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Abstract

A multi-objective optimization model is proposed to allocate the location of VMSs by maxi-

mizing the average traffic guidance utility of VMSs and the number of benefited links, while

minimizing information redundancy. The traffic guidance utility is defined to quantitatively

measure the value of an installed VMS, which is calculated from passively collected GPS

data and the physical topology of road network. The number of benefited links is to measure

how many links are covered by upstream VMS to disseminate information. Information

redundancy is introduced to quantify the mutual impairing between any two VMSs. A heuris-

tic search algorithm is developed to solve the optimization model, which can calculate the

saturated number of VMS for a road network and optimize the project schedule of VMS

installation process based on the proposed objectives. A real-world case study is conducted

in Beijing to illustrate the validity of the proposed approach, where taxis are used as probe

vehicles to provide GPS data. The results show the effectiveness of the proposed multi-

objective optimization model and it is promising to use the emerging GPS data to help agen-

cies to allocate the locations of VMSs on both urban roads and highway networks, instead of

relying on the subjective judgment from practitioners.

Introduction

Advanced Intelligent Transport System (AITS) technology is an important way to balance the

traffic in road network and to mitigate traffic congestion. Variable Message Sign (VMS) is one

of the key components of AITS and has been applied in many cities and areas. VMS can dis-

seminate the real-time traffic condition of downstream links to upstream drivers, which allow

drivers to change their routes in advance to avoid incoming congestion or delays. How to allo-

cate location of VMS in a road network to reach higher coverage with less devices is the key to

VMS’s success.

Until now, in practice, many traffic agencies decide the VMS locations depending on

subjective judgment or the experience of practitioners without quantitative analysis [1–2].

In VMS location allocation research, some published literature provides theoretical and

synthetically sound work. Abbas and McCoy [3] tried to search the best location for VMS

on the highway network by maximizing VMS guidance benefit using the genetic algorithm.
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Some studies allocate location of VMS based on simulation. Chiu et al. [4] proposed a bi-

level programming model to optimally allocate location of VMS in case of an accident, in

which a tabu search algorithm is assessed in the lower level by user equilibrium through

simulation. Several years later, Chiu and Huynh [5] proposed another VMS location plan

from the point view of cost saving under random traffic accident situations, in which

dynamic traffic simulation is adopted to solve the proposed model. Zhong et al. [6] studied

the effect of drivers’ compliance behavior on VMS location with simulation. Shang and

Huang [7] employed cell transmission model to optimally allocate the location of VMS

based on simulation. For other studies, Jeffrey M. H. [1] developed an optimization model

maximizing the benefit of VMS incorporating with incident delay, driver response and

dynamic traffic assignment model. Gan et al. [8] proposed a bi-level programming model to

locate VMS using hypothetical data considering the interaction between VMS and traffic

flow distribution in the road network. All these previous research offers valuable reference

on VMS location allocation.

However, current practices in determining the VMS locations have some limitations. The

VMS location allocation based on subjective judgment is not rigorous and lacks data support.

Simulation-based methods may not reflect the real-world situations. Using detectors data to

locate VMS is very expensive and may be hard to implement in some cities since the installa-

tion and maintenance fee of the detectors is very high to cover the whole network. In this

work, a multi-objective optimization model is proposed to allocate the locations of VMSs

using passively collected GPS probe data without relying on the subjective judgment from

practitioners or assistance of any other additional tools.

Generally speaking, VMS should be allocated on road link where it can bring valuable infor-

mation to more drivers. If the VMS facilities were too close to each other, they may not be fully

utilized. Besides, it’s better to cover as many links as possible so that more people can be

benefited. So a multi-objective optimization model is proposed to maximize the average traffic

guidance utility and the number of benefited links while minimizing information redundancy.

In the past, data limitation is one of the obstacles for the study of VMS location problem. Now-

adays, with the wide spreading of GPS devices, it is much cheaper and easier to collect GPS

data on the road network [9–10]. For example, in Beijing, a huge number of taxis with installed

GPS devices provide tons of GPS data every day, which gives researchers the opportunity to

analyze this problem using accurate, low-cost real-world data. Real-world data provide much

more information of road condition in field [11]. GPS data present information for each link

and continuous spatial-temporal distribution of traffic attributes in the network, while meth-

ods mentioned above do not consider all this information. To the authors’ knowledge, almost

no literature uses GPS data to allocate location of VMS so far. To solve the multi-objective

optimization model, a heuristic search algorithm is developed to provide a project schedule of

VMS installation process and saturated number of VMS for a road network. This method can

help agencies to allocate VMS location on both urban roads and highway networks, which is

without relying on the assistance of any other additional tools or subjective judgment from

practitioners.

The rest of the paper is organized as follows. In the next section, the concept of the guidance

utility and information coverage degree are introduced, a multi-objective optimization model

is proposed to allocate the locations of VMSs, then a heuristic search algorithm is developed to

solve the proposed model. Section 3 conducts a real-world case study in Beijing urban road

network where taxis are used as probe vehicles to provide GPS data, which illustrates the use-

fulness of the proposed method. Section 4 summarizes the paper and discusses some future

research directions.

Location of VMS

PLOS ONE | https://doi.org/10.1371/journal.pone.0199831 July 6, 2018 2 / 20

https://doi.org/10.1371/journal.pone.0199831


Multi-objective optimization model: Methodology

In this section, a multi-objective optimization model is proposed to allocate the location of

VMS by maximizing average traffic guidance utility of VMSs and number of benefited links,

while minimizing information redundancy. Firstly, guidance utility is defined as the level of

utilities drivers can get from the traffic information provided by VMS. Then information cov-

erage degree is introduced to measure the information redundancy and whether a link is

effected by VMS or not. A heuristic search algorithm is developed to solve the optimization

model, which can calculate the saturated number of VMS for a road network and optimize the

project schedule of VMS installation process based on the proposed objectives.

Guidance utility quantification based on GPS probe data

In this subsection, guidance utility of VMS located on a link is defined as the level of utilities

drivers can get from the traffic information provided by VMS, which is derived from the phys-

ical topology of the road network and GPS probe data. With the widespread use of smart-

phones and GPS devices, tons of GPS probe vehicle data are generated every day covering

most road network, which provides a lot of valuable information for each link and continuous

spatial-temporal distribution of traffic attributes for transportation planners. As GPS probe

vehicle travels through a link, it will upload GPS records to the data center and provide infor-

mation about the links that it passes. A GPS point record contains information like latitude,

longitude, speed and timestamp. With a certain amount of probe vehicles running on the net-

work, the traffic condition of the whole network can be monitored continuously. Through

matching GPS points with the road network, traffic condition can be extracted to identify

congestion.

VMS is used to disseminate its downstream information to drivers those passed the

VMS spot, which allows drivers to change their route in advance to avoid incoming conges-

tion or delays. To some extent, congestion is a good option to characterize traffic informa-

tion and measured by speed information in GPS probe vehicle data. Aggregating multiple

GPS data points in time interval T can produce a speed measure on a link. Percentile speed

is used to measure speed, which can better handle the noisy speed data compared to the

average speed and is widely used in scientific and field work [12]. If n GPS points are

observed in the mth time interval on link i, all the instantaneous speed data are sorted in

increasing order {vk (i,m)|k = 1,2,� � �� � �,n}. In the mth time interval, the p percentile speed

vp (i,m) of link i is formulated as following [12]:

vpði;mÞ ¼ vkði;mÞ

k ¼ bp� nc þ 1
ð1Þ

(

In above Eq (1), p is percentile; i is index number of the link; m means discrete time interval

order; vp (i,m) is the p percentile speed; n is the number of GPS data points falling on link i
during the mth time interval; bp×nc denotes the integral part of p×n. Then congestion of link i
is identified based on speed filter. If vp (i,m) is less than a speed threshold, link i in the mth time

interval is considered in a congestion state.

As peak hours are the toughest challenge for the road network, in this work, congestion in

peak hours is chosen to evaluate traffic information for each link, in which congestion proba-

bility and duration are two important indexes to characterize congestion. After congestion

identification by percentile speed, congestion probability during peak hours can be calculated.

Probe vehicles GPS data during peak hours are used to measure congestion probability. For

link i, if statistical congestion appears di times during peak hours, so the ith link’s congestion

Location of VMS
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probability ρi can be calculated as follows [13]:

ri ¼
di

D
� 100% ð2Þ

Meanwhile, based on GPS probe vehicle data, the ith link’s average peak hour congestion

duration ti can also be obtained. Both higher congestion probability and duration lead to more

urgent to disseminate traffic information. So traffic information is highly correlated with con-

gestion probability and duration. To a certain extent, traffic information Ii generated by link i
is proportional to both congestion probability and duration, and suggested to be quantified as:

Ii ¼ ri � ti ð3Þ

In above Eq (3), ρi is the ith link’s congestion probability defined in Eq (2); ti is the ith link’s

average peak hour congestion duration; Ii is traffic information evaluated by congestion

parameters on link i during rush hour.

As a driver passes a VMS, he or she will get information from VMS about the downstream

traffic condition, which may influence the driver’s route decision. As time goes by, traffic con-

dition may have changed when the driver arrives at congestion spot from upstream VMS loca-

tion. For this reason, traffic information is prone to attenuate as time elapsed. Travel time is an

ideal factor to estimate information attenuation but hard to be predicted accurately. As Ward-

man et al. [14] and Chatterjee et al. [15] and Si et al. [2] mentioned, instead of travel time,

travel distance is thought to be better to measure information attenuation on account of its

easier availability than travel time. If travel distance from VMS location to congestion spot is

longer, the traffic condition is more prone to change when the driver arrives at congestion

spot. In other words, the validity of information will attenuate more. Based on above analysis,

travel distance is used to quantify traffic information attenuation Aj
i as following [2]:

Aj
i ¼ alji ; 0 < a < 1 ð4Þ

In above Eq (4), α is traffic information attenuation coefficient and satisfies 0< α< 1; i is

index number of upstream link that has located a VMS; j is index number of the downstream

link; lj
i is the shortest travel distance from link i to link j; Aj

i is information attenuation as driver

arrives at downstream link j from upstream link i.
Because of traffic information attenuation, each VMS has its activation segment. Usually,

the activation segment is defined as VMS’s downstream segment in a certain range lj
i [5] and

mathematically Aj
i ¼ alji > 0 [2], which is associated with the topology of the road network. As

Fig 1 illustrated, an accident spot lies in the activation segment of VMS2, but outside the acti-

vation segment of VMS1. How many upstream VMS to be activated depends on the severity

and spatiotemporal influence range of the traffic accident. The strategy for determining the

spatiotemporal range of traffic information dissemination is another topic and will not be

included in this work. As VMS3 is located downstream of the accident, it is useless for VMS3

to disseminate upstream traffic information. If lj
i is more than activation segment, Aj

i almost

approaches zero.

Traffic information generated by congestion spotted link is in need to be disseminated to

upstream drivers through VMS. Accordingly, the information amount of a VMS can be quan-

tified as cumulative traffic information of downstream links those fall in VMS’s activation seg-

ment. If VMS located on a link has more traffic information amount, this link is more valuable

to locate a VMS to disseminate downstream information to drivers. Taking information atten-

uation into consideration, based on Eqs (3) and (4), the traffic information amount Si of VMS

Location of VMS
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located on link i can be formulated as follows:

Si ¼
X

j2J

ðIj � Aj
iÞ ð5Þ

In above Eq (5), i is index number of a link to locate a VMS; J is set of downstream links

that fall in the activation segment of VMS, which is closely correlated with physical topology of

road network; Si is traffic information amount of VMS located on link i; Aj
i is information

attenuation as driver arrives at downstream link j from upstream link i in Eq (4); Ii is traffic

information evaluated by congestion parameters on link i during rush hour in Eq (3).

As traffic information is disseminated to upstream drivers, if more drivers pass a VMS to

receive information, the VMS is supposed to be more effective, that is more guidance utility. If

VMS is installed on link with little traffic volume or link where congestion seldom happens in

its downstream segments, it cannot make many benefits. On the other hand, if more traffic

information amount of VMS is generated by links in VMS’s downstream activation segment,

the VMS is more effective, in other words, more guidance utility. Based on above two points,

guidance utility greatly depends on traffic flow that passes VMS and information amount gen-

erated by VMS’s downstream links in activation segment. So guidance utility of VMS on a link

can be defined as follows: the effect of VMS’s traffic information amount acts on drivers passed

VMS spot. To a certain extent, guidance utility Gi is proportional to both traffic flow and the

information amount of VMS located on the ith link, and is advised to be formulated as follows:

Gi ¼ fi � Si ¼ fi �
X

j2J

ðIj � Aj
iÞ ð6Þ

In above Eq (6), i is index number of the link to locate a VMS; J is the set of downstream

links that fall in the activation segment of VMS located on the link i; fi is flow volume; Gi is

guidance utility of VMS located on link i; Si is traffic information amount of VMS located on

link i defined in Eq (5); Aj
i is information attenuation as driver arrives at downstream link j

from upstream link i in Eq (4); Ii is traffic information evaluated by congestion parameters on

link i during rush hour in Eq (3).

Information coverage degree

In this subsection, information coverage degree is introduced as quantitative measurement of

coverage degree of a VMS on its downstream link, which will be used to quantify information

redundancy and whether a link is in benefit of upstream VMS or not. As traffic condition may

have changed when drivers arrive at the downstream link from upstream VMS, information

attenuation is also applicable to reckon the coverage degree of VMS on its downstream link. If

a link is closer to upstream VMS, it is more effective for upstream VMS to disseminate its traf-

fic information. Vice versa, if a link is far from upstream VMS, the effect of upstream VMS to

disseminate the link’s traffic information will be lowered due to information attenuation.

Fig 1. Activation segment of VMS.

https://doi.org/10.1371/journal.pone.0199831.g001
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Based on above analysis, referring to information attenuation measured by Eq (4), information

coverage degree Cj of link j can be quantified as follows:

Cj ¼
X

i2I

Aj
i ¼
X

i2I

alji ; 0 < a < 1 ð7Þ

In above Eq (7), Aj
i is traffic information attenuation defined in Eq (4); α is traffic information

attenuation coefficient and satisfies 0< α< 1; i is index number of the link located with VMS; j
is index number of a link to measure information coverage degree; I is set of the jth link’s

upstream links those have located with VMS; lj
i is the shortest travel distance from upstream link

i to downstream link j; Cj is degree of link j covered by upstream VMS located on links set I.

Multi-objective optimization model to allocate location of VMS

In this subsection, a multi-objective optimization model is proposed to allocate location of

VMS by maximizing average traffic guidance utility of VMSs and number of benefited links,

while minimizing information redundancy. For VMS’s success, VMS should be allocated on

road link where it can bring valuable information to more drivers. If not considering possible

information redundancy of any pair of VMS facilities, VMS should be implemented on road

link with the highest guidance utility. This operation will result in maximal average guidance

utility in the road network. For a VMS installed road network, let bi representing whether a

VMS is installed on link i or not, if the ith link locates a VMS bi = 1; otherwise bi = 0. Average

guidance utility of VMSs in the road network is defined as follows:
X

i

Gibi=
X

i

bi; i 2 N ð8Þ

In above Eq (8), i is index number of the link; Gi is guidance utility of VMS located on link

i, which is defined in Eq (6); N is set of links in the road network. Therefore, the first objective

is to maximize average guidance utility in the road network: max
X

i

Gibi=
X

i

bi; i 2 N.

However, any pair of VMS facilities with largest guidance utility may be close to each other.

In this condition, if drivers have already gotten information from upstream VMS, the informa-

tion provided by the current link may not as useful as the upstream one. We may waste money

installing two close VMSs to provide people with redundant information. Besides, it is difficult

to guarantee consistency of traffic information disseminated by two close VMSs in the road

network. When drivers consecutively pass two close VMSs, if these two neighboring VMSs are

close to each other and don’t provide consistent information, drivers will be confused, and it

will impair the credibility of VMS. From above analysis, it can be concluded that information

redundancy is caused by interaction between any two VMSs those are close to each other,

which impairs the best use of VMS and is seen as resource waste. If lj
i ¼ 0, the Cj = 1, which

means information coverage is 1 for a link with VMS location on itself. Thus, if a link located

with VMS has Cj > 1, the part Cj −1 comes from other VMS, which means redundancy. Infor-

mation redundancy in a road network is quantified as:
X

i

ðCi � 1Þbi; i 2 N ð9Þ

In above Eq (9), i is index number of the link; Ci is information degree of link i defined in

Eq (7); bi representing whether a VMS is installed on link i or not, if the ith link locates a VMS

bi = 1, otherwise bi = 0; N is set of links in the road network. Physically, minimize information

redundancy means maximizing the use of each VMS and minimizing the saturated number of
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VMS facilities in a road network. In other words, minimizing implementation cost, while pro-

viding as much information as possible to the public. Then, if road network has reached satu-

ration with VMSs, any new added VMS will cause information redundancy. So, minimizing

implementation cost can be achieved by minimizing information redundancy without artifi-

cially set budgetary constraints. Consequently, the second optimization objective is to mini-

mize information redundancy: min
X

i

ðCi � 1Þbi; i 2 N.

With the increase of travel distance lj
i from VMS location on link i to downstream link j,

coverage degree Cj decreases. When Cj > 0, link j is under benefit of upstream VMS; When

Cj� 0, link j is not under benefit of upstream VMS. Note ui as a bivariate variable to represent

whether the ith link is under benefit of upstream VMS or not, then

uj ¼
1; if Cj > 0

0; if Cj ¼ 0
ð10Þ

(

In above Eq (10), j is index number of the link; Cj is the degree of link j covered by upstream

VMS, which is defined in Eq (7). As congestion can happen on any link, ideally, information

of any link should be effectively disseminated to upstream drivers through VMS. In other

words, as many links as possible are expected to be covered by upstream VMS. So, the last opti-

mization objective maximizes the number of benefited links of VMS: max
X

j

uj; j 2 N.

According to above analysis, the multi-objective optimization model can be formulated as

follows:

max
X

i

Gibi

.X

i

bi; i 2 N

min
X

i

ðCi � 1Þbi; i 2 N

max
X

j

uj; j 2 N

ð11Þ

8
>>>>>>><

>>>>>>>:

In above Eq (11), max
X

i

Gibi

.X

i

bi represents the first optimization objective to maxi-

mize average guidance utility of VMSs in the road network, in which Gi is the guidance utility

of VMS located on link i, referring to Eq (6); bi means if the ith link locates with a VMS bi = 1,

otherwise bi = 0. min
X

i

ðCi � 1Þbi stands for the second optimization objective minimizing

information redundancy, which can also achieve minimizing implementation cost; Ci is the

information coverage degree of link i benefited from upstream VMS, referring to Eq (7).

max
X

j

uj demonstrates the third optimization objective to maximize number of benefited

links which are under benefit of upstream VMS, in which uj is defined in Eq (10).

Heuristic search algorithm to solve multi-objective optimization model

In the proposed multi-objective optimization model, there are several nonlinear terms. The

first optimization objective max
X

i

Gibi

.X

i

bi is non-linear. Besides, if substituting Eq (7) of

information coverage degree Cj ¼
X

i2I

Aj
i ¼
X

i2I

@ lji ¼
X

i2N

ð@ lji � biÞ into the second
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optimization objective min
X

i

ðCi � 1Þbi, it will be a non-linear expression

X

i

hX

j2N

ð@
lij � bjÞ � 1

i
bi. Heuristic algorithm has been widely used to solve non-linear opti-

mization problems [16]. In this section, an heuristic search algorithm is developed to solve this

Multi-objective Optimization Model.

Ideally, an algorithm that can give installation precedence order is a consideration if finan-

cial support is not sufficient to cover all the VMS. Another appeal is to develop an algorithm

that can give the saturated number of VMS in a road network to avoid traffic information

redundancy and cost waste. In this condition, a heuristic algorithm is developed to solve the

proposed model and reasonably allocate VMS location, which also provides a project schedule

of VMS installation process and saturated number of VMS for a road network.

For the first optimization objective maximizing average guidance utility of VMS in the road

network, VMS are intuitively located on links with the largest guidance utility. Naturally, links

with largest guidance utility will be chosen to locate VMS. However, considering the second

objective of minimizing traffic information redundancy, links with minimal information cov-

erage degree but maximal guidance utility will be candidate set for locating VMS. As the third

objective is to maximize the number of benefited links under coverage of upstream VMS, the

candidate link is not necessarily the best option. Then tabu search algorithm is used to look

through if there is a better choice in the neighborhood of the candidate link to allocate next

VMS in the road network. To more clearly illustrate the algorithm, Fig 2 is used to show the

general framework of the algorithm.

Tabu search algorithm is developed by Fred Glover [17–19] and a heuristic search method

widely used in mathematical optimization. The algorithm starts with an initial feasible solution

and chooses a series of specific search direction as the temptation. In this work, the candidate

link in above paragraph is seen as an initial solution. The move direction for the search of the

neighboring candidate links is illustrated in Fig 3, in which link 4 is candidate link. In Fig 3

(A), link 3 and link 4 are classified into one class; link 1 and link 2 are classified into another

class. If locating VMS on link 3, link 4 is under benefit of VMS through Eq (10). However, if

VMS is located on link 4, link 3 is not under benefit of VMS, i.e. link 3 is not a benefited link.

If link 3 and link 4 are allocated VMS respectively, these two VMSs are close to each other to

cause information redundancy, which is contrary to the second optimization objective. If

VMS located on link 3, the guidance utility contribution of link 3 is similar to link 4 for the

road network to satisfy the first optimization objective. What’s more, both link 3 and link 4 are

under benefit of VMS to fulfill the third optimization objective. Based on above analysis, in Fig

3(A), link 3 is more reasonable to install a VMS. In Fig 3(B), guidance utility of all the four

links are classified into one class, which means any one of them with VMS location has similar

guidance utility contribution for the road network. To avoid information redundancy and

maximize the best use of each VMS, the most intuitive and feasible method is to keep distance

between any pair of VMSs. If the total distance from link 1 to link 4 exceeds a certain threshold

that is enough to avoid information redundancy, link 4 is chosen to install a VMS firstly. Then

as algorithm continues, some upstream link of link 4 will be chosen to locate another VMS. If

the distance from link 1 to link 4 is less than the threshold, according to the analysis in Fig 3

(A), only link 1 is chosen to install a VMS, and all the links are under benefit of VMS located

on link 1. As tabu search algorithm ends, the location of next VMS is determined.

As long as a new VMS is located in the road network, traffic information coverage Ci of

each link will be updated according to Eq (7). Using K-NN clustering algorithm, the informa-

tion coverage set C is classified into b classes. If the minimum mean value of the class in C is

less than a preset threshold, the search is continued to locate another VMS. Otherwise, the
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heuristic search algorithm stops, which means the road network has reached saturation with

VMSs and any new added VMS will cause information redundancy. This is to minimize

implementation cost, in other words, the saturated amount of VMS in the last objective.

Fig 4 shows the flowchart of the heuristic search algorithm, which contains the following

steps:

Step 1: Initialize variables. Links set with VMS location in the road network is A = ϕ; links set

that has been searched is S = ϕ.

Step 2: Set traversal iteration k = 1 and conduct the following two steps:

Fig 3. Move direction for the tabu search algorithm (the assumed value above links indicates guidance utility if VMS

located on that link): (a) two consecutive links have similar large guidance utility; (b) several consecutive links have

similar large guidance utility.

https://doi.org/10.1371/journal.pone.0199831.g003

Fig 2. The general framework of the algorithm.

https://doi.org/10.1371/journal.pone.0199831.g002
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Fig 4. Flowchart of the heuristic search algorithm.

https://doi.org/10.1371/journal.pone.0199831.g004
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Step 2–1: Calculate VMS guidance utility Gi for each link based on GPS probe data and the

topology properties of road network according to Eq (6);

Step 2–2: Classify guidance utility G into a classes using K-NN clustering algorithm.

Step 3: Update information coverage Ci of each link according to Eq (7), and classify informa-

tion coverage set C into b classes using K-NN clustering algorithm. The mean value of each

class is calculated and the minimum mean value is represented as mmv. Conduct the fol-

lowing two steps:

Step 3–1: If the minimum mean value mmv is less than a preset threshold, choose the infor-

mation coverage class with minimum mean value as candidate set, and the number of ele-

ments in the candidate set is M. In this candidate set, sort links’ guidance utility in

descending order. Then set the traversal iteration h = 1 and go to Step 4;

Step 3–2: If the minimum mean value mmv is greater than a preset threshold, the algorithm

stops.

Step 4: For the value h, conduct the following two steps:

Step 4–1: If h�M, choose the hth link as exploration link and go to Step 5;

Step 4–2: If h > M, the algorithm stops.

Step 5: For the chosen hth exploration link, conduct the following two steps:

Step 5–1: If the hth link is not in set S, choose the hth link as candidate link and go to Step 6;

Step 5–2: If the hth link is in set S, set h = h+1 and return to Step 4.

Step 6: Tabu search algorithm is conducted to search the neighborhood of the candidate link

according to move direction illustrated in Fig 3. Conduct the following two steps:

Step 6–1: If there is no better option in the neighborhood of candidate link, the candidate

link is chosen as the final link to install the kth VMS;

Step 6–2: Otherwise, a better link in the neighborhood is selected as the final link to install

the kth VMS.

Add the final link and the searched neighborhood links to set S, and add the final link to set

A. Then set k = k+1 and return to Step 3.

As heuristic search algorithm stops, a project schedule of the VMS installation process and

the saturated number of VMS for a road network will be automatically output. This method

can use the proposed multi-objective optimization model and the emerging GPS data to help

agencies to allocate location of VMS on both urban roads and highway networks, without rely-

ing on the assistance of any other additional tools or subjective judgment from practitioners.

A case of Beijing urban roads to locate VMS

In this section, the proposed multi-objective optimization model is tested in Beijing urban

road network. Firstly, Beijing is one of the most congested cities in the world [20]. A report

from AutoNavi Software Co. (a mobile web-mapping service provider) shows that on average,

a driving commuter in Beijing spends 32 minutes in traffic congestion per hour during peak

hours, which ranks the highest in China [21]. Besides, Variable Message Sign (VMS) has been

applied in Beijing, which provides a chance to compare the VMS locations calculated by the

proposed method with the ones deployed in real-world. Lastly, most of the taxis in Beijing

have GPS devices installed, which provide tons of passively collected GPS data everyday.
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Data description and matching on test area map

Beijing is a giant city suffers from congestion every day and the population has reached about

21.5 million by 2015 [20]. Taxis with GPS devices are served as probe vehicles and capable of

collecting and uploading GPS data to data center per 30s to 60s. There are about 46,765 taxis

in Beijing [20], which provide about 56 million rows data per day in 2015. Since most roads

are not blocked by buildings in Beijing, the accuracy of the GPS data are high for most of the

road network. The GPS data include timestamp, position, speed, moving direction and carry-

ing passengers or not. Only the GPS data from taxis that were carrying passengers are taken

into account in this study because these taxis travel as regular vehicles in road network while

uploading GPS information to data center in short time interval. The urban area of Beijing is

enclosed by Ring 2–5 expressways and linked by trunks. The study area is chosen between

north ring 2 and north ring 3 roads as shown in Fig 5. The north ring 2 and 3 roads are linked

by some trunks.

In this study, software ArcGIS 10.0 is used to match GPS points with study area map. Dur-

ing matching, data cleaning is necessary to filter out noisy GPS data. The data that falls within

a certain radius of the road and has same moving direction with road are chosen for our case

study. In consideration of GPS data accuracy, it is suggested to adopt appropriate radius to dis-

tinguish data for a road. Referring to reference [13], the data fell in range of a specified 30

meters radius of a link are kept, in which GPS points not on the road are filtered out. Because a

road contains two links with traffic flow in two opposite directions, the two opposite direction

links in a road need to be distinguished from each other in advance. Slope method is used to

calculate each link’s traffic flow moving direction. Then extend flow direction of the link to a

range by adding and subtracting an exogenous degree as the width of the range. Generally,

most links go straight or turn gradually, an exogenous 20-degree angle is set during matching

GPS points falling in a link. Fig 6 presents the instantaneous positions of taxis that were carry-

ing passengers from 8:00am-9:00am on Jan. 12th, 2015 in the study area. Fig 6 distinguishes

that most of the GPS data points focus on expressways and trunk roads, which shows the fact

that traffic volume is usually much higher on these high grade level roads. In other words, it

shows the potential of higher guidance utility on these roads. Besides, in reality, these may be

bottlenecks where congestions are more likely to happen. Considering the limit of

Fig 5. Test area in Beijing urban road OpenStreetMap contributors (openstreetmap.org).

https://doi.org/10.1371/journal.pone.0199831.g005
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computational resources, only expressways and trunk roads are considered for VMS location

allocation analysis, which results in 36 directional links presented in Fig 7. All these express-

ways and trunk roads in the study area are surrounded by auxiliary roads with exits and

entrances. On average, entrances and exits appear every 1 kilometer, which allows drivers to

easily divert from original route according to traffic information disseminated by VMS in road

network.

In this study, the proposed VMS location allocation method is demonstrated by using taxis

GPS data collected during peak hours on workdays in January 2015. As peak hours are more

challenging to the urban road network, traffic information disseminated by VMS is more

meaningful during peak hours. Only peak hours (7:00AM-9:00AM and 5:00PM-7:00PM) on

workday are considered. Data of weekends and special holidays are excluded, which results in

42 peak periods in 21 workdays. Speed and traffic volume information can be obtained

through statistics during matching GPS data with study area map. Fig 8(A) and Fig 8(B) pres-

ent variation number of GPS records collected from taxis with passengers during morning and

evening peak hours in the study area. On average, 149,571 and 172,520 GPS records are

observed during morning peak and evening peak respectively. Fig 8(C) shows the average

Fig 6. GPS data instantaneous positions during 8:00am-9:00am on Jan. 12th, 2015 in study area.

https://doi.org/10.1371/journal.pone.0199831.g006

Fig 7. Directional links extracted from the study area (number under or above each link is index).

https://doi.org/10.1371/journal.pone.0199831.g007
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number of taxis with passengers per peak hour on each link in the road network. These

amount of data are sufficient to support VMS location allocation analysis.

For distribution measurement of GPS probe vehicles in traffic flow, this is equivalent to

throwing sands into a city randomly. The ordinary cars are black sand while the taxis with

GPS devices are red sand. When this process ends, the distribution of black or red sand will be

uniform. What’s more, the rationality of this uniform distribution assumption has been proved

in the work of Andrew et al. 2014 [22]. As taxis proportion is uniformly distributed in the

whole network [23–24], taxis number can be used to represent traffic flow to some extent.

Quantification of guidance utility

In percentile speed calculation, p = 50 is adopted, which is the median speed. Speed threshold

is used to determine congestion by checking if the speed is less than the threshold. Then traffic

condition is transformed into binary variable representing congested or uncongested states in

each time interval for each link. Time interval reflects time magnitude for data aggregation.

Widening time interval may result in missing some useful information by artificially refer to

and averagely aggregate more data in time. Thus, employing shorter time interval can make

the percentile speed more close to traffic condition. However, if a very small time interval is

used, the number of GPS points for each link at each time interval will be limited, which may

not be enough to generate a reliable speed estimate to reflect the real traffic condition. In this

study, the time interval is set as 5 minutes to aggregate instantaneous speed of GPS data points

for each link. Then congestion is identified by critical speed threshold of 25 km/h. If time dura-

tion for congestion is short, this congestion is viewed as traffic transient status and not a real

Fig 8. A glance of GPS records from taxis carrying passengers during peak hours in the study area: (a) morning peak

hours; (b) evening peak hours; (c) average number of taxis with passengers per peak hour on each link.

https://doi.org/10.1371/journal.pone.0199831.g008
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congestion state. Here, only congestion duration covers over two-times interval (10 minutes)

is considered. The number of peak hours with congestion occurrence is counted for each link.

The peak hour congestion probability for each link can be obtained through dividing the coun-

ters by the total number of the peak hours, referring to Eq (2) in subsection II.A. During all the

peak hours, the flow volume and average congestion duration for each link are made statistics.

Using Eq (3), the traffic information for each link can be calculated.

To analyze guidance utility and information coverage, the activation segment of VMS need

to be determined. Chiu and Huynh [5] used 3.2 kilometers (2 miles) as VMS activation seg-

ment, which may differ in different countries and cities. Referring to reference [5] and advice

of experienced experts, the VMS activation segment is set to be 4 kilometers. Based on traffic

information attenuation Eq (4), through alji � 0 as lj
i ¼ 4, the attenuation coefficient α is

deducted to be 0.45. The distance from upstream link i to downstream link j is obtained by the

shortest route distance algorithm. Through Eq (6), guidance utility for each link can be

acquired. Data of index 1–10 links are listed in Table 1.

Heuristic search algorithm to allocate location of VMS

According to the description of the developed heuristic search algorithm in subsection II.D,

variables should be initialized first. As there is no VMS has been located in the road network,

information redundancy Ci = 0 for 8i 2N, i is index number of link, N is the set of all links in

road network; k = 1 is traversal iteration number; the links set which have located VMS A = ϕ;

the links set which have been searched is S = ϕ. Next, the guidance utility is classified into a
classes through K-NN clustering algorithm. Here in order to demonstrate heuristic search

algorithm, the value of a is set to be 4. One note should be pointed that different classification

number a may lead to different location result, which will be discussed lately.

According to the algorithm developed in subsection II.D, the 4th link is firstly chosen as

candidate link to locate a VMS. Then tabu search algorithm is conducted to look through if

there is a better option in the neighborhood of link 4 to allocate the first VMS in the road net-

work. According to the moving direction illustrated in Fig 3, the 29th link is the very upstream

link of the 4th link. Through comparison, the 29th link is not in the same guidance utility class

with the 4th link. So the 4th link is chosen as the first link to locate the first VMS. Add the 4th

link to set A and S. Then the information coverage Ci for each link is updated based on Eq (7)

in Step 3. The information coverage set C is classified into b classes through K-NN clustering

algorithm. Here the value of b is set to be 4 and discussed lately with a. The information cover-

age class with minimum mean value is chosen as the candidate set. In the candidate set, the

Table 1. Data of index 1–10 links in test area during peak hours.

link index flow volume

(vehicles per hour)

congestion probability congestion duration

(minutes)

length

(km)

guidance utility

1 1,676 0.81 34 1.435 102,195

2 1,758 0.93 53 1.435 93,949

3 1,943 1.00 99 1.887 196,620

4 1,666 1.00 80 1.887 206,385

5 1,270 0.88 74 1.407 104,738

6 1,616 0.67 34 1.407 101,850

7 1,978 1.00 68 1.566 185,127

8 2,089 0.90 60 1.566 179,976

9 439 0.43 10 0.828 39,759

10 482 0.98 70 0.828 98,800

https://doi.org/10.1371/journal.pone.0199831.t001
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guidance utility is sorted in descending order. In this candidate set, the 3rd link has the largest

guidance utility and is chosen as candidate link to locate VMS. Then the 3rd link’s neighbor-

hood is searched by tabu search algorithm, and the very upstream links set {25, 10} are

checked. The two upstream links are not in the same guidance utility class with the 3rd link. So

the 3rd link is chosen as the final link to locate another VMS. Repeat location allocation pro-

cess until the termination criterion in Section II.D Step 3 is met. As the heuristic search algo-

rithm stops, a project schedule of the VMS installation process is A = {4,3,7,8,6,36,5,27} and

the saturated number of VMS is 8 for the study area, which is shown in Table 2.

For location allocation problem, there are many ways to quantify the effectiveness of the

proposed method, such as a simulation with a before and after evaluation, profit and loss, driv-

ers response, some quantitative indicators. Any measurement method can be chosen to evalu-

ate the effectiveness of location allocation model. In this study, four indicators are selected to

evaluate the effectiveness of the method: average guidance utility
X

i

Gibi

.X

i

bi, links per-

centage
X

j

uj

.
N under benefit of VMS, and sum information redundancy

X

i

ðCi � 1Þbi, sat-

urated number of VMSs
X

i

bi in the road network.

In heuristic search algorithm, the classification number of guidance utility and coverage

degree are important factors and should be set with an appropriate value. With a larger classifi-

cation number, the guidance utility will be classified into more classes. For instance in Fig 3

(A), if link 3 and link 4 are classified into different classes, link 4 will be chosen to install a

VMS and link 3 can’t benefit from this VMS. Vice versa, if classification number is too small,

the guidance utility will be classified into less classes. When classification number is small, link

3 and link 4 may be classified into the same class with link 2. Ideally, link 3 will be chosen as

candidate link to locate VMS firstly. Because link 2 is in the same guidance utility class with

link 3, according to the move direction described in Fig 3, link 2 will be chosen as the last link

to install VMS. In fact, it is more meaningful to choose link 3 to install VMS. Table 4 shows the

results of different classification number of guidance utility and information coverage. As the

results of a = 4,b> 4 are same with a = 4,b = 4, and the results of a > 6,b = 4 are same with

a = 6,b = 4, the remaining cases are presented in Table 3. It’s easy to find that condition a = 4,

b = 4 and a = 6,b = 4 are much better than other kinds of classification on saturated number of

VMSs, sum information redundancy and average guidance utility. For the percentage of links

under benefit of VMS and sum information redundancy, condition a = 4,b = 4 is better than

a = 6,b = 4; for sum information redundancy condition a = 4,b = 4 is better than a = 6,b = 4;

for average guidance utility in the road network, there is a small but not obvious gap between

Table 2. The location allocation order of VMS as a = 4,b = 4.

link index guidance utility flow volume

(vehicles per hour)

congestion probability congestion duration

(minutes)

length

(km)

order

4 206,385 1,666 1.00 80 1.887 1

3 196,620 1,943 1.00 99 1.887 2

7 185,127 1,978 1.00 68 1.566 3

8 179,976 2,089 0.90 60 1.566 4

6 101,850 1,616 0.67 34 1407 5

36 131,613 1,269 0.95 65 1.686 6

5 104,738 1,270 0.88 74 1.407 7

27 51,458 877 0.50 37 1.451 8

https://doi.org/10.1371/journal.pone.0199831.t002
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the condition a = 6,b = 4 and a = 4,b = 4 as 144;721

149;796
¼ 0:966. For the percentage of links under

benefit of VMS, in condition a = 4,b = 4, only 1st link is out of benefit of VMS; however, in

condition a = 6,b = 4, there are 3 links {1,6,18} out of benefit of VMS. In the view of cost sav-

ing, it is acceptable for those links with low flow volume and congestion probability not in the

benefit of upstream VMSs. As links set {6,18} have high flow volume, for percentage of links

under benefit of VMS, condition a = 4,b = 4 is better than a = 6,b = 4. Based on above analysis,

classification a = 4,b = 4 is better than a = 6,b = 4. From above analysis, it could be concluded

that classification a = 4,b = 4 is best in a variety of classification schemes, and the correspond-

ing VMSs installation precedence order and positions in road network are illustrated in Fig 9.

The comparison would like to be conducted between this work and other ways to allocate

location of VMS. As Variable Message Sign (VMS) has been applied in Beijing to release traffic

information, a field study is conducted on the location and direction of the VMS in the test

area, which is shown in Fig 10. As pointed out in section introduction, data limitation is one of

the obstacles to the study of VMS location problem. Given the difficulty in obtaining other

sources data that previously published methods need, other methods to locate VMS are not

easy to be implemented. Backtracking algorithm is used in previous literatures [25] to opti-

mally solve location allocation problem, backtracking algorithm to locate VMS can be given a

try by scanning road grade, traffic flow, information intensity and attenuation. As backtrack-

ing algorithm can also show installation order of VMS, VMS location number is set to 8 for

backtracking algorithm, which is the saturated number in our result. Comparison of our work

with field located VMSs and backtracking algorithm is conducted and the comparison result is

shown in Table 4. It shows that our method has more guidance utility, higher links coverage

percentage, less information redundancy than field located VMS and backtracking algorithm.

As our saturated VMSs number 8 is less than field VMSs 13, our method can save implementa-

tion cost compared with field installed VMS.

As Fig 10 illustrated, there are 13 VMSs installed in different road segments of the area,

which are {1,3,4,5,7,10,14,18,23,26,30,32,36} denoted as Sr. For our method, the project sched-

ule of VMS installation is {4,3,7,8,6,36,5,27} and denoted as Sp. After comparison, there are five

VMSs {4,3,7,36,5} are consistent in both our method and the field VMSs. For the other eight

field VMS locations {1,10,14,18,23,26,30,32}, they are either in the neighboring downstream

link or upstream link of Sp. For example, link 1 in Sr is not in Sp, but it is in the upstream of

Table 4. Comparison of our algorithm with backtracking algorithm and field VMS.

algorithm VMS location links set average guidance utility percentage of links in coverage sum information redundancy

our algorithm {4,3,7,8,6,36,5,27} 144,721 97.3% 0.203

backtracking algorithm {8,14,2,1,35,6,16,18} 97,089 77.8% 2.05

Beijing Urban {1,3,4,5,7,10,14,18,23,26,30,32,36} 103,070 94.4% 3.48

https://doi.org/10.1371/journal.pone.0199831.t004

Table 3. Comparison of VMS location in different classification number of guidance utility a and information coverage b.

classification number saturated number of VMSs percentage of links under coverage sum information redundancy average guidance utility

a = 2,b = 4 14 100% 2.53 102,812

a = 3,b = 4 10 97.3% 0.91 123,158

a = 4,b = 4 8 97.3% 0.203 144,721

a = 5,b = 4 12 100% 1.399 117,192

a = 6,b = 4 8 91.7% 0.285 149,796

a = 4,b = 2 12 97.3% 1.608 113,475

a = 4,b = 3 9 97.3% 0.55 139,685

https://doi.org/10.1371/journal.pone.0199831.t003
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link 8, which is included in Sp. Compare to Sr,Sp can provide higher average guidance utility by

covering nearly same percentage of links with much less VMS devices and information redun-

dancy, which is shown in Table 4.

During the calculation process, except the developed multi-objective optimization model

and low-cost GPS probe data, our method don’t rely on the assistance of any other additional

tools or subjective judgment from practitioners. For the test area, in our work, the project

schedule of the VMS installation process is {4,3,7,8,6,36,5,27} and the saturated number of

VMS is 8 for the study area, which is shown in Fig 9 and Table 2. It can be seen that our

method gives not only saturated number of VMSs, but also the installation precedence order

in a road network, which is one advantage of our method. As the saturated number of VMS is

8 in the test area, which means redundancy occurs if any the 9th VMS is added to this test

area. The output of saturated number of VMSs can effectively avoid wasting money to install

two close VMSs to provide information with redundancy, which also saves implementation

cost. During the implementation process of the algorithm, the more profitable location of

VMS will be selected in priority. If financial support is not sufficient to cover all the VMSs,

VMSs installation can be divided into different stages referring to the installation precedence

order shown in the last column in Table 2. The case study in Beijing urban road network using

taxis as probe vehicles shows the effectiveness of this method.

Fig 9. The project schedule of VMS installation process is {4,3,7,8,6,36,5,27}, and the saturated number of VMS is

8 in test area (number in square under VMS means installation precedence order).

https://doi.org/10.1371/journal.pone.0199831.g009

Fig 10. The filed VMS installation in test area.

https://doi.org/10.1371/journal.pone.0199831.g010
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Conclusion

This paper proposes a multi-objective optimization model to allocate the locations of VMS by

maximizing average guidance utility of VMSs and number of benefited links while minimizing

information redundancy. Each objective has solid physical meaning: maximizing guidance

utility is to ensure each VMS can benefit most drivers in the road network, which is derived

from the passively collected GPS probe data and physical topology of the road network. Mini-

mizing information redundancy is physically represented as lowering mutual impairing

between any two VMSs and save implementation cost without artificially set budgetary con-

straints. Maximizing number of benefited links of VMS in the road network is to disseminate

as many as possible links’ information to upstream drivers through VMS.

As discussed earlier, data limitation is one of the obstacles to study the VMS location prob-

lem. Different from previous methods depending on subjective judgment, simulation or other

data sources, this work fully utilizes passively collected GPS data to allocate the locations of

VMS, without the assistance of any other additional tools or using subjective judgment from

practitioners. The proposed multi-objective optimization model can be applied to both urban

roads and highway networks with enough GPS data covering the network.

The developed heuristic search algorithm can calculate the saturated number of VMS for a

road network and optimize the project schedule of VMS installation process based on the pro-

posed objectives. If there is no enough money to implement all the VMSs at the same time,

VMSs can be installed in different stages.

The methodology presented in this paper relies on multi-objective optimization model and

accurate real-world data to allocate the locations of VMS facilities. However, the interaction

between guidance information and traffic flow dynamics is not taken into consideration.

Future research should consider mutual feedback mechanism between actual road conditions

and VMS guidance information.
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