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Traumatic brain injury (TBI) is a major global burden of health. As an accepted

inflammatory mediator, high mobility group box 1 (HMGB1) is found to be effective in

facilitating neurogenesis and axonal regeneration. SH3RF2 (also known as POSHER),

an E3 ligase SH3 domain-containing ring finger 2, belongs to the SH3RF family

of proteins. Here, we aimed to investigate the role of redox states of HMGB1 on

neurite outgrowth and regeneration both in vitro and in vivo. In this study, distinct

recombinant HMGB1 redox isoforms were used. Sequencing for RNA-seq and data

analysis were performed to find the potential downstream target of nonoxid-HMGB1

(3S-HMGB1). Protein changes and distribution of SH3RF2 were evaluated by western

blot assays and immunofluorescence. Lentivirus and adeno-associated virus were

used to regulate the expression of genes. Nonoxid-HMGB1-enriched exosomes were

constructed and used to treat TBI rats. Neurological function was evaluated by OF

test and NOR test. Results demonstrated that nonoxid-HMGB1 and fr-HMGB1, but not

ds-HMGB1, promoted neurite outgrowth and axon elongation. RNA-seq and western

blot assay indicated a significant increase of SH3RF2 in neurons after treated with

nonoxid-HMGB1 or fr-HMGB1. Notably, the beneficial effects of nonoxid-HMGB1 were

attenuated by downregulation of SH3RF2. Furthermore, nonoxid-HMGB1 ameliorated

cognitive impairment in rats post-TBI via SH3RF2. Altogether, our experimental results

suggest that one of the promoting neurite outgrowth and regeneration mechanisms

of nonoxid-HMGB1 is mediated through the upregulated expression of SH3RF2.

Nonoxid-HMGB1 is an attractive therapeutic candidate for the treatment of TBI.
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INTRODUCTION

Traumatic brain injury (TBI) is a major cause of death and disability around the world (1, 2).
Survivors often suffer from a variety of neurological symptoms, such as cognitive dysfunction,
disorders of balance, paresthesia, memory problems, etc. (3, 4). The mechanism of brain damage
after TBI has been proved to involve both direct mechanical damage and indirect damage
(5, 6). Direct mechanical damage results from initial impact and is considered irreversible.
Secondary damage is mainly caused by the delayed neurochemical process such as excitotoxicity,
mitochondrial dysfunction, oxidative stress, and inflammation, which is reversible (7). However,
despite extensive research into the process of TBI disease, there is, still, a lack of effective treatments
to promote neurological recovery, and the prognosis remains unfavorable.
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HMGB1 (high mobility group box 1) is a nuclear protein, but
extracellular HMGB1 works as a damage-associated molecular
pattern (DAMP) to stimulate the innate immune system (8, 9).
HMGB1 exerts varying biological activities according to the
redox states of cysteines, which are at positions C23, C45, and
C106 within a protein (10–12). Three isoforms of HMGB1 have
been identified, namely, fully reduced HMGB1 (fr-HMGB1),
disulfide HMGB1 (ds-HMGB1), and fully oxidized HMGB1 (ox-
HMGB1) (13). They interact with different pathogen recognition
receptors to participate in different pathophysiological processes.
Fr-HMGB1 exhibits that the three cysteines are in the thiol state
(reducing status). It elicits intracellular actions via binding to
RAGE and/or CXCR4 (14). In contrast, in ds-HMGB1, a disulfide
bond is formed between C23 and C45 residues due to the
oxidation, while C106 remains unchanged. It induces cytokine
production via binding to TLR4 (15). The final variant, namely,
ox-HMGB1, is reportedly non-active, with all three cysteines
terminally oxidized (16).

In TBI, HMGB1 has been shown to enhance
neuroinflammation and subsequently exacerbate neurocognitive
impairment (17, 18). Extracellular HMGB1 is released by
necrotic neurons and other immune cells recruited to the injury
site (19). It can act both as a chemoattractant for leukocytes
and as a proinflammatory mediator to induce the release of
proinflammatory cytokines (12). However, the critical role of
HMGB1 in facilitating neurogenesis and neural regeneration
is neglected. It has been reported that HMGB1 stimulates
hippocampal and cortical neurogenesis post-TBI (20). HMGB1
is upregulated in axons of injury-conditioned neurons and
enhances axon outgrowth (21). Furthermore, a previous study
shows that the overexpression of HMGB1 in motoneurons
promotes neuroregeneration in SCI (spinal cord injury) (22).
Together, these observations suggest that HMGB1 plays dual and
antagonistic roles during neurogenesis and neuroregeneration
after CNS (central nervous system) injury.

In this study, to investigate the effects of HMGB1 redox
isoforms on neurite outgrowth and regeneration in vitro, fr-
HMGB1, ds-HMGB1, and nonoxid-HMGB1 (3S-HMGB1) were
selected. Nonoxid-HMGB1 is a mutant to mimic fr-HMGB1
functions in which all cysteines are replaced with serines
and maintains structural stability in oxidizing milieu (23). In
addition, we assessed the effects of nonoxid-HMGB1 in TBI rats
and tried to explore the potential molecular mechanism.

MATERIALS AND METHODS

Animals
The post-natal day 1–3 Sprague-Dawley (SD) rats were provided
by Southern Medical University SPF Animal Experimental
Center (Guangzhou, China). Male adult SD rats were purchased
from the Vital River Laboratory Animal Technology Co., Ltd.
(Beijing, China), weighing 190–210 g (8–10 weeks old). The
animals were fed in a standard environment with a light-dark
cycle (12/12-h day/night, 25◦C) and had 1 week to adapt to the
new environment before surgery. All the animal studies were
approved by the Review Committee for the Use of Human or
Animal Subjects of Sun Yat-Sen University.

Primary Culture of Cortical Neurons
Cortical neurons were isolated from the neonatal rats under a
microscope. In brief, cerebral cortices were isolated carefully.
The separated cortical tissue was shredded and dissociated with
a papaya enzyme (Sigma-Aldrich, USA). In the first 2 h, cells
were cultured in a high-glucose DMEM-F12 (Gibco, USA)
medium. After that, the medium was changed into a neurobasal
medium (Gibco, USA). The neurons were cultured in a 5%
CO2 incubator for 7 days, and then treated with three different
forms of recombinant HMGB1 (ds-HMGB1, fr-HMGB1, and
nonoxid-HMGB1; 100 ng/ml, respectively; HMGBiotech, Italy).
The dosage of HMGB1 referred to a previous research (24).

Immunofluorescence
Cortical neurons were fixed with paraformaldehyde for 15min,
and then permeabilized with 0.3% Triton X-100 for 30min.
After washing with PBS, the cells were blocked with 5% BSA for
1 h at room temperature, followed by incubation with a MAP2
antibody (1:100; Abcam, UK), a NeuN antibody (1:100;Millipore,
USA), and an SH3RF2 antibody (1:100; Novus, USA) overnight at
4◦C. The day after, neurons were incubated with Alexa Fluor 488-
conjugated (1:500; Abcam, UK) and Alexa Fluor 555-conjugated
(1:500; Abcam, UK) for 1 h at room temperature. Finally, nuclei
were visualized with DAPI (1:1,000; Abcam, UK). Images were
acquired with a confocal laser scanning microscope (LSM 780;
Zeiss, Germany) and analyzed by Image J software.

Bioinformatics Analyses
Total RNA was isolated from cultured cortical neurons.
Sequencing for RNA-seq and data analysis were performed
at JinWeiZhi (Suzhou) BIOTECHNOLOGY LLC (https://www.
genewiz.com.cn/). In the present analysis, an FDR below 0.05
was identified as the criterion for differentially expressed genes
(DEGs). Differences in the mRNA expressions were displayed
on heatmaps. GO pathway enrichment analyses were performed
to find possible biological processes and signaling pathways
associated with the correlated target genes of neurite outgrowth
and regeneration.

Western Blotting Analysis
As previously described (25), 30 µg protein samples were
separated by 10% SDS-PAGE gel, and then transferred to
polyvinylidene fluoride (PVDF, pore size, 0.45 um) membranes
(Millipore Billerica, USA). The membranes were blocked with
5% non-fat dry milk for 1 h, followed by incubation overnight
at 4◦C with the following primary antibodies: rabbit anti-
SH3RF2 (1:1,000), rabbit anti-HMGB1 (1:1,000), mice anti-EGFP
(1:1,000, mice anti-GAPDH (1:1,000), and mice anti-β-actin
(1:1,000). The day after, the membranes were incubated with
secondary antibody HRP-conjugated goat anti-rabbit (1:3,000)
or an HRP-conjugated goat anti-mouse (1:3,000) at room
temperature for 1 h. The secondary antibody was diluted with 1%
non-fat dry milk. Specific bands were detected with a GE AI600
system. ImageJ software was used to quantify the expression
of protein.
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Lentiviral Transfection
The lentivirus targeting SH3RF2, pLKD-CMV-mcherry-2A-
puro-U6-shSH3RF2, was purchased from Obio Technology
Corp., Ltd (Shanghai, China). pLKD-CMV-mcherry-2A-puro-
U6 served as negative control. Multiplicity of infection (MOI)
was 20. Neurons were transfected at day in Culture 7, and the
effect of gene interference was verified after 72 h using western
blot assays.

Stereotaxic Injection
Gene overexpression in vivo was achieved by ScAAV vectors.
ScAAV vectors carrying Nonoxid-HMGB1 (3S-HMGB1),
ScAAV-hSyn-HMGB1 (C23S C45S C106S)-EGFP-WPREs, were
purchased from BrainVTA Co., Ltd (Wuhan, China). ScAAV-
hSyn-EGFP-WPREs served as negative control. After being
anesthetized, rats were placed in a stereotaxic apparatus (RWD,
CN). The hole was drilled above the right hippocampus, and
viruses were microinfused via a 10-µl Hamilton microsyringe.
The stereotactic coordinates were as follows: bregma −3. mm,
midline 3. mm, 2.5mm below dura.

Establishment of the TBI Rat Model
The controlled cortex injury (CCI) device (RWD68099II, China)
was used to establish the TBI model. A diameter craniotomy of
5. mm on the right parietal (centered 3. mm posterior and 3. mm
lateral from the Bregma) was performed to expose the dura. The
CCI was delivered to a depth of 1. mm at a velocity of 5 m/s with a
duration of 500ms. Sham rats received the same craniotomy but
not brain injury.

Isolation, Culture, and Transfection of
BMSCs
As previously described, BMSCs were harvested from the
femurs and tibias of neonatal rat femurs (26). The adherent
cells were passaged when they reached 80∼90% confluency,
and P3 BMSCs were used for subsequent experiments. The
nonoxid-HMGB overexpression plasmids carrying EGFP were
purchased from BrainVTA Co., Ltd (Wuhan, China). All
plasmids were transfected into BMSCs using Lipofectamine 2000
(Invitrogen, USA).

Isolation and Identification of
BMSC-Derived Exosomes
When BMSCs reached 70∼80% confluence, a medium was
replaced. After 48 h, the medium was collected. The exosomes
were extracted through traditional ultracentrifugation and
preserved in a freezer at −80◦C. The morphology of exosomes
was observed under a transmission electron microscope (FEI,
CZ). A BCA protein quantification kit (Beyotime, China) was
used to detect protein content. Western blot was used to identify
the expression of Exo-specific markers TSG101 (Abcam, USA)
and Flotillin-1 (Abcam, USA). Exosomes (5 ug) were injected
into the caudal vein after TBI (27).

Behavioral Procedures
Before testing, rats were transferred to the testing room and
adapted to the surroundings for at least 1 h.

Open Field Test (OF)
OF test was used to measure locomotor activity of rats post-
TBI. The rats were individually placed in an open-field chamber
(120 cm × 120 cm × 40 cm) and allowed to explore for 5min
freely. The total distance traveled was used to evaluate motor
function, which was recorded by SMART 3.0 software.

Novel Object Recognition Test (NOR)
NOR test is widely used to evaluate object recognition memory
(28). The discrimination of recognition novelty was assessed by
preference index (PI) (time exploring the new object)/(total time
spent exploring both objects) (29).

Statistical Analysis
In this study, data were expressed as mean ± SEM and
analyzed by employing the GraphPad 8.0 software (San
Diego, USA). The differences between any given two groups
throughout this study were analyzed by unpaired Student’s
T-tests, unless otherwise specified. In different treatment
groups, one-way ANOVA followed by Fisher’s LSD test was
employed. Multiple comparisons involving more than one
variable were analyzed by two-way ANOVA followed by
Tukey’s post-hoc test. Two-tailed p < 0.05 was considered as
statistically significant.

RESULTS

Nonoxid-HMGB1 and fr-HMGB1 Promote
Growth of Primary Cortical Neurons
Extracellular HMGB1 has been evaluated to be a DAMP.
Interestingly, HMGB1 has also been found to promote
neurite outgrowth and regeneration. Different redox isoforms
of HMGB1 may play different roles. We first characterized
the cultured cortical neurons with two specific markers
(MAP2 and NeuN), and the cells were confirmed as neurons
(Supplementary Figure 1).

The biological activity of extracellular HMGB1 is determined
by the redox state (30). We tested the role of the nonoxid-
HMGB1 and fr-HMGB1 as well as ds-HMGB1 in neuron growth.
Compare with the control group, a significantly increased
number of neurites were detected in the nonoxid-HMGB1 group
and the fr-HMGB1 group (Figures 1A,B). Furthermore, average
axon length was measured in the nonoxid-HMGB1 group and
the fr-HMGB1 group, and both were significantly increased than
the control group (Figure 1C). The average number of neurites
was not affected by ds-HMGB1 (Figure 1B). However, the axon
length was decreased after ds-HMGB1 treatment (Figure 1C).
Thus, these results confirmed that HMGB1-mediated neurite
outgrowth and axon elongation of neurons require the reduced
state of the protein.

Differential Gene Expression and
Functional Enrichment Analysis
To identify genes and pathways involved in the promotion
of neurite outgrowth and regeneration, we performed
RNA-seq analysis. Heatmap showed clear clusters of up-
and downregulated genes (Supplementary Figure 2A).
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FIGURE 1 | Effects of HMGB1 in different redox forms on neurite outgrowth and axon elongation of cortical neurons. (A) Immunocytochemistry was used to label

neurites and axons after 24 h of treatment with HMGB1. (B) Nonoxid-HMGB1 and fr-HMGB1 significantly increased the average number of neurites compared to the

control group. Ds-HMGB1 failed to significantly affect neurite outgrowth. (C) Nonoxid-HMGB1 and fr-HMGB1 significantly increased the average axon length

compared to control; however, the average axon length was decreased after ds-HMGB1 treatment. Mean + SEM. *p < 0.05.

Through differential expression analysis of RNA-Seq data,
we identified top 50 DEGs (differential expressed genes)
(Figures 2A,B). Gene ontology (GO) analysis revealed
that the majority of biological processes had correlations

with neurodevelopment and nerve regeneration, such as
nervous system development, axon extension, neuroblast

proliferation, neurotransmitter secretion, myelination, cortical

cytoskeleton organization, and so on (Figures 2C,D). In

addition, we also found that four accepted pathways for
nerve regeneration were activated to varying degrees by
nonoxid-HMGB1 (Supplementary Figures 2B–E). As nonoxid-
HMGB1 and fr-HMGB1 have the similar activity, they may
regulate neurite outgrowth and regeneration by the same
mechanism. To identify the potential downstream target
of nonoxid-HMGB1 and fr-HMGB1, we compared two
sets of DEGs data, and a co-upregulated gene SH3RF2 was
detected (Figures 2A,B).

Expression and Distribution of SH3RF2 in
Cortical Neurons
To validate the expression of SH3RF2 in neurons, we performed
immunostaining of SH3RF2. The results showed that green
fluorescence intensity of SH3RF2 was significantly increased
in the nonoxid-HMGB1 group and the fr-HMGB1 group as
compared with the control (Figures 3A,B). Interestingly, we
found that SH3RF2 was widely distributed in the cell bodies
and neurites (Figure 3A). To further evaluate the effect of
extracellular HMGB1 on the expression of SH3RF2 and HMGB1
in neurons, western blot analysis was performed. As expected, we
detected the relative protein level of SH3RF2 was significantly
increased in the nonoxid-HMGB1 group and the fr-HMGB1
group. In addition, we found that extracellular nonoxid-HMGB1
and fr-HMGB1 did not influence the expression of HMGB1 in
neurons (Figures 3C–F). These results confirmed the expression
change of SH3RF2, which were consistent with the bioinformatic
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FIGURE 2 | The transcriptome sequence and bioinformatics analysis. (A) The heat map of top 50 DEGs in the nonoxid-HMGB1 group vs. the control group. (B) The

heat map of top 50 DEGs in the fr-HMGB1 group vs. the control group. (C) GO analysis for DEGs in the nonoxid-HMGB1 group compared with the control group. (D)

GO analysis for DEGs in the fr-HMGB1 group compared with the control group.

analysis result. SH3RF2 could be the potential downstream target
of nonoxid-HMGB1 and fr-HMGB1 to participate in neurite
outgrowth and axon elongation.

Nonoxid-HMGB1 Enhances Axon Growth
by SH3RF2
To validate the potential downstream target gene SH3RF2,
we designed this experiment. Because of the instability of fr-
HMGB1 in the oxidizing environment, a mutant of fr-HMGB1,
nonoxid-HMGB1 (3S-HMGB1), was adopted in this experiment.
LV-shSH3RF2 was designed to silence SH3RF2, and empty
vectors (LV-vector) were used as control lentivirus. Neurons were
transfected with lentivirus at day in Culture 7. After transfection
for 72 h, a great number of neurons with strong red fluorescence
were observed (Figure 4A), and the SH3RF2 level decreased
significantly in the LV-shSH3RF2 group (Figures 4B,C). After
infection, nonoxid-HMGB1 was added to the cultured neurons
and remained present until fixation after 24 h. Compared with
the LV-vector group, the average length of axons was increased
in LV-vector + 3S-HMGB1 group. Moreover, no differences

were observed between the LV-vector controls and the LV-
shSH3RF2 group in axon length. As expected, there was also
no diversity between the LV-vector group and the LV-shSH3RF2
+ 3S-HMGB1 group (Figures 4D,E). The number of neurites
per neuron was no change in different groups (Figure 4F).
Taken together, these results demonstrate that silence SH3RF2
antagonizes nonoxid-HMGB1-induced axon growth.

Nonoxid-HMGB1 Attenuates Object
Recognition Memory Deficits in CCI Rats
To further investigate in vivo effects of nonoxid-HMGB1, the
CCI model was employed; we injected an ScAAV-3S-HMGB1
expressing vector to increase levels of nonoxid-HMGB1 after
TBI, using injections of an empty vehicle as the matched group
(ScAAV-Vehicle). The experimental CCI was established at 10
days after ScAAV injection. OF test and novel NOR test were
conducted at 3 weeks after CCI (Figure 5A). After virus injection
for 10 days, strong green fluorescence was observed in the
cortex and hippocampus, and nonoxid-HMGB1 was strongly
expressed (Figure 5B, Supplementary Figure 3). We examined
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FIGURE 3 | Validation and expression analysis of SH3RF2 in neurons after being treated with nonoxid-HMGB1 or fr-HMGB1. (A) Representative fluorescence images

of neurons. Scale bars, 50 um. (B) Relative quantification of the fluorescence signal. (C–F) Western blot for SH3RF2 and HMGB1. Mean ± SEM, *p < 0.05.

the locomotor activity of rats with the OF test, and all three
experimental groups displayed similar locomotor activity post-
TBI (Figure 5C). For the NOR test, as presented in Figure 5D,
the new object reference index in the CCI + ScAAV-Vehicle
group was lower than Sham + ScAAV-Vehicle group, indicating
that CCI results in an impairment in memory behavior. In the
ScAAV-3S-HMGB1 group, the new object preference index was
higher than CCI + ScAAV-Vehicle group, but lower than Sham
+ ScAAV-Vehicle group (Figure 5D). Taken together, these
results indicate that nonoxid-HMGB1 improved rats’ learning
and memory function to a certain extent.

SH3RF2 Is Required for Nonoxid-HMGB1
Improving CCI-Induced Learning and
Memory Damage
To further disclose whether SH3RF2 is required for nonoxid-
HMGB1 improving CCI-induced learning and memory

impairments, we knocked down the expression of SH3RF2
in hippocampus by lentivirus (LV-shSH3RF2). Nonoxid-
HMGB1-enriched exosomes (Exo-3S-HMGB1) were employed
to increase levels of nonoxid-HMGB1 in brain after CCI.
The schematic timeline of experiments was presented
in Figure 6A.

Exo-3S-HMGB1 was first constructed, and then was
administrated into rats after the establishment of CCI. To
construct Exo-3S-HMGB1, the BMSCs with high expression
of nonoxid-HMGB1 were generated by plasmid transfection,
and the green fluorescence was obviously observed in BMSCs
after transfection (Supplementary Figures 4A,B). Then,
exosomes were identified by analyzing their shape and size
(Supplementary Figure 4C) and detecting the specific protein
TSG101 and Flotillin-1 (Supplementary Figure 4D). In addition,
nonoxid-HMGB1 was detected in exosomes of the transfected
BMSCs (Supplementary Figure 4E). All of these results suggest
that the Exo-3S-HMGB1 was successfully constructed.
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FIGURE 4 | Nonoxid-HMGB1 promotes axon growth by SH3RF2. (A) Representative images of neurons after transfection for 72 h. Scale bars, 50 um. (B,C)

Assessment of silencing efficiency by relative quantification of SH3RF2. (D,E) Representative electron microscopy images show that nonoxid-HMGB1 promotes axon

growth in control (LV-vector) primary neurons, and it does not cause marked changes of axon growth in shSH3RF2 primary neurons. Scale bars, 50 um. (F) Treatment

with nonoxid-HMGB1 did not alter the neurites number in control (LV-vector) primary neurons and in shSH3RF2 primary neurons. Mean ± SEM, *p < 0.05, **p <

0.01, ns: no significance.

The subsequent study was aimed to explore whether
knockdown of SH3RF2 could eliminate the recovery of memory
function induced by nonoxid-HMGB1 in CCI. We injected
LV-shSH3RF2 to knocked-down SH3RF2 in hippocampus, and
decreased SH3RF2 expression was observed after 2 weeks
(Figure 6B). Next, we constructed the TBI model of rats and
injected exosomes into rats. The OF test results showed that there
were no significant differences in total distance traveled among
all five groups, suggesting that motor abilities did not interfere
with NOR training and test (Figure 6C). For the NOR test, the
preference index of a new object in the CCI-PBS group and
the CCI-Exo-control group was both significantly lower than a

familiar object, indicating that Exo-control could not improve
the memory impairment caused by CCI. Rats injected with
Exo-3S-HMGB1 showed an improvement in memory function.
However, SH3RF2 silencing attenuated the improvement of
memory defect induced by Exo-3S-HMGB1 (Figure 6D). All of
these data indicated that SH3RF2 silencing could partly eliminate
the recovery of memory function induced by nonoxid-HMGB1.

DISCUSSION

As mentioned before, extracellular HMGB1 exists in three
different redox states, and different forms of HMGB1 interact
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FIGURE 5 | Nonoxid-HMGB1 attenuates learning and memory impairments in CCI rats. (A) The experimental timeline for the neurobehavioral testing. (B)

Representative electron microscopy images of brain sections from rats intervened with ScAAV-3S-HMGB1 or ScAAV-Vehicle for 10 days. (C) In the open field test, no

differences were observed among three experimental groups. (D) Exploration times and discrimination indices were calculated in NOR test. Mean ± SEM; NS: no

significance.

with different receptors (13). Several lines of evidence support
that ds-HMGB1 serves as a proinflammatory cytokine via
interactions with TLR4 (14, 15), whereas fr-HMGB1 mediates
tissue regeneration by binding to RAGE (12). Interestingly
enough, RAGE signaling has been demonstrated to promote
neurite outgrowth and nerve regeneration (31–36). In addition,
HMGB1-RAGE axis has been turned out to mediate cell
migration and tissue regeneration (37, 38). However, few studies
have investigated the potential relationship between different
redox states of HMGB1 and nerve growth or regeneration.
Against this background, we sought to further confirm if HMGB1
would enhance neurite outgrowth of neurons and, if so, by
which kind of redox state. We found that nonoxid-HMGB1 (3S-
HMGB1) and fr-HMGB1 promote neurite outgrowth and axon
elongation, which is consistent with prior reports that HMGB1

contributes to facilitate neurogenesis and neural regeneration
(20–22). However, the neurite outgrowth and axon elongation of
neuron were inhibited by ds-HMGB1. Frank et al. reported that
ds-HMGB1, but not fr-HMGB1, contributes to inflammatory
responses (39). This phenomenon might be caused by activating
TLR4 and evoking the production of proinflammatory cytokines
subsequently (14, 15).

In order to understand the molecular mechanism through
which nonoxid-HMGB1 and/or fr-HMGB1 acts in neurons, we
have performed RNA-seq analysis. We noted that nonoxid-
HMGB1 shows stronger effects than fr-HMGB1 in genes related
to neurogenesis, axon extension, and myelination, but weaker
influences on neuroblast proliferation, neuroblast differentiation,
and neurotransmitter transport. The divergent results may be
due to the inability of nonoxid-HMGB1 to be oxidized to
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FIGURE 6 | LV-shSH3RF2 attenuated the effect of Exo-3S-HMGB1 to improve the recovery of memory function in CCI. (A) The experimental timeline for the

neurobehavioral testing. (B) Representative electron microscopy images of brain sections from rats intervened with LV-shSH3RF2. (C) No differences were observed

in the open field test. (D) Exploration times and discrimination indices were calculated in NOR test. Mean ± SEM, NS: no significance.

other forms of HMGB1. Notably, we found that SH3RF2 is a
co-upregulated DEG in the nonoxid-HMGB1 group and the
fr-HMGB1 group. SH3RF2 is a multidomain scaffold protein
participated in promoting cell survival, and the knockdown
of SH3RF2 promoted apoptosis of cultured cortical neurons
(40, 41). Besides, mice with SH3RF2 haploinsufficiency exhibit
synaptic plasticity deficits and synaptic dysfunction (42). In
this study, we revealed that nonoxid-HMGB1 promotes neurite
outgrowth and axon elongation in neurons by increasing SH3RF2
expression. Combined with previous pieces of research, we
speculated that SH3RF2 might be a target gene in HMGB1-
RAGE axis.

Prior pieces of evidence have indicated that HMGB1 is
implicated in neuroinflammation in TBI and exacerbates
neurocognitive impairments (17, 18). The release of HMGB1
from damaged tissues has been reported to enhance cerebral

edema and neurological deficits (43, 44). In addition,
some studies declared that the use of HMGB1 antagonists
could reduce cerebral edema, suppress pro-inflammatory
cytokine release and microglial activation, and improve
neurological outcomes (45–47). As the cysteines of HMGB1
are easily oxidized in oxidizing milieu (13), few studies
have further investigated the role of different redox states
of HMGB1 in TBI. Interestingly, we found that nonoxid-
HMGB1 effectively ameliorates cognitive function, and the
inhibition of SH3RF2 attenuated the beneficial effects of
nonoxid-HMGB1 on cognitive function. The behavioral
improvement induced by nonoxid-HMGB1 post-TBI might
result from the neurite outgrowth and axon regeneration
of neurons.

Notably, this study has certain limitations. HMGB1 is
released from injured cells or death cells (13). Extracellular
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HMGB1 mainly exists in the form of Disulfide HMGB1 (ds-
HMGB1). To avoid these destabilizing factors, we choose
a normal cell model in an in vitro experiment, but not
the neuronal injury model. Further studies are needed to
explore the effects of nonoxid-HMGB1 on injured neurons.
In addition, the in vivo findings indicated that nonoxid-
HMGB1 ameliorated cognitive function in rats post-TBI via
SH3RF2. Further studies will be required to clarify the detailed
molecular biological mechanisms in the recovery of cognitive
function post-TBI.

Taken together, our findings indicate that nonoxid-HMGB1
reduces TBI-mediated cognitive impairment. This beneficial
effect might be through two mechanisms: (i) SH3RF2-induced
modulation of neurite outgrowth and regeneration and
(ii) SH3RF2-induced modulation of neuronal survival and
apoptosis (40, 41). Our experimental results suggest that
nonoxid-HMGB1 is an attractive therapeutic candidate for
the treatment of TBI, and regulating the redox state of
extracellular HMGB1 may be a novel therapeutic approach to
treat TBI.
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