPC values computed for RefRN trials (z-scored per sleep-cycle to highlight the within-cycle dynamics,
see Methods) and 6 (<5 Hz) power (N =1368 data points in 82 cycles and 18 participants). Data was binned for illustrative purpose (N =50 bins) and each
dot represents a bin. Error bars represent the standard error of the mean (SEM) of ITPC values for each bin. Mixed-effects models revealed a significant
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(unpaired subtraction). Mixed-effects models revealed a significant interaction between sleep stages and stimulus condition (42(5) = 432.0, P<2.2x10
716, see Methods). Stars show post hoc statistical tests comparing ITPC for RefRN and RN trials in NREM2 (two-tailed t-tests: ***P < 0.001) and NREM3
(NS: P>0.05). e Pearson's correlation coefficients between ITPC and 6 -power for RefRN (orange) and RN (blue), respectively, computed on each cycle
separately and averaged here across sleep cycles (n=82 cycles). Pearson's coefficients were significantly negative for RefRN (two-tailed t-test, t(81) =
-2.24, P=0.028, Hedges' g =0.25) but not for RN trials (t(81=-0.50, P=0.62, Hedges' g=0.06)

power. Correlations were also observed between EEG markers of
learning and other features of slow waves (density, slope, spatial
expanse, and number of negative peaks), likewise modulated
across sleep cycles (Supplementary Fig. 9). The observation of an
effect of learning followed by its suppression over the time span
of a sleep cycle could explain why we observed markers of
learning in NREM2 but not in NREM3 (Fig. 7d) or when
considering all NREM trials together (Fig. 7a). Finally, the
negative correlation between ITPC and & power was also observed
within cycles for RefRN but not for RN trials (Fig. 7e). However,
this reversed modulation of ITPC was rather small in proportion
compared to the modulation of § power (one order of magnitude
smaller).

Discussion

Using an auditory perceptual learning task, we tracked the for-
mation and longer-term maintenance of memory traces from
sleep to wakefulness. First, we demonstrated that new repre-
sentations of complex acoustic stimuli could be formed during
sleep. Second, behavioral performance upon awakening and
neurophysiological markers extracted during sleep revealed a
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sharp distinction between REM and light NREM sleep on the one
hand and deep NREM sleep on the other: while REM and light
NREM sleep induced learning, deep NREM sleep suppressed
learning. These learning and suppression effects transferred to
wakefulness. A more detailed examination of EEG markers dur-
ing the night further specified the electrophysiological activity
that favored or, in contrast, suppressed learning. For REM sleep,
perceptual learning was primarily driven by tonic REM. In light
(NREM2) sleep, perceptual learning was correlated with the
density of slow spindles. In deep (NREM3) sleep, the suppressive
effect may be driven by the presence of slow waves. These find-
ings could provide new insights into the function of sleep and its
distinctive phases.

First, we reported that tonic episodes of REM sleep promote
the learning of novel information in a way that is comparable to
wakefulness. Just as during wakefulness, repeated exposure to
noises during REM sleep leads to subsequent improvement in
behavioral performance, along with corresponding neurophysio-
logical markers of learning®’. We observed evoked potentials
(MEPs) for recurrently presented noise snippets as well as an
increase in phase coherence across trials, demonstrating sleepers’
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ability to form new representations for initially nondescript
noises. Although the MEPs observed in REM sleep displayed a
different shape compared to wakefulness, they were comparable
to the typical auditory-evoked potentials observed in REM
sleep®®. Recurrent exposure (RefRN) enhanced specifically the P2
potential, as is the case for perceptual learning in wakefulness*°.
We also observed an increase in 6 power for learnt trials (RefRN)
in REM sleep, which is reminiscent of the enhancement of
oscillations during the encoding of new memories®”.

That listeners may learn novel sensory information during
sleep is broadly consistent with previous research showing that
sensory processing and the learning of new associations are
possible during REM sleep”> 28. However, this also seems at odds
with the relatively low incorporation of external stimulations to
the dream scenery, classically interpreted as the brain shutting
down from external inputs®’. To reconcile these observations, it is
worth noting that the memory effect was positively associated
with the proportion of tREM, and thus negatively correlated with
the proportion of pREM. This result is in line with previous
ﬁndin§s of increased sensitivity to sensory information in
tREM?” %8, Interestingly, dream reports seem more vivid in
pREM®. It is therefore possible that, in pREM, the brain is more
isolated from sensory input due to the processing of dream
contents®’. On the contrary, tREM would be more permeable to
external sensory information. Thus, in REM sleep, the bottleneck
limiting learning would be the connectedness to the environ-
ment>’. However, further investigations are needed to clarify the
respective influence of pREM and tREM on sensory processing
and memory formation.

In the past, the observation of faithful sensory encoding®' > and/or
complex information processing in NREM sleep?> 26 25 5% 55 chal-
lenged the notion of a thalamic gating!® and the idea that sleepers
do not have access to information from their environment in
NREM sleep. Here, we extended these findings by providing
compelling evidence for the learning of complex and novel sen-
sory information during NREM2 sleep (i.e., light NREM sleep)
through the presence of EEG markers of perceptual learning.
Such a form of learning may involve a network of brain regions
comprising secondary auditory cortices and the hippocampus>®,
suggesting again that a rather extensive network can be recruited
and coordinated in NREM sleep. However, we do not provide
evidence here that hippocampal structures were actually involved
in the learning observed during sleep. The hippocampus rather
could be involved in the formation of episodic memories for the
learnt noise patterns, which could be restricted to wakefulness,
while in sleep, only hippocampal-independent and implicit form
of learning could occur.

Such preservation of complex information-processing abilities
could be supported by local modulations of sleep depth, a phe-
nomenon called local sleep. Indeed, sleep is not a monolithic
phenomenon but that different brain regions can show different
activity patterns®”. In particular, some brain regions can recover
wake-like activity in the absence of awakening at the scalp level®®,
Interestingly, in NREM2, recurrently presented noises were
accompanied by the presence of evoked potentials resembling
wake responses. This contrasts with the evoked potentials
observed in NREM3 and classical auditory-evoked potentials
reported for NREM sleep. Thus, the presence of wake-like activity
in NREM2 could be interpreted as the recovery of some local
wake-like processing in the context of global NREM sleep. The
region-specific decrease in the magnitude of NREM sleep oscil-
lations further strengthens this interpretation. Overall, our data
argues that sleep depth may be flexibly modulated depending on
sensory input, to allow for the timely recovery of wake-like
information processing and learning.
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In deep NREM sleep, however, memories seemed to be sup-
pressed. Indeed, exposure to novel information in NREM sleep
not only failed to improve participants’ performance upon awa-
kening, but, rather, impaired their ability to learn this exact same
information when awake. In addition, while EEG markers of
learning were readily observed in light NREM2 sleep, they were
markedly absent in deep NREM3 sleep. Such a contrast between
light NREM2 and deep NREMS3 sleep is consistent with a quali-
tative distinction between these two sleep stages in relation to
neural plasticity?’. According to this view, light NREM2 sleep
favors synaptic potentiation, while deep NREM3 sleep favors
synaptic downscaling.

Could sleep rhythms such as slow oscillations and sleep spin-
dles fully account for this light vs. deep NREM dissociation? In
our study, frontal sleep spindles were positively correlated with
the positive learning effect. Accordingly, numerous studies have
linked sleep spindles and memory consolidation'®. In addition,
in vitro studies showed that neuronal activations mimicking sleep
spindles could induce long-term potentiation and could therefore
represent a temporal window in which new synaptic contacts are
created or reinforced®”. We also found that slow waves were
negatively correlated with memory formation. This is consistent
with the idea that slow waves could trigger long-term depres-
sion®’. However, sleep spindles are typically nested within slower
oscillations, which argue against diametrically opposed roles®!. In
addition, the effect of spindles on plasticity also depends on the
presence of slow oscillations®. Finally, both rhythms are present
in light and deep NREM sleep and therefore cannot fully explain
the differential impact of these sleep stages on learning.

We thus propose that a contextual change from light to deep
NREM sleep explains the observed contrast. Indeed, sleep spin-
dles and slow oscillations are known to undergo transformations
from light to deep NREM sleep®. In particular, slow oscillations
decrease in amplitude, slope, spatial expanse, but increase in
density. Two types of synchronization processes have been pro-
posed to account for these changes. In light NREM sleep,
subcortico-cortical processes, potentially stimulus-driven, would
occur (type-I slow waves, corresponding approximately to K
complexes), leading to high-amplitude, steep and widespread
slow waves. These type-I waves could be associated to activations
of the arousal system, restoring some ability to process sensory
information and to form new memory traces. In deep NREM
sleep, however, slow waves (type-II) would arise from local
cortico-cortical synchronization processes, and could subserve the
deep NREM suppressive effect observed. Accordingly, the sup-
pression effect was paralleled with the emergence of more
numerous but more local, and putatively cortico-cortical, slow
waves. Nonetheless, further investigations are needed to prove the
relationship between deep NREM sleep slow waves and the
suppression of memories, as our interpretation is mostly based on
correlational analyses.

Understanding why both REM sleep and light NREM sleep
favor learning while deep NREM sleep suppresses it could pro-
vide a unified view of the impact of sleep on memory formation.
Changes in the level of neuromodulators across sleep phases
could be responsible for such a reversal. In particular, Acet-
ylcholine (ACh) drops in slow-wave sleep compared to both
wakefulness and REM sleep®. Interestingly, ACh can control the
polarity of spike-timing-dependent plasticity (STDP®* %), This is
relevant to our experimental results, as modeling work showed
that STDP is sufficient to form a memory trace from recurrent
random inputs®®. Thus, an ACh-dependent modification of the
STDP rule could tentatively account for our results. Under higher
levels of ACh (wakefulness, REM sleep, and perhaps in some
specific parts of light NREM sleep), learning would occur through
the potentiation of the synapses recruited by the recurrent
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acoustic signal®®. Under low levels of ACh (deep NREM sleep),
the same synapses would, on the contrary, be downscaled, so not
only would learning not occur, but the subsequent reactivation of
the specific network recruited by a noise sample would also be
suppressed upon wakefulness. It has been proposed that such a
downscaling process would, in fine, participate to sleep-related
memory consolidation'? 21> 67 We do not suggest any functional
role for the suppressive effect of information presented during
sleep; rather, it seems an inevitable byproduct of the synaptic
downscaling needed for homeostatic purposes'2.

But how can synaptic downscaling explain the suppression of
learning upon awakening? An initial hypothesis is that the
recurrent presentation of a RefRN stimulus during sleep changed
the initial conditions of the network involved in learning in such a
way as to make it harder to learn that particular exemplar of
noise. Indeed, in wakefulness not all RefRN are learnt equally
easily by all listeners®. This has been explained by idiosyncratic
learning of local patterns within the noise>’. From a mechanistic
point of view, such local patterns could activate a pre-existing
network of neurons within the auditory cortices, and when the
pattern is repeated, the corresponding network may be
strengthened. Which noises possess local patterns able to boot-
strap the process depend on the initial state of the network.
However, because of synaptic downscaling, the activation of the
pre-existing network during NREM sleep could also lead to its
degradation rather than its potentiation, preventing the initiation
of the bootstrapping of learning upon awakening. Thus, not only
would a RefRN target presented during synaptic downscaling
phases not be learnt, but such targets would be even harder to
learn (compared to new stimuli) upon awakening. An alternative
explanation is that RefRNs were learnt during NREM sleep, but
the corresponding mnesic traces were suppressed or harder to
recruit upon awakening. The suppression of learning after
exposure in NREM sleep is unprecedented, and future studies will
help clarifying the exact mechanisms enabling memory
suppression.

Finally, the question of how our results generalize to other
forms of learning or synaptic plasticity remains to be further
investigated. Indeed, the mechanisms underlying the perceptual
learning of acoustic noise are still unclear. Previous studies
showed an involvement of hippocamlgal structures®® as well as the
formation of new auditory objects’’, which suggests a parallel
with more classical forms of hippocampal-dependent memories.
The fact that such learning can last for several days lends evidence
to this argument?® and makes it unlikely that such form of
learning reflects a mere and short-lived adaptation effect. None-
theless, there is to date no evidence demonstrating that the hip-
pocampus is necessary for this form of learning. A simple
interpretation of noise learning is that it recruits core neuroplastic
processes such as STDP, which are present at many stages of
cortical processing. While this view is supported by computa-
tional models®® ¢ and large-scale recordings®, direct empirical
evidence at the synaptic level is still missing.

Methods

Participants. Twenty right-handed subjects (11 females, age 20-31 years) with no
history of neurological or sleep disorders participated in this study. They filled in
questionnaires about their sleep habits and had an interview with a sleep specialist
prior to recordings. Sleep habits matched the general population standards. Par-
ticipants were monitored for 7-10 days prior to the recording session through
actigraphy and sleep diaries to ensure stable sleep/wake rhythms. The sample size
was determined based on previous studies on (i) sensory processing during full-
night polysomnographic recordings®® and (ii) learning of acoustic noise using
electroencephalographic (EEG) recordings. This protocol was approved by the
local ethics committee (Comité de Protection des Personnes, Ile-de-France I, Paris,
France).
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Sleep Study and Noise-Memory Paradigm. On the day of the recordings, par-
ticipants were first familiarized with the stimuli used in our protocol (white-noise
acoustic stimuli). They were equipped for polysomnographic recordings and per-
formed an initial pre-sleep phase while remaining awake (Fig. 1c, 41 & 1 min,
mean =+ standard error of the mean (SEM) across participants) consisting in the
detection of repetitions in acoustic noise (see below). They went then to bed and
were asked to perform the same task as long as they were awake. Stimuli were
continuously presented over the whole night (sleep phase: 494 + 20 min). Finally,
upon awakening, participants underwent a memory test (post-sleep phase) without
being explicitly told so; i.e., they were instructed to keep on detecting repetitions
within noise trials (89 + 2 min). Polysomnographic equipments were removed at
the end of the post-sleep phase.

We used a variant of the noise-memory paradigm (Fig. 1b)%°, which had been
optimized for Electroencephalographic (EEG) recordings®’. Recording sessions
were preceded by a short familiarization phase during which we played sounds
with or without repetitions to participants while indicating to them which stimuli
included or not repeated patterns. Then, each recording session was separated in
three different phases (Fig. 1c). In the initial pre-sleep phase, participants were
instructed to discriminate the following: (i) noise stimuli (N, duration: 3.55), i.e.,
acoustic stimuli made of ever-changing white noise and thus deprived of any
repeating sequence, (ii) repeated-noise (RN) stimuli in which a 0.2 s white-noise
target was presented 5 times to listeners (Fig. 1b). In RN trials, the noise targets
were interleaved with ever-changing white-noise fillers to keep stimulus duration
similar to N trials (3.5s). The first target was presented 0.8 s after stimulus onset
and targets were presented every 0.5 s. Both target and fillers being made of white
noise (no sample-to-sample predictability), such concatenation is seamless as
illustrated in Supplementary Fig. 2 (no change in sound envelope for example).
Repeated noise targets differed from one trial to the other. In the RN condition, we
thus introduced a repetition of the same piece of acoustic information within but
not across trials (Fig. 1b). A different set of RN targets was presented to each
participant (Fig. 1a). Unknown to participants, another set of repeated targets (N =
5 for each participant) was randomly selected to be recurrently presented across the
entire pre-sleep phase. Such trials were termed RefRN stimuli and correspond to
the presentation of the same targets both within and across trials. Classically,
RefRN trials are associated with improved repetition-detection performance
compared to RN trials®®-31:, From the perspective of participants, RefRN and RN
trials differed only through prior exposure as they shared the same structure. Thus,
the difference in performance between RefRN and RN trials can be used to titrate
longer-term perceptual learning. The ability to differentiate RN trials from N trials
on the other hand may involve the rapid formation of memory to noise> (Fig. 1a).
We provide two audio exemplars of N (Supplementary Audio 1) and RN/RefRN
(Supplementary Audio 2) stimuli.

Lastly, a fourth type of stimuli (Reference Noise, RefN) was introduced to
balance the number of trials with and without repeating patterns. In these trials, the
0.3-s-long noise snippets used to build RefRN trials were used and injected every
0.5 s. However, contrary to RefRN, we used different RefRN targets to build a single
RefN. Thus, there was no within-trial repetition of a target in RefN trials but RefN
trials did contain fragments that were previously played to participants (RefRN
targets) and potentially learnt. Our expectation was that RefN trials would probe
participants to wrongly indicate the presence of repetitions due to the presence of
known fragments. However, these RefN trials did not differ from N trials in the
pre-sleep phase, neither regarding behavior nor EEG recordings, and thus they
were not further analyzed.

Response handles were attached to participants’ hands, who were instructed to
indicate the presence of a repeating pattern by pressing the right or left handle (the
‘response-side/stimulus-condition’ mapping was counterbalanced across subjects).
Response-side and reaction times (RTs) were recorded for further analysis.
Participants were instructed to remain awake and to respond to stimuli during the
entire pre-sleep phase while remaining eyes-closed. Stimuli were played every 5.5 to
7.5 s (jitter: uniform distribution) with a break every 64 trials.

In the sleep phase, similar stimuli were used. N and RN stimuli were freshly
generated for each N or RN trial. However, different sets of RefRN targets were
played in periods of wakefulness (same as the pre-sleep phase), NREM (N=5
NREM RefRNs), and REM sleep (N =5 REM RefRNs) according to an online
assessment of vigilance states (Fig. 1c). In practice, when participants were awake,
only the RefRN containing the wake targets were played (wake RefRN). In NREM
sleep (NREM2 and 3), the NREM set of RefRN was played to participants, and, in
REM sleep, the REM set was used. Each time participants awoke, the RefRN list
was set back to wake RefRN targets. In addition, when the NREM or REM RefRN
sets were played, the duration of stimuli was increased (6 s instead of 3.5s in
wakefulness) in order to double (10 vs. 5) the number of within-trial repetitions in
RefRN and RN trials. Yet, the general structure (0.2 s-long targets separated by
0.3s-long white-noise fillers) was conserved. Participants were instructed to
respond to stimuli as long as they would remain awake and to resume responding
in case of an awakening. They were verbally remembered to do so by the
experimenter, in case of prolonged awakening without responses (no response
while participants were awake and stimuli were being played for about 5 min).
Stimuli were played every 6.5-9.5 s in wakefulness and every 9-12 s in sleep (jitter:
uniform distribution).

Finally, in the post-sleep phase, participants were tested on all RefRN targets
presented in the pre-sleep and sleep phases (N=5 wake, NREM and REM RefRN
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targets per participant) along 5 new RefRN targets. Task instructions remained the
same (detection of repetitions in noise) and participants were not informed of the
presence of previously presented noises. Each RefRN was tested in a separate 5-
minute block along freshly generated RN and N trials and was presented 8 times.
The order of presentations of wake, NREM, REM, and new RefRN was
randomized. Stimuli were played every 5.5-7.5 s (jitter: uniform distribution).
Participants were instructed to remain awake and to respond to stimuli in the
entire post-sleep phase. However, in some cases, participants failed to indicate the
presence or absence of repetitions. Post-sleep blocks with more than 20% trials
without responses were excluded from our analysis (17 out of 400 blocks in 20
participants). Participants never received feedback on their response in the pre-
sleep, sleep and post-sleep phases.

All stimuli were randomly generated to create acoustic white noise (sampled at
44,100 Hz). Each stimulus is therefore made of thousands of normally distributed
numbers. White-noise stimuli have a flat spectrum on average, constant amplitude
envelope, and are deprived of short-term regularities (no sample-to-sample
predictability) or salient features making the detection of any pattern very difficult
(Supplementary Fig. 2). In addition, as stimuli were randomly generated, prior
exposure could be precisely controlled as the probability, for each participant, to
have encountered the exact same noise segments before the experiment is close to
0. The white-noise learning paradigms provide therefore a unique opportunity to
investigate the learning of novel sensory information. Stimuli were presented to
participants using the PyschToolbox extension’’ for Matlab (Mathworks Inc.,
Natick, MA, USA) and were played at 50 dB (soundcard: Echo Indigo, Echo Digital
Sound Corp., Santa Barbara, CA, USA) through a loudspeaker placed near the bed
to ensure comfortable listening conditions while minimally disturbing sleep.

Contrasts of interest and expected results. As thoroughly discussed recently*’,
the noise-memory paradigm allows exploring the rapid formation of memory to
noise at different time scales. The fact that listeners could discriminate between RN
and N trials demonstrates their ability to detect the reoccurrence of a nondescript
noise segment embedded in running noise after only few presentations (max: 5 in
the pre-sleep phase) and despite the statistical similarity between targets and fillers.
Therefore, the RN vs. N contrast reveals the formation of a form of shorter-term
memory to noise (Fig. 1a, right). On the contrary, RefRN and RN stimuli have
identical structures (Fig. 1b). They only differ through participants’ prior exposure.
Improvement in repetition-detection performance for RefRN compared to RN
trials can only be explained by the formation of longer-term memory to noise (time
scales of minutes or hours; Fig. 1a, right). Such longer-term learning of acoustic
noise has been confirmed by several studies?®-3"> %°. Importantly, Agus and col-
leagues showed that such learning was preserved after 2 weeks?®. We thus used the
RefRN vs. RN contrast to focus on longer-term memory (across-trial) while the RN
vs. N trials were used to target shorter-term memory (within-trial; Fig. 1a). The
RefRN vs. N contrast focuses on the cumulative effect of shorter- and longer-term
memory.

Electrophysiological recordings. Participants were equipped for polysomno-
graphic recordings according to the ASSM guidelines*®. We continuously recorded
electroencephalographic (EEG, N=19 derivations, 10-20 montage), electro-
oculographic (EOG, N =2 derivations, placed above and under the right and left
canthus, respectively), electromyograhpic (EMG, one derivation on the chin and
two derivations on right and left abductor pollicis brevis (thumb flexor muscle)
recording muscle activity associated to hand responses), and electrocardiographic
(ECG, N=1 derivation) data in parallel with video monitoring. To ensure the
reliability of data collection through hours of recordings, AgCl electrodes were
attached to participants’ scalp using an adhesive paste (EC2, Natus Neurology Inc.,
Middleton, WI, USA). This technique, while minimizing electrodes’ displacement,
limits the number of channels that can be recorded. Electric signals were amplified
through a BIIP or B2IP MEDATEC amplifier (Medical Data Technology SPRL,
Bruxelles, Belgium). The signal corresponding to the EEG and EOG channels was
recorded as the difference in voltage between each sensor and a ground electrode
placed on participants’ scalp, near the vertex (i.e., near Cz). EEG electrodes were re-
referenced offline to the averaged mastoids, and EOG electrodes were re-referenced
to the opposite mastoids. During recordings, both EEG and EMG were re-
referenced to the opposite mastoids. EMG consisted in bipolar derivations with two
recording electrodes placed few centimeters apart on participants’ skin. EEG, EOG,
ECG, and EMG data was recorded at a 200 Hz sampling rate. Impedances of scalp
electrodes were generally below 5kQ. An external channel was used to synchronize
EEG data with stimuli presentation times.

Participants were constantly monitored during both wakefulness and sleep. As
explained above, during the sleep phase, a given set of RefRN (wake, NREM, or
REM) was selected according to participant’s vigilance state. To do so, the vigilance
state was assessed online using standard guidelines®® by an experienced scorer (TA)
and confirmed offline by two scorers (TA and DL) blinded to experimental
conditions (see below and Supplementary Table 1).

Behavioral indices of perceptual learning. To behaviorally assess listeners’ ability
to detect the presence of repeating noise segments, we computed their sensitivity to
the presence of these repetitions by means of a d’ index’". The d’ index has the

advantage to take into consideration participants’ biases for one response (presence
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of repetitions) or the other (absence), facilitating the averaging across participants.
A significant deviation of the d’ from 0 indicates participants’ ability to reliably
discriminate the two conditions of interest at the group level. d’ indexes were
computed for RefRN and RN conditions independently and for each participant
(see Egs. 1 and 2):

drern = 2(Hitrerrn) — z(FAx) (1)

dr = z(Hitry) — z(FAN) (2)

where z(x) corresponds to the z-score for proportion x, Hitgemy corresponds to the
proportion of correct responses for RefRN trials, Hitry corresponds to the pro-
portion of correct responses for RN trials, and FAy corresponds to the proportion
of incorrect responses for N trials. Extreme performances (100%/0%) were adjusted
to the equivalent of half of a single correct/incorrect response’’ to avoid infinite d’
values. As previously shown, RefRN trials were associated to higher d’ indexes
compared to RN trials (Fig. 2a, top).

Reaction times (RTs) also capture the formation of memory traces to noise3’.
Typically, RefRN trials lead to faster responses, often anticipating the end of the
stimulus presentation window (<3.5 s; Fig. 2a, middle). We therefore combined the
improvement in response accuracy and rapidity to titrate the amount of learning.
To do so, we used the Behavioral Efficacy (BE) index, which we used in a similar
experimental context®’. Inspired by the Inverse Efficiency Score’2, BE was defined

as follows:
T
R7N> 3)

BE = dpy. gy X
Re N TRefrN <RTRe RN

, RTx
BEry = 4
RN = dpy X (RTRN> (4)

where RTs for RefRN and RN trials were computed from stimuli onsets. Intuitively,
BE is increased for high d’, and if the RTs to the stimulus of interest were faster
than the N baseline. BE was higher for RefRN trials compared to RN trials (Fig. 2a,
bottom).

Behavioral data was analyzed in the pre-sleep (Fig. 2a) and post-sleep (Fig. 3)
phases but not in the sleep phases due to the absence of behavioral response during
sleep. Trials without responses were not included in behavioral analyses. In the
sleep phase, RefRN targets were presented according to participants’ vigilance state.
However, in the course of the night, some of these RefRN have been presented
around microawakenings, as assessed by a double offline scoring (N = 38 over 100
RefRN targets in NREM sleep and 18 over 100 in REM sleep). However, the
isolated presentation of NREM targets during wakefulness can hardly explain the
suppressive effects observed for NREM targets. Nevertheless, in the post-sleep
phase, to avoid this confound and to make sure that the positive effect for REM
targets could not be due to these awakenings, BE was computed when excluding all
NREM or REM RefRN heard around (micro)-awakenings (Supplementary Fig. 4c),
which led to identical results as in Fig. 3.

Offline sleep scoring of polysomnographic recordings. Polysomnographic data
was analyzed using a combination of SPM (Functional Imaging Laboratory, Univ.
College London, London, UK), FieldTrip”?, and EEGlab’* toolboxes running on
Matlab (Mathworks Inc., Natick, MA, USA).

Polysomnographic data (EEG, EOG, EMG, and ECG data) was preprocessed
according to established guidelines. EEG data was high-pass filtered above 0.1 Hz
and then low-pass filtered below 30 Hz (5th order two-pass Butterworth filters).
EMG was were band-pass filtered between 60 and 80 Hz (5th order two-pass
Butterworth filter). In addition, EEG, EOG, EMG, and ECG were notch-filtered
around 50 Hz to reduce line noise. Vigilance states were assessed online using
standard guidelines®® by an experienced scorer (TA) and confirmed offline on 20s-
long windows by two scorers (TA and DL) blinded to experimental conditions.
Polysomnographic was were continuously scored on 20-s-long windows as follows:
wakefulness, NREM sleep stage 1 (N1), NREM sleep stage 2 (N2), NREM sleep
stage 3 (N3), tonic REM sleep (tREM), and phasic REM sleep (pREM). The NREM
sleep stages were here labeled as NREM1, NREM2, and NREM3 to avoid
confusions with the ERP nomenclature. Only Fz, C3, C4, and Pz EEG derivations
from the classical 10-20 montage were used for scoring. The disappearance of the
rhythms associated to wakefulness such as alpha oscillations ([8-10] Hz) and the
apparition of slow rolling eye movements were indicative of the transition to
NREM1. NREM sleep hallmarks (K complexes and sleep spindles) marked the
transition to deeper stages of NREM sleep (NREM2 and NREM3). REM sleep was
characterized by the recovery of an EEG signal similar to wakefulness coupled with
a highly reduced EMG and the occasional presence of rapid eye movements
(REMs) performed with eyelids closed. Epochs of REM sleep containing at least
one REM were scored as phasic REM sleep while epochs of REM sleep without any
REM were scored as tonic REM sleep. In addition, epochs showing signs of arousal
(body movements, increase in alpha oscillations, or oscillations above 16 Hz) in
association with trial onsets were marked, and the corresponding trials were not
included in the sleep analyses.
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Supplementary Fig. 1 shows representative examples of these different sleep
stages and Supplementary Table 1 summarizes sleep scoring across participants. In
addition, the spectral profiles of sleep stages were in accordance with the literature
(Supplementary Fig. 7b, ¢). Finally, in NREM sleep, slow waves and sleep spindles
were detected using automated algorithms to perform quantitative analyses on the
influence of these sleep patterns (see below). Spatial distributions of average
densities are shown in Supplementary Fig. 8, which are again in accordance with
the literature®® 62,

As the offline scoring was performed post hoc, in some cases the scoring of a
given trial did not correspond to the RefRN list that was played at that time. This
may be due to errors during the online assessment of vigilance states or to the
participant suddenly transitioning to a different sleep stage. To avoid potential
confounds, the offline scoring was used as a reference and the corresponding trials
were discarded from the analyses of sleep recordings. On average, for the NREM
list, this happened 2.5 + 0.6 times (mean + SEM) in wakefulness, 4.7 + 0.8 in
NREM]I, and 5.5 + 1.1 times in REM sleep (compared to 207.6 + 10.0 RefRN trials
on average in NREM2, and 144.7 + 9.1 in NREM3). For the REM list, this
happened 1.1 + 0.3 times in wakefulness, 3.3 + 0.9 in NREM1, 3.5 + 0.9 times in
NREM2, and never in NREM3 (compared to 80.8 + 7.4 RefRN trials on average in
REM sleep).

Identification and detection of sleep cycles and rhythms. Sleep cycles were
individualized using participants’ hypnograms (97 cycles in 18 participants, 5.6 +
0.2 per participant, mean + SEM). In sleep cycles having different durations (86 +
3.6 min), we normalized cycles’ length to be able to average variables of interest
across cycles (N =18 bins). The progression within the cycles was therefore
expressed in percentage of the total duration (Fig. 7; Supplementary Fig. 9). Eighty-
two (82) cycles in 18 participants were eventually included in the analysis, the
others not having enough RefRN or RN trials (at least 20 trials per condition and
per bin, see below). Two participants were not included in the sleep-cycle analysis
due to the difficulty of clearly identifying sleep cycles.

Slow waves and sleep spindles were detected in NREM sleep using algorithms
that have been presented in details elsewhere’> 7®. For each slow wave, we
extracted its onset, peak-to-peak amplitude (amplitude), down-to-up state slope
(slope), number of negative peaks, and spatial expanse (i.e., for a given channel of
reference, here Cz, and for each slow wave, the proportion of channels also
showing a slow wave in a 100 ms window centered on the reference slow wave’s
starting point). For each spindle, we computed its frequency by extracting the peak
in power (estimated through a Fast-Fourier Transform, FFT) within a [11, 16] Hz
window. Spindles with a frequency below 13 Hz were declared slow spindles and
spindles with a frequency above 13 Hz, fast spindles’. Scalp distributions of the
densities of detected events are shown in Supplementary Fig. 9. It is worth noting
that the slow-wave detection well-replicated recent findings on the changes in slow-
wave properties from light to deep NREM®2. In particular, the density of slow
waves and the number of negative peaks robustly increased during sleep cycles
while their slope or spatial expanse decreased (Supplementary Fig. 9). As for the
spindle detection, it replicated the known frontal distribution of slow spindles and
centro parietal distribution of fast spindles’’.

In order to compute the percentage of trials associated with slow waves, fast,
and slow sleep spindles (Fig. 6b), we examined, for each trial in NREM2 and
3 stages, whether a slow wave or fast or slow sleep spindle was detected during the
presentation of the stimulus. The channel used corresponded to the electrode with
the highest density for the corresponding graphoelement (slow waves and slow
spindles: Fz; fast spindles: Pz, green dot in Supplementary Fig. 8).

Electrophysiological Indexes of Perceptual Learning. Electrophysiological
(EEG) data was first high-pass filtered above 0.1 Hz (5th order two-pass Butter-
worth filter) and then epoched on large temporal windows ([-14, 14] s) around
stimulus onsets. EEG was were then low-pass filtered below 20 Hz (5th order two-
pass Butterworth filter), and a notch-filter at 50 Hz was also applied to reduce line
noise. A second epoching on shorter windows was performed ([-2, 7] s). Data was
corrected for baseline activity after each epoching by subtracting prestimulus
activity for each EEG derivation. Minimal artifact rejection was applied for the ERP
(Figs. 2 and 4) and power analyses (Fig. 5) trials for which the maximal absolute
value of the EEG signal in at least one of the central electrodes (C3, C4, and Cz)
was higher than a given threshold (500 pV) were excluded from our analyses. We
set here a high threshold to prevent discarding high-amplitude slow oscillations
(slow waves, K complexes) as artifacts. Muscular artifacts were not corrected for by
other means. It is worth noting that, in the sleep analyses, muscular activity and
movements minimally impacted the EEG recordings as trials associated with
arousals were marked and discarded during the online scoring. On average, 0.59 +
0.34% of epochs were removed in NREM2, 0.84 + 0.48% in NREM3, and 0.65 +
0.67% of epochs in REM sleep (mean + SEM across 20 participants). In this study,
we focused mainly on central electrodes (C3, C4, and Cz in the 10-20 montage) as
these electrodes show the largest responses to sounds® and noise repetitionC. All
analyses were performed on these electrodes except when stated otherwise. When
analyzing the data from C3, C4, and Cz altogether, MEPs, spectral power or ITPC
were computed on each channel independently. The results of these analyses were
then averaged across channels for each participant. The corresponding statistical
analyses and plots show therefore brain activity averaged across central electrodes.
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We focused on either stimulus-locked event-related potentials (ERPs;
Supplementary Fig. 7) or target-locked MEPs (memory-evoked potentials: Figs. 2,
4). Stimulus-locked ERPs show EEG potentials triggered by the transition from
silence to noise irrespective of experimental conditions. Indeed, we here focused on
the late auditory-evoked potentials (AEPs*®) occurring within the first 500 ms
following stimulus onset and therefore before any presentation of a RefRN or RN
target (starting at 800 ms). As classically observed, these AEPs present stereotypical
and state-dependent profiles>.

We also computed target-locked MEPs. For target-locked MEPs, the EEG signal
was high-pass filtered above 1 Hz instead of 0.1 Hz to get rid of slow drifts (as in
ref. 30). These MEPs had the particularity to be computed within the stimulus
presentation window. White noise being deprived of significant fluctuations in
acoustic energy or salient perceptual landmarks that usually trigger ERPs (e.g.,
silence-to-noise transition in the case of AEPs), any deviation from the N condition
for RefRN and RN trials can be interpreted as an indication that the brain had
detected the presence of the repeated noise segment. We termed the ERPs
associated to repeated targets’ Memory-Evoked Potentials (MEPs) to emphasize the
fact that they parallel perceptual learning®’. Comparing AEPs and MEPs can
provide means to explore the neural mechanisms underlying MEPs and in
particular whether they share common generators. Target-locked MEPs were first
averaged from the 2nd to the last target (wake trials: 4 targets per trial; sleep trials:
9) for each trial and then averaged across trials for each participant and condition.
A baseline correction (baseline: [-0.1, 0]s before target onset) was applied to each
target.

Time-frequency decompositions were performed using the EEGlab toolbox’*
on the EEG data epoched around stimulus onsets (Fig. 5). We employed the
wavelet method. For a given scalp sensor, we obtained the decomposed signal s(t,f)
for each time point (t) and frequency (f) in its complex representation:

Sz./ = Atleiw (5)

where A(t,f) reflects the amplitude of the EEG signal at a given frequency and time
and ¢(t,f) reflects its phase.

Power response for each condition and vigilance state was extracted from this
time-frequency decomposition (Fig. 5). Power response was normalized by pre-
stimulus onset activity ([-0.25, 0] s) and expressed on a log-scale as decibels.

Inter-trial phase coherency (ITPC) was also computed using wavelets. We
focused on a frequency band ([1.5, 3.5] Hz) around stimulus presentation (2 Hz)
based on previous studies>® 3! and the pre-sleep phase (Supplementary Fig. 3).
ITPC describes how the phase of the EEG signal is reproducible across trials for a
given condition and participant. Thus, high ITPC values across participants
indicate that each participant exhibited a reproducible phase for the corresponding
time and frequency (for a given condition), even if the particular phase differed
between participants. To compute ITPC, we extracted the phase of the signal for
each time and frequency () and averaged it across # trials using Euler’s formula:

ITPC,j = G (Z cos ((pt J) )2 n % <Z sin ((p, 0)2) (6)

The presence of ERPs and the increase in ITPC are tightly linked: ERPs (and
MEPs) lead to higher ITPC values as they have a reproducible shape across trials.
We recently showed that the increase in ITPC associated to noise-learning could be
explained by the presence of MEPs*. However, ITPC has several advantages
compared to ERPs: (i) it allows targeting a certain frequency range; (ii) contrary to
ERPs, it is not affected by high-amplitude physiological events (such as slow waves)
or artifacts; (iii) it can capture non-time-locked activity (see ref. 30 for a
comparison between ERPs and ITPC in the context of the noise-memory
paradigm). We therefore focused on ITPC to compute an EEG index of perceptual
learning (Figs. 4b, 6 and 7).

Such EEG index was particularly useful during sleep where behavioral responses
are abolished, preventing the computation of any behavioral index of learning.
Based on our previous work and on Supplementary Fig. 3a showing an increase in
ITPC for RefRN and RN trials around 2 Hz in the pre-sleep phase, we extracted the
average ITPC on a [1.5, 3.5] Hz window and during stimulus presentation (pre-
sleep phase and memory test: [0.8, 3.8] s; sleep-phase: [0.8, 5.5] s). In the pre-sleep
phase, the ITPC around 2 Hz was larger for RefRN compared to RN and correlated
with behavioral performance (Fig. 2d). Thus, ITPC appeared here as a good proxy
to assess the occurrence of perceptual learning and quantify it. ITPC was computed
on C3, C4, and Cz channels separately and then averaged across these channels for
each participant separately.

Lastly, as can be noted in Eq. 6, ITPC depends on the number n of trials on
which it is computed. We kept this number identical across conditions: in the pre-
and post-sleep phases, for each participant, the condition with the smallest number
of trials was chosen as the reference and trials were randomly picked for the other,
more numerous condition. During the night, ITPC was computed by dividing all
sleep cycles into fixed windows of 20 stimuli presentations (either RefRN or RN).
This was done either by cycle when focusing on the within-cycle dynamics (Fig. 7b-c)
or when considering the entire night (Figs. 4b and 7d). These fixed windows were
slid trial-by-trial. Thus, if a cycle (or a night) contained n RefRN trials, we obtained
n-19 ITPC values (that were then binned in 18 bins for each cycle, Fig. 7b). When
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examining the entire sleep recordings, we pooled data across participants. As the
number of windows differed between RefRN and RN trials, statistical tests are
unpaired in Fig. 4b and we subtracted the average ITPC for RN trials to the ITPC
values for RefRN trials in Fig. 7d.

To obtain the power spectra displayed in Supplementary Fig. 7, we used a fast-
fourier transform (FFT) and extracted the power for all trials altogether (and not
per condition). We then averaged it in time across the entire epoch ([-2, 7]s).

Statistics. Parametric statistics were used (Student t-tests to compare pairs of
variables, Pearson’s method for correlations) when variables could be approxi-
mated to the normal distribution (Kolmogorov-Smirnov test). Otherwise, we used
nonparametric statistics (Wilcoxon rank-test (u-test) to compare conditions and
Spearman’s method for correlations) when data was not normally distributed. All
tests applied here were two-tailed tests. When comparing two distributions or a
distribution with a reference value, we estimated the effect size using Hedges’ ¢’%.

For Fig. 3¢, two data points were detected as outliers when using an algorithm
based on the ‘median absolute deviation’ method (see ref. > and the ‘robust
correlation’ toolbox for Matlab). We therefore also reported the correlation
coefficients when including these two data points in the Results section. However,
as these correlation coefficients were not obtained when including all participants,
they should be considered with caution.

For the null results illustrated in Fig. 3a, a nonparametric method (Bayes
factors) was used to test the plausibility of the null hypothesis>*. These Bayes
factors are reported in the text. A Bayes factor comprised between 3 and 20 is
usually considered as positive evidence for the null hypothesis, while a Bayes
comprised between 20 and 150 reflects strong evidence for the null hypothesis”.

We also used a stepwise regression analysis (with forward selection) to examine
the respective influence of NREM and REM sleep substages on the learning effects
observed upon awakening. The aim was here to better assess the impact of sleep
stages on perceptual learning while taking into account the fact that the amount of
trials in these sleep stages are not independent from each other.

Statistics used for time and time-frequency plots were corrected for multiple
comparisons by means of a cluster-permutation approach®. The rational is the
following: each cluster was constituted by the samples (in a 1D (time plots) or 2D
(time—frequency) space) that consecutively passed a specific threshold (here, P <
0.05 except for Fig. 7c where P < 0.01). The cluster statistics were chosen as the
sum of the t-values of all the samples within the cluster. Then, we compared the
cluster statistics of each cluster with the maximum cluster statistics of 1000 random
permutations and obtained a nonparametric P-value (Pgyster). Significant clusters
are displayed as horizontal bars or contours on plots; Py, are reported in the text
and figures’ legends.

When computing ITPC on small windows throughout the entire sleep
recordings (Figs. 4b and 7d) or across sleep cycles (Fig. 7b), we used mixed-effect
models to take into consideration the trial and subjectwise variances separately.
Subject identity was considered as a random effect. Mixed-models analyses were
performed in R (R Development Core Team) with the Ime4” and ImerTest’ R
packages. In Figs 4b and 7d, we examined the influence of stimulus condition and
sleep stages on ITPC values. We estimated the significance of the interactions
between these two variables by comparing a model including only fixed effects vs. a
model including fixed effects and their interaction. In Fig. 7b, to test the influence
of 6-power on ITPC, we compared a model including 5-power as a predictor with a
model considering only subject identity as a random factor. All model comparisons
were performed with chi-square (%) tests. The corresponding 4> and P-values are
reported in the text.

Data availability. All the relevant data is available upon reasonable request.
Inquiries should be directed to the corresponding author.
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