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Synopsis
Energy homoeostasis, a co-ordinated balance of food intake and energy expenditure, is regulated by the CNS (central
nervous system). The past decade has witnessed significant advances in our understanding of metabolic processes
and brain circuitry which responds to a broad range of neural, nutrient and hormonal signals. Accumulating evidence
demonstrates altered synaptic plasticity in the CNS in response to hormone signals. Moreover, emerging observa-
tions suggest that synaptic plasticity underlies all brain functions, including the physiological regulation of energy
homoeostasis, and that impaired synaptic constellation and plasticity may lead to pathological development and
conditions. Here, we summarize the current knowledge on the regulation of postsynaptic receptors such as AMPA
(α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid), NMDA (N-methyl-D-aspartate) and GABA (γ -aminobutyric acid)
receptors, and the presynaptic components by hormone signals. A detailed understanding of the neurobiological
mechanisms by which hormones regulate energy homoeostasis may lead to novel strategies in treating metabolic
disorders.
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INTRODUCTION

Food intake and energy expenditure, the key determinants of en-
ergy homoeostasis, are regulated by the CNS (central nervous
system). Since the end of the 19th century, profound intellec-
tual and experimental efforts have been made to understand how
the brain regulates glucose and energy homoeostasis and how im-
paired brain functions contribute to the pathogenesis of metabolic
diseases. Growing evidence suggests that nutrient and hormonal
signals from the periphery, including adipocyte-derived hormone
leptin, pancreatic insulin and stomach-secreted ghrelin, converge
on to the CNS to modulate nutrient intake and utilization. The
CNS integrates the peripheral signals and progressively adapts to
the changes to maintain energy balance [1].



Abbreviations used: AgRP, agouti-related peptide; AMPAR, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor; ARC, arcuate nucleus; CNS, central nervous system; DA,
dopaminergic; EPSC, excitatory postsynaptic current; GABA, γ -aminobutyric acid; GABAA, γ -aminobutyric acid A; GluR, glutamate receptor; GHSR, growth hormone secretagogue
receptor; IPSC, inhibitory postsynaptic current; IR, insulin receptor; JAK2, Janus kinase 2; KA, kainic acid; LepRb, leptin receptor long isoform; LHA, lateral hypothalamic area; LTD,
long-term depression; LTP, long-term potentiation; MAPK, mitogen-activated protein kinase; MC, melanocortin; MC3R, melanocortin 3 receptor; MSH, melanocyte stimulating hormone;
NMDA, N-methyl-D-aspartate; NMDAR, NMDA receptor; NPY, neuropeptide Y; NAc, nucleus accumbens; PBN, parabrachial nucleus; PI3K, phosphoinositide 3-kinase; POMC,
pro-opiomelanocortin; STAT3, signal transducer and activator of transcription 3; TH, tyrosine hydroxylase; VMH, ventromedial hypothalamus; VTA, ventral tegmental area.
1 Correspondence may be addressed to either of the authors (email pangzh@umdnj.edu or weiping_han@sbic.a-star.edu.sg).

In the early 1940s, lesion studies identified the ventromedial
nuclei of the hypothalamus, including the ARC (arcuate nucleus),
VMH (ventromedial hypothalamus), PVN (paraventricular nuc-
leus) and dorsal hypothalamus, as important brain regions in the
development of hyperphagia and obesity, whereas lesions in LHA
(lateral hypothalamic area) resulted in hypophagia and anorexia
(Figure 1). These findings led to a simple, yet appealing model:
the mediobasal hypothalamic nuclei are the ‘satiety centres’
and the LHA is the ‘hunger/feeding centre’ [2,3]. A fundamental
breakthrough took place when the adipose-tissue-derived hor-
mone leptin was discovered and found to act via its receptor in
the brain to regulate feeding and neuroendocrine functions [4–6].
Ever since, extensive studies coupled with new experimental tools
have shed light on the mechanisms underlying the influence of
hormonal signals on the brain regarding the neuronal regulation
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Figure 1 Hypothalamic neurocircuitry regulates food intake
(A) Hypothalamus is the primary brain region that responds to peripheral
signal such as leptin, insulin and ghrelin to regulate feeding behaviour.
The hypothalamic brain region also interacts with higher brain regions
that control cognition and the latter also play important roles in food
intake. (B) Diagram showing the major hypothalamic nuclei and wirings
between the nuclei. DMH, dorsomedial hypothalamus.

of energy homoeostasis [1,3,7–9]. Among all the hormones re-
lated to feeding behaviour and cognition, leptin, insulin and
ghrelin are among the best characterized.

Synapses are specialized structures on the neuronal cell mem-
brane that mediate rapid and highly efficient information trans-
mission from a neuron to its target cells in a highly plastic man-
ner. Synaptic plasticity is known to play a central role in a range
of brain-related behaviours, such as learning, memory and ad-
diction [10,11]. However, such synaptic plasticity has not been
considered previously as a critical regulator of energy homoeo-
stasis. Recent studies have revealed that synaptic vesicle release
[12] and continual plasticity in the feeding circuits may be a key
component in energy balance control [13]. Detailed understand-
ing of intracellular signalling cascades of hormones have begun
to accumulate, and these studies collectively indicate that leptin,
insulin and ghrelin play important roles in synaptic functions
(Figures 1 and 2) [3]. In this review, we begin with the current
view of synaptic regulation of hypothalamic function in energy
homoeostasis, then focus on the cellular mechanisms underlying
hormonal regulation of synaptic transmission, and conclude by
discussing how hormones function in the regulation of feeding-
and reward-neural circuitry.

SYNAPTIC REGULATION OF
HYPOTHALAMIC FUNCTION IN
ENERGY HOMOEOSTASIS

Synaptic transmission mediates all brain-related behaviour, in-
cluding food intake and energy expenditure [1,12]. Fast excitatory
neurotransmission is mainly mediated by ionotropic glutamate re-
ceptors, i.e. AMPARs (α-amino-3-hydroxy-5-methylisoxazole-
4-propionic acid receptors), KARs (kainic acid receptors) and
NMDARs [NMDA (N-methyl-D-aspartate) receptors]. AMPARs
are tetramers composed of four types of subunits, GluR1–GluR4
(glutamate receptor 1–4), and mediate the major excitatory syn-

aptic transmission in the brain [14]. Upon activation by glutam-
ate released from presynaptic nerve terminals, postsynaptic
AMPARs and NMDARs mediate non-selective influx of cations,
which result in inward EPSCs (excitatory postsynaptic currents)
and thus cause postsynaptic depolarization. Most AMPARs in
CNS contain GluR2 subunit and are permeable to Na+ and K+ ,
but not Ca2 + , whereas those AMPARs without GluR2 subunit are
permeable to Ca2 + , in addition to Na+ and K+ [15]. Fast inhibit-
ory neurotransmission is mainly mediated by ionotropic GABAA

(γ -aminobutyric acid A) receptors, which allow Cl− influx upon
binding to GABA released from presynaptic terminals, and in-
duce IPSCs (inhibitory postsynaptic currents) and consequently
hyperpolarization of postsynaptic neurons.

Recent development in mouse genetic tools has made it pos-
sible for detailed analysis of the involvement of both excit-
atory and inhibitory synaptic transmission in regulating body
weight especially in the ARC. There are two major groups
of neurons located in ARC (for review see [16]): the anorexi-
genic (i.e. inhibit feeding and weight gain) neurons synthesize
POMC (pro-opiomelanocortin), the precursor for many active
neuropeptides including α-MSH (melanocyte-stimulating hor-
mone). α-MSH signals anorexia by binding to MC (melano-
cortin) receptors (especially MC4R) in several areas of the brain
[17,18]; ARC orexigenic (i.e. increase feeding) neurons syn-
thesize NPY (neuropeptide Y) [19] and AgRP (agouti-related
peptide) [20]. Using genetic tools, two recent elegant papers
from the Lowell Laboratory highlighted the importance of syn-
aptic transmission in regulating food intake. In the first study,
Liu et al. [21] reported that body weight, fat stores and food
intake were markedly reduced in mice with specific deletion
of NMDARs in AgRP neurons. Interestingly, the deletion of
NMDARs in POMC neurons had no effect on energy ho-
moeostasis. Furthermore, they showed that fasting activ-
ated AgRP neurons and increased the synaptic strength due
to increased AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid)-mediated synaptic transmission, and this effect
was abolished when NMDARs were eliminated from postsyn-
aptic neurons [21]. In their second study, Vong et al. [22] demon-
strated that inhibitory input to POMC neurons was the key
modulatory component in energy homoeostasis. Food depriva-
tion enhanced excitatory synaptic input in AgRP neurons [22],
which was mediated by a presynaptic positive feedback loop
involving AMPK (AMP-activated protein kinase) [23]. Other
recent studies also support the significance of synaptic trans-
mission in energy homoeostasis regulation [23–26]. For ex-
ample, GABAergic AgRP neurons project to PBN (parabra-
chial nucleus) to promote feeding, and that the blockade of
GABAergic input to PBN results in anorexia independent of
the MC system [25]. This study suggests that loss of GABA
signalling from AgRP neurons to PBN unmasks an excitatory
input to PBN, which in turn leads to reduced feeding. The
excitatory input to PBN comes from the glutamatergic neurons in
NTS (nucleus tractus solitaries) and caudal serotonergic neurons
[24].

Collectively, these latest studies in cellular and circuitry ana-
lysis reveal the involvement of synaptic regulation in feeding
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Figure 2 Endocrine hormones regulate neuronal function in the brain
(A) Leptin and insulin bind to their specific receptors to regulate brain functions. Leptin and insulin activate POMC neurons
and inhibit AgRP/NPY neurons to suppress feeding behaviour. Ghrelin on the other hand, activates AgRP/NPY neurons to
stimulate feeding behaviour. Leptin and insulin also regulate neuronal functions within brain regions that are important
components for cognition and reward behaviours such as the hippocampus and VTA. (B) Neuromodulators including peptide
hormones regulate both excitatory and inhibitory synaptic functions. The modulatory functions can be both presynaptic
and postsynaptic origins. Hormones such as insulin, leptin and ghrelin bind to their corresponding receptors and activate
second messenger cascades to influence synaptic function. Note that the signalling cascades depicted in the postsynaptic
compartment also apply to the presynapse. Abbreviations: CAM, cell-adhesion molecules (e.g. neurexins and neuroligins);
Cart, cocaine- and amphetamine-regulated transcript; GABAR, GABA receptors; GluR, glutamate receptors including both
NMDAR and AMPAR; LDCV: large-dense core vesicle; MEK, MAPK/extracellular-signal-regulated kinase kinase; PKC, protein
kinase C; PLC, phospholipase C; PSD, postsynaptic density; SV, synaptic vesicle X1R, neuropeptide X1 receptor.

behaviour, and highlight the importance of investigating the ef-
fects of hormones on synaptic transmission for the understanding
of how CNS controls energy homoeostasis.

LEPTIN AND SYNAPTIC
TRANSMISSION

The adipose-tissue-derived hormone leptin is a 167-amino-acid
protein in humans [27]. Circulating leptin plays a pivotal role
in regulating energy homoeostasis by communicating the body
energy status to the CNS to suppress feeding and promote energy

utilization (Figure 2) [8,28,29]. There are multiple leptin receptor
isoforms, among which LepRb (leptin receptor long isoform) is
crucial for leptin action [1,3,7,30,31]. Leptin binds to LepRb
and activates JAK2 (Janus kinase 2)/STAT3 (signal transducer
and activator of transcription 3) signal cascade and exert down-
stream functions (Figure 2B, also see [3] for details). Loss-of-
function mutations in leptin or leptin receptor, such as ob/ob and
db/db, cause morbid obesity in rodents [32–34] and humans [35].
Many effects of leptin signalling are attributed to its actions in
the CNS, especially in the hypothalamus (Figure 1A), in which
LepRb is highly expressed [36]. In the ARC, leptin differen-
tially regulates catabolic/anorexigenic and anabolic/orexigenic
neurons. Leptin acts via LepRb to increase the firing of
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anorexigenic LepRb/POMC neurons, POMC expression and
α-MSH secretion, and, to suppress the firing of orexigenic
LepRb/NPY-expressing neurons, secretion of NPY and AgRP
(Figure 1B) [21,37,38]. The response to leptin in ARC neur-
ons mainly contributes to satiety. Leptin can also directly reg-
ulate mesolimbic VTA (ventral tegmental area) DA (dopam-
inergic) neurons (Figure 2A) [39]. Recently, a subgroup of
neurons in LHA was identified to expresses LepRb, but not
orexin/hypocretin [40,41]. These LepRb neurons project to VTA,
whereas LHA orexin-expressing neurons are known to project
to the hindbrain region [40]. It is likely that LHA neurons are
key effectors of leptin signalling in the regulation of energy ho-
moeostasis. However, not all the LepRb-expressing neurons in
LHA respond to leptin in the same fashion: one-third of LepRb-
expressing LHA neurons are depolarized by leptin; another third
are hyperpolarized by leptin and the remaining third does not
respond to leptin [40]. The molecular and cellular nature for the
differential effects of leptin is not known.

Besides the hypothalamus, LepRb is present in several brain
regions related to cognition [42]. In hippocampus, leptin can
hyperpolarize hippocampal neurons by activating large conduct-
ance Ca2 + -activated K+ (BK channels), but not KATP channels,
through a PI3K (phosphoinositide 3-kinase) signalling cascade
[43]. Elevated leptin level in hippocampal neurons leads to
PtdIns(3,4,5)P3 increase, which has been shown to promote actin
rearrangement and BK channel trafficking in the hippocampal
synapses. The fact that leptin could reduce the excitability and
inhibit the action potential generation in hippocampal neurons led
to the studies that examined leptin as an anti-convulsion candid-
ate in epilepsy animal models [44]. Interestingly, leptin has also
been shown to increase the excitability of neurons in the somato-
motor cortex. More recently, leptin receptor expression has been
detected in mesolimbic dopamine neurons, and the activation of
leptin signalling attenuates the firing frequency of VTA DA neur-
ons [39]. Again, these opposing functions suggest that leptin acts
on neuronal excitability in a region- and/or neuron-dependent
manner. However, the biological basis for the opposing effects
remains to be determined.

Leptin and AMPARs
At the molecular level, leptin inhibits AMPAR-mediated excit-
atory synaptic transmission in mouse hippocampal slices, but
not in db/db hippocampal slices [45]. Further studies reveal that
JAK2–PI3K pathways are involved in leptin actions on AMPARs
[45]. However, unlike the transient synaptic depression elicited
by leptin in juvenile hippocampus [45], leptin can increase the
excitatory synaptic strength in adult hippocampus through pref-
erential up-regulation of the cell surface expression of GluR1
and the synaptic density of GluR2-lacking AMPARs. This effect
of leptin requires NMDAR activation and is associated with an
increase in cytoplasmic PtdIns(3,4,5)P3 levels through enhanced
phosphorylation of the lipid phosphatase PTEN (phosphatase and
tensin homologue deleted on chromosome 10), which inhibits
PTEN function [46]. The different effects of leptin on excitatory
synaptic transmissions indicate that leptin actions on synaptic
transmission are probably developmentally regulated.

Leptin and NMDARs
The number and subunit composition of NMDARs at the syn-
apse are under dynamic regulations during synaptic plasticity
[47]. Leptin has been shown to facilitate the induction phase
of hippocampal LTP (long-term potentiation) [48,49] probably
through the activation of NMDARs [50]. Acute application
of leptin-enhanced NMDAR-mediated EPSCs in hippocampal
slices [48]. In vitro studies using Xenopus oocytes showed that
NMDAR response was modulated by leptin only in cells express-
ing NR1A/NR2A-containing NMDARs together with LepRb,
but not NR1A/NR2A alone [48], indicating that leptin mod-
ulates NMDA responses only through LepRb signalling path-
ways [51]. Leptin facilitation of NMDA responses was observed
over the entire dose–response curve, including the maximal re-
sponses, suggesting that leptin acts through LepRb to increase the
NMDAR density at the cell surface [51,52]. The detailed molecu-
lar and cellular mechanisms of how leptin regulates NMDAR
trafficking remain elusive.

Leptin and GABA receptors
Disruption of leptin signalling in neurons by deleting LepRb in
hypothalamic neurons only resulted in mild obesity [53–55], in-
dicating that hypothalamic neurons cannot be the only site of
action by leptin signalling in energy homoeostasis regulation.
A number of studies attempted to identify additional effector
neurons for leptin action. Lowell and co-workers [22] recently
investigated whether the ‘first-order’ effectors of leptin signaling
are excitatory- or inhibitory-neurons. In this elegant study, they
made use of vGluT2-ires-Cre and vGAT-ires-Cre with specific
expression in excitatory and inhibitory neurons respectively. Sur-
prisingly, they found that the vast majority of leptin’s anti-obesity
effects were mediated by GABAergic neurons, and glutamatergic
neurons played only a minor role [22]. Although this study did
not pinpoint where the critical inhibitory neurons that regulate
body weight were located, it provided a first direct evidence that
leptin directly acts on presynaptic GABAergic neurons and re-
duces inhibitory tone to postsynaptic POMC neurons, and thus
prevents animals from over-feeding.

Leptin and long-term synaptic plasticity
Long-term synaptic plasticity, including LTP and LTD (long-term
depression), is a molecular mechanism underlying learning and
memory [11]. Growing evidence suggests that endocrine hor-
mones, particularly leptin, play pivotal roles in human cognition
(for review, see [56,57]). Leptin facilitates the induction phase of
hippocampal LTP presumably through the enhancement of NM-
DAR activation [58]. In addition, LepRb-deficient animals have
impaired synaptic plasticity in hippocampus, supporting the in-
volvement and function of the leptin/LepRb cascade in synaptic
plasticity [58]. NMDARs, but not metabotropic glutamate recept-
ors, mediate leptin-induced LTD in the hippocampus. The sig-
nalling pathway underlying leptin-induced LTD was independent
of the Ras/Raf/MAPK (mitogen-activated protein kinase) path-
way, but was markedly enhanced following inhibition of either
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PI3K or protein phosphatases 1 and 2A [58,59]. Recently, it was
shown that leptin could reverse hippocampal LTP through a post-
synaptic mechanism that required the activation of NMDARs. In-
terestingly, activation of the calcium/calmodulin-dependent pro-
tein phosphatase calcineurin in the postsynapse was required for
leptin function on reversing LTP. Moreover, the leptin-induced
de-potentiation was accompanied by a reduction in AMPAR rec-
tification, which normally mediates EPSC during LTP through
GluR1 insertion in the absence of GluR2s. This suggests that
leptin function in the hippocampus may be through the regula-
tion of internalization of GluR1 homomeric AMPARs [58].

Leptin, axon guidance and synaptic rewiring
Hypothalamic neurocircuitry undergoes dynamic remodelling in-
cluding structural and morphological changes of neurons in re-
sponse to energy status in animals, partially dependent on the
leptin signalling cascade [60]. As described above, leptin acts on
NPY/AgRP and POMC neurons [3]. Leptin-deficient ob/ob mice
differed from wild-type mice in the numbers of excitatory and in-
hibitory synapses on to NPY and POMC neurons, thus the EPSCs
and IPSCs of NPY and POMC neurons [61]. Essentially, more ex-
citatory synapses accompanied by fewer inhibitory synapses are
formed on NPY neurons and more inhibitory synapses are formed
on POMC neurons in the ob/ob mice. These changes involve both
structural and functional modifications [61]. The resulting syn-
aptic profiles of the NPY and POMC neurons may in part account
for the increased food intake in the ob/ob mice [61]. Strikingly,
the balance of synaptic inputs of NPY and POMC neurons in the
ob/ob mice was restored as early as 6 h after leptin adminis-
tration [61], indicating the profound effects of the leptin/LepRb
signalling cascade on synaptic reorganization, including morpho-
logical modifications [60]. Indeed, leptin has been reported to ex-
ert a trophic action on hypothalamic neurons [62,63]. Moreover,
synaptic contacts within the hypothalamic region may selectively
go through dynamic alterations in response to changes in food
intake [64]. For example, a recent report suggests that fasting
causes increased dendritic spines, and consequently enhanced
glutamatergic inputs in AgRP, but not POMC, neurons [21]. As
leptin levels decrease drastically upon fasting, the study further
supports leptin’s involvement in the regulation of synaptic reor-
ganization [65]. We anticipate that the action of leptin on fast
rewiring of synaptic connections will prove to be an exciting and
fruitful research area in the near future.

INSULIN AND SYNAPTIC
TRANSMISSION

Insulin, the major anabolic hormone, is a polypeptide of 51 amino
acids secreted from the pancreatic islets of Langerhans [66]. It is
one of the key regulators of glucose homoeostasis, and like leptin,
is also involved in the regulation of synaptic remodelling and en-
ergy homoeostasis [3,67]. Previous studies have shown that the

effect of insulin on glucose and energy homoeostasis is at least in
part mediated by the CNS [68,69]. Circulating insulin can pen-
etrate the blood–brain barrier and bind to IRs (insulin receptors)
to regulate glucose levels and energy balance [70]. Defective in-
sulin signalling in the CNS contributes to obesity and Type 2
diabetes. Numerous epidemiological studies suggest that insulin
resistance, along with chronic inflammation, may be underly-
ing links between diabetes and dementia and neurodegeneration
[71,72].

Insulin exerts its biological functions via activation of IR loc-
ated in hypothalamic nuclei (Figure 2). POMC neurons are crit-
ical regulators of energy balance and glucose homoeostasis, and
express both leptin and IRs. Insulin directly inhibits the firing
of a subpopulation of POMC neurons [54]. Interestingly, leptin
also regulates the same group of neurons. Unlike insulin, how-
ever, leptin increases their firing rate. Although both insulin and
leptin activate the same intracellular enzyme, PI3K, their impacts
on POMC neurons differ dramatically [73]. Moreover, high-fat
feeding in mice activates IR-PI3K to inhibit steroidogenic factor
1 expressing VMH neurons [74], which in turn reduces the ex-
citatory strength from VMH to ARC [64] and thus contributes to
obesity development.

Insulin rapidly recruits functional GABAA receptors in hip-
pocampal neurons [75]. Although there is no direct evidence to
support insulin action on GABAA receptors in the hypothalamic
region, insulin-induced hyperphagia in free-moving rats could be
blocked by GABAA receptor antagonists that were applied in the
VMH region [76]. This suggests that insulin-induced GABAA

receptor trafficking might at least partially account for the ef-
fects of insulin regulation of food intake. Besides its influence
on GABAA receptor recruitments, insulin can also facilitate the
internalization of AMPAR [77–80], resulting in LTD in hippo-
campal neurons. Moreover, insulin has been indicated to potenti-
ate NMDAR activities [81,82] and to stimulate the translocation
of PSD (postsynaptic density)-95 at the postsynapse via the ac-
tivation of PI3K/Akt/mTOR (mammalian target of rapamycin)
signalling pathway [83]. The effects of insulin on membrane
trafficking likely contribute to the modulation of synaptic func-
tion in the hippocampus, and may be an underlying mechanism
of insulin functions in cognition.

Besides its regulation of synaptic transmission, experimental
evidence also supports a crucial role of insulin signalling
in synaptic remodelling [84]. For example, reduced IR func-
tions through dominant-negative IR expression caused reduced
synaptic density and miniature EPSC frequency, and altered
experience-dependent dendritic arbor structural plasticity in
Xenopus tadpole tectal neurons [67].

GHRELIN AND SYNAPTIC
TRANSMISSION

Ghrelin is an acylated polypeptide of 28 amino acids secreted
from the upper tract of intestine [85,86] and some hypothalamic
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neurons [87]. Although ghrelin-producing neurons are restricted
in the hypothalamus, ghrelin receptors are expressed in various
regions of the brain. It is known that ghrelin stimulates the re-
lease of growth hormone from the pituitary [88], and is involved
in feeding regulation and energy homoeostasis via activation of
GHSR (growth hormone secretagogue receptor) in the hypo-
thalamus [89,90]. NPY and AgRP neurons are primary targets in
ghrelin-mediated regulation of feeding [91]. As discussed earlier,
NPY/AgRP-producing neurons express LepRb and are regulated
by leptin, although in the opposite manner from ghrelin. Leptin
inhibits ghrelin-induced feeding activity, and ghrelin substan-
tially attenuates the anorexic effect of leptin, thus forming a pair
of Yin-Yang partnership in feeding regulation [92–95]. In hypo-
thalamus (Figure 2), ghrelin axon terminals innervate NPY/AgRP
and POMC neurons. Ghrelin directly stimulates the depolariza-
tion of NPY/AgRP neurons, but hyperpolarizes POMC neurons
[93]. The decreased firing rate of POMC neurons appears to be a
result of presynaptic activation of GABAergic NPY/AgRP neur-
ons, since the inhibitory effects of ghrelin on POMC neurons
could be blocked by NPY- and GABAA-receptor blockers [93].
Paradoxically, in the presence of NPY- and GABAA-receptor
blockers, ghrelin increases the firing rate of POMC neurons by
depolarizing POMC neurons [93]. Furthermore, ghrelin potenti-
ates the dopamine neurons in VTA to promote appetite in animals
[96].

The effect of ghrelin on synaptogenesis was first revealed when
the application of ghrelin on hypothalamic slices resulted in in-
creased frequency of spontaneous IPSCs in POMC neurons [93],
which receive presynaptic input and the inhibitory neurotrans-
mitter GABA from NPY neurons [92]. In DA neurons located
in VTA, ghrelin treatment led to increased frequency of mini-
ature EPSCs, but decreased frequency of miniature IPSCs [96].
This was probably due to some presynaptic effects; however, the
detailed mechanisms are unclear. In supraoptic magnocellular
neurons, ghrelin potentiates miniature EPSCs through a presyn-
aptic mechanism that appears to involve TRPV (transient receptor
potential vanilloid) channels [97].

INTERACTION OF FEEDING NEURAL
CIRCUITRY AND REWARD SYSTEM

Feeding activity has classically been perceived as an innate be-
haviour to provide energy and building materials to the body, and
is under the control of CNS to maintain energy homoeostasis.
Abnormal feeding behaviour can cause anorexia or hyperpha-
gia, an effect that is shared by drug addiction in human and
animal models [98,99]. The biological mechanisms of feeding
and addiction have overlapped throughout evolution. The best-
established commonality of the mechanisms for food intake and
drug abuse is their ability to activate the dopamine-containing
link in the brain reward circuitry. Midbrain DA neurons integrate
information during food intake and drug abuse into an elaborate
and complex neural circuitry critical in the regulation of energy

Figure 3 Interaction between food intake neurociruitry and re-
ward neurocircuitry
Diagram showing interactions between the brain regions involved in the
regulation of food intake with those involved in motivated behaviour.
PFC, prefrontal cortex.

homoeostasis (Figure 3). Selective deletion of IR in midbrain
(including VTA and substantia nigra) TH (tyrosine hydroxylase)
-expressing neurons could abolish insulin-mediated increase of
firing rate in TH-positive neurons [100]. Furthermore, mice with
inactivation of insulin signalling in TH-expressing neurons ex-
hibited reduced locomotor activity induced by cocaine [100].
Dopamine neurons in VTA express LepRb, and leptin treatment
decreases the firing rate of dopamine neurons and suppresses
food intake. When LepRb expression was selectively reduced in
VTA, increased food intake, locomotor activity and sensitivity
to highly palatable food were observed [39]. Ob/ob mice have
deficient mesoaccumbens DA signalling activities, including de-
creased dopamine release in the NAc (nucleus accumbens), di-
minished locomotor response to amphetamine, as well as lacking
locomotor sensitization to amphetamine injection. All these de-
ficits in DA functions could be rescued by leptin administration
to VTA [101]. Clearly, leptin has direct effects on mesolimbic
system related to both feeding and motivated behaviours [102].
Given the overlap between the circuits involved in regulating
energy balance and motivated behaviours and reward, it is be-
coming increasingly important to understand the neurobiological
mechanisms that link addiction and obesity research (Figure 3).

CHALLENGES AND EMERGING NEW
METHODOLOGY TO STUDY THE
SYNAPTIC FUNCTION IN FEEDING
BEHAVIOUR

For the understanding of synaptic mechanisms by hormone regu-
lation of CNS functions in feeding and motivated behaviours and
cognition, here are some important topics and pressing questions:
first, a clear understanding of the complex neural circuitry in-
volved in feeding regulation, motivation and reward and cognitive
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functions, and how these circuitries interact with one another;
secondly, detailed cellular and molecular mechanisms of hor-
mone regulation of synaptic functions; thirdly, synaptic alter-
ations under pathological states such as insulin- and leptin-
resistance, and whether synaptic mechanisms contribute to the
pathogenesis of diabetes and obesity; and finally, the cellular and
molecular nature of the links between diabetes and obesity with
dementia [71].

Since the turn of the century, a growing number of mouse ge-
netic models that express different markers or cre-recombinase
in specific neuronal types have become available. The combina-
tion of mouse genetics with emerging new techniques such as
optogenetics allows us to better address the above questions
[103]. By expressing channelrhodopsin in certain types of neur-
ons, one can activate specific synaptic inputs to their target. For
example, Sternson’s group recently expressed channelrhodopsin
2 in AgRP neurons and then used light to activate these cells to
affect feeding behaviour. Their studies provided direct evidence
that AgRP neurons were sufficient to orchestrate feeding beha-
viour [104,105]. Conceivably, the same approach may be used to
further dissect individual components within the feeding neural
circuitry or to map brain circuits for other functions, such as cog-
nition and reward. Another relevant technical development is the
neural-tracing methods using pseudo-rabies viruses [106–109]
or micro-fluorescent beads [110,111], which allow tracking of
synaptic output of diverse neuronal types. We believe that these
new techniques, along with mouse genetic models, will lead to a
complete understanding of synaptic mechanisms in feeding and
motivated behaviour and cognitive functions, and of regulation
of synaptic functions by hormones.

As discussed above, the same group of neurons in the
hypothalamus exhibit distinct response to the same hormone
regulation, for example, leptin depolarizes one-third of LepRb-
expressing neurons, whereas LHA hyperpolarizes another
one-third of LepRb-expressing neurons [112]. Within VTA DA
neurons, insulin only activates half of the neurons [100]. The
understanding of how the same types of neurons respond differ-
ently to leptin will likely provide important information on leptin
resistance, and thus offer clues in the development of therapeutic
strategies against obesity. Recently, high-throughput single-cell
gene profiling became possible, such as the use of Fluidigm
single-cell gene expression arrays [113]. Single-cell gene profil-
ing, when combined with animal physiology and cellular electro-
physiology, will provide definitive answers regarding the cellular
and synaptic mechanisms of leptin and insulin resistance.

With the development of modern stem cell biology [113–115],
we can now use cell-based models to recapitulate the patho-
physiology of hypothalamic neurons in the obese state, and use
cell-based therapy to treat feeding disorders at least in animals
[116]. The cellular models allow us to identify the mechanism of
synaptic function or dysfunction in derived neurons from mono-
genic forms or common forms of obesity, and examine how they
respond to different hormones and therapeutic agents. Our present
review is intended to provide the current account of this rapidly
evolving research area in understanding the CNS control of feed-
ing behaviour and metabolism. We believe that this is an exciting

topic and the ongoing and future studies using these new tech-
nologies aimed at addressing these pressing questions will bring
new opportunities and thinking in devising treatment strategies
against diabetes, obesity and cognitive impairment.
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