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Abstract 

Major depressive disorder (MDD) is a global health challenge with high prevalence. Further, 

many diagnosed with MDD are treatment resistant to traditional antidepressants. Repetitive 

transcranial magnetic stimulation (rTMS) offers promise as an alternative solution, but 

identifying objective biomarkers for predicting treatment response remains underexplored. 

Electroencephalographic (EEG) recordings are a cost-effective neuroimaging approach, but 

traditional EEG analysis methods often do not consider patient-specific variations and fail to 

capture complex neuronal dynamics. To address this, we propose a data-driven approach 

combining iterated masking empirical mode decomposition (itEMD) and sparse Bayesian 

learning (SBL). Our results demonstrated significant prediction of rTMS outcomes using this 

approach (Protocol 1: r=0.40, p<0.01; Protocol 2: r=0.26, p<0.05). From the decomposition, we 

obtained three key oscillations: IMF-Alpha, IMF-Beta, and the remaining residue. We also 

identified key spatial patterns associated with treatment outcomes for two rTMS protocols: for 

Protocol 1 (10Hz left DLPFC), important areas include the left frontal and parietal regions, while 

for Protocol 2 (1Hz right DLPFC), the left and frontal, left parietal regions are crucial. 

Additionally, our exploratory analysis found few significant correlations between oscillation 

specific predictive features and personality measures. This study highlights the potential of 

machine learning-driven EEG analysis for personalized MDD treatment prediction, offering a 

pathway for improved patient outcomes. 
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Introduction 

Major Depressive Disorder (MDD) is one of the most common mental illnesses 

worldwide, characterized by its symptoms of persistent sadness or emptiness, loss of appetite, 

trouble sleeping, and thoughts of suicide1. In 2020, it was estimated globally there were 3153 

cases of MDD per 100000 population2. It can be severely debilitating; causing 49 million 

disability adjusted life years (years lost due to a disability) in 2020 alone2. The economic burden 

of MDD in the US has risen substantially with a 37.9% increase3, from $236.6 billion in 2010 to 

$326.2 billion in 2018. Failure to achieve a treatment response will lead to further harm and 

costs4. Current treatment strategies for moderate to severe MDD primarily include      

pharmacotherapy such as selective serotonin reuptake inhibitors 44, 45, 46. However, a considerable 

portion of patients are non-responders, known as treatment (medication) resistant 47.  For these 

individuals, brain stimulation, particularly repetitive transcranial magnetic stimulation (rTMS), 

has emerged as an FDA-cleared and effective alternative treatment option for some 5,6,7,8,25. 

Further, there is a critical need to identify biomarkers for predicting treatment outcomes due to 

the biologically heterogeneous nature of MDD and the heterogeneity in rTMS treatment 

response, which often complicates treatment outcomes. Developing objective brain biomarkers 

(or signatures) is essential to reduce the need for multiple treatment trials and to expedite 

remission by more accurately selecting treatments. 

 Efforts to predict treatment outcomes and uncover the underlying neurophysiology in 

MDD patients have utilized neuroimaging techniques such as functional magnetic resonance 

imaging (fMRI) and electroencephalography (EEG) in combination with machine learning 

techniques9,10,11,35. While fMRI is an important and successful tool in neuroimaging, it is less 
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clinically translatable due to high costs, the need for expertise, and specialized equipment. In 

contrast, EEG is more cost-effective, easier to deploy, and offers higher temporal resolution36. 

Many studies utilizing machine learning and EEG in psychiatry have focused on EEG-

based functional connectivity to identify promising biomarkers. While these studies have laid 

important groundwork, identifying treatment predictive biomarkers by decoding EEG spatio-

temporal patterns at the electrode level represents an alternative approach19,21, especially at lower 

EEG channel densities. Despite these advances, very few studies have focused on identifying 

biomarkers for rTMS treatment using these methods. Additionally, many studies that have 

attempted to identify biomarkers for rTMS treatment have typically not examined multiband 

features jointly and are not end-to-end models48 (models that can learn to extract features directly 

relevant to the outcome), potentially resulting in lower prediction performance due to a loss of 

information. A modern method for end-to-end EEG decoding is the Sparse Bayesian Learning for 

End-to-End Spatio-Temporal-Filtering-Based Single-Trial (SBLEST) algorithm proposed by 

Wang et al12. This end-to-end sparse Bayesian learning framework aims to integrate spatial and 

multiband information to better understand channel-level features related to a specific EEG 

decoding task.  

Conventionally, channel-level disorder-specific features are extracted by bandpass 

filtering a signal to a frequency band, typically one of the five where neural oscillations occur: 

delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz)31. 

However, distinct neuronal patterns may exist within the same band, potentially grouping 

multiple oscillations together, and oscillations between bands may be unintentionally attenuated9. 

Huang et al.14 introduced Empirical Mode Decomposition (EMD), a data-driven approach that 

decomposes a complex signal into simpler components without assuming it falls within a 
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specific bandwidth or is sinusoidal, enabling detailed temporal and spectral feature extraction of 

nonstationary EEG signals. Despite its utility, EMD suffers from mode mixing in complex 

signals with low signal-to-noise ratios15. Spatial filtering in EEG decoding, using algorithms 

such as common spatial patterns (CSP), constructs spatial filters to isolate brain activity from 

specific regions, improving the signal-to-noise ratio37. These are typically employed before input 

into a machine learning model. In contrast, SBLEST learns spatial filters within its linear 

regression model, optimizing them for specific tasks while being computationally efficient. 

In this paper, we are thus motivated to use a recent improvement of EMD, iterated 

masking empirical mode decomposition (itEMD), introduced by Fabus et al16, in combination 

with SBLEST to extract both spatial and temporal features in a data driven manner. The itEMD 

method is a completely data driven way to decompose signals into components with significantly 

less mode mixing16. SBLEST learns spatial filters within its linear regression model, optimizing 

them for specific tasks while being computationally efficient. Thus, we propose a combined 

methodology, EMD-SBL, to predict treatment outcome of MDD patients receiving rTMS using 

patient EEG data from the TDBRAIN dataset17. By utilizing the EMD-SBL framework, we aim 

to identify channel-level spatial features associated with chosen decomposed components. 

Furthermore, we examine the association between predictions from each signal component and 

NEO Five-Factor Inventory-3 personality scores (NEO-FFI) clusters to identify personality traits 

correlated to each channel-level EEG topographic map. MDD treatment response has been found 

to correlate with some NEO-FFI clusters for medication response33 but the opposite has been true 

rTMS response42. EMD-SBL provides unique insights by integrating spatial and temporal 

information through data-driven decomposition and optimized spatial filtering, offering a more 
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nuanced understanding of EEG patterns and their relationship with treatment outcome in MDD 

patients receiving rTMS treatment.   

 

 

Figure 2. Prediction results of EMD-SBL model. The prediction was evaluated using 10 
repetitions of 10-fold cross-validation for each protocol separately. Permutation test was done 
with 1000 runs a. Prediction of BDI change for Protocol 1 (N=44, Pearson’s r = 0.401, 
p = 0.00703, ppermute < 0.05) b. Prediction of BDI change for Protocol 2 (N=73, Pearson’s 
r = 0.255, p = 0.0292, ppermute < 0.05).  

 

Results 

EMD-SBL predicts rTMS treatment response for MDD patients 

For both rTMS protocols, we sought to create a model that could predict treatment response. 

Significant results were only achieved with eyes-open rsEEG data (See eyes-closed results in 

Supplementary Table 3). For Protocol 1 (N=44), we achieved the best performance using the 

EMD-SBL method (Pearson’s r = 0.401, p = 0.00703, ppermute < 0.05). Likewise, for Protocol 2 
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(N=73), the best performance is achieved using the EMD-SBL method (Pearson’s r = 0.255, p = 

0.0292, ppermute < 0.05). Figure 2 displays the results of EMD-SBL for Protocol 1 and Protocol 2. 

Only our method achieved significant results when compared against the results for SBLEST + 

Band Filtering, SBLEST, and Ridge Regression + itEMD (Figure 3, Supplementary Tables 1 and 

2).  

 

Figure 3. Model comparison results for SBLEST, SBLEST + Band Filtering, Ridge Regression 
+ itEMD, and EMD-SBL. Only EMD-SBL was significant (** : p<0.01 , * : p<0.05, ns : not 
significant).  

 

Treatment-predictive Signatures Interpretation 

Next, we sought to interpret the identified biomarkers by examining model weights and spatial 

filters. We examined stability between runs by measuring the similarity of their weight matrix 𝑊. 

𝑊 is the weight matrix optimized by the SBL model. To obtain our treatment outcome 
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prediction, we perform matrix multiplication between 𝑊  and the block matrix of the test split. to 

Our model training incorporated three different oscillations (i.e. IMF-Alpha, IMF-Beta, and 

Residue components), allowing 𝑊 to be split into components for oscillation-specific spatial 

pattern interpretation. Figure 3 illustrates the stability and optimized matrices of each oscillation 

for each rTMS protocol. Following the method described by Wang et al12 , we decomposed the 

learned symmetric matrix 𝑊 into spatial filters and their regression weights. Through eigenvalue 

decomposition, we obtained leading eigenvalues (regression weights) and eigenvectors (spatial 

filters). The eigenvectors represent spatial filters, which we visualized over a 2D scalp map to 

better interpret the oscillations. Figure 4 shows the topographical 2D channel mappings for the 

spatial filters of each oscillation.  For Protocol 1 (10Hz L-DLPFC), IMF-Alpha had the highest 

magnitude eigenvalue, followed by IMF-Beta and then the Residue. Examining the spatial filters 

for each oscillation, we identified the channels with the highest absolute values in terms of 

importance for predicting treatment outcomes. The most important channels were: F7 and P7 for 

IMF-Alpha; FC3, C3, and P4 for IMF-Beta; and C3, C4, P7, and O1 for the Residue. In Protocol 

2 (1Hz R-DLPFC), IMF-Alpha again had the highest magnitude eigenvalue, followed by the 

Residue and then IMF-Beta. The channels with the most importance for Protocol 2 were: F7, F3, 

and P7 for IMF-Alpha; FC3 for IMF-Beta; and F4, FC3, Cz, P7, and O1 for the Residue. 
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Figure 4. Learned model weights. a. Model stability across runs from 10 repetitions of 10-fold 
cross-validation. Stability was calculated by measuring the correlation coefficient of the learned 
matrix	𝑊 between runs. b. Protocol 1 𝑊 matrix of each oscillation optimized by SBLEST. 
Between channel covariance, IMF-Alpha had the most channel feature importance. c. Protocol 2 
𝑊 matrix of each oscillation optimized by SBLEST. Similar to Protocol 1, IMF-Alpha had the 
most channel feature importance.  
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Figure 5. Spatial filter patterns. a. Spatial filters with their corresponding regression weight 
(eigenvalues) for Protocol 1 – 10Hz L-DLPFC. For IMF-Alpha, the channels with the most 
feature importance: F7, P7. For IMF-Beta: FC3, C3, P4. For the Residue: C3, C4, P7, O1. b. 
Spatial filters with their corresponding regression weight for Protocol 2 – 1Hz R-DLPFC. For 
IMF-Alpha the channels with the most feature importance: F7, F3, P7. For IMF-Beta: FC3. For 
the Residue: F4, FC3, Cz, P7, O1. 

 

Oscillation NEO-FFI correlations 

To further interpret the behavioral relevance of the identified biomarkers, we calculated the 

correlation coefficient between the oscillation’s predictions and the NEO-FFI items of each 

participant (shown in Figure 5 and Figure 6 for Protocols 1 and 2 respectively). For the 

participants in Protocol 1, the Residue had significant correlation (p<0.05) with self-approach, a 

neuroticism subscale, and orderliness, a conscientiousness subscale. Further, the predictive 
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features of IMF-Beta were correlated with aesthetic interest, a subscale of openness. Of 

predictive features of Protocol 2, the Residue had a significant correlation with extraversion, 

openness and its subscale intellectual interest, and conscientiousness.   

 

Figure 6. Association between the Protocol 1-predictive signature and NEO-FFI. a. Correlations 
for IMF-Alpha: No significant (p<0.05) correlations. b. Correlations for IMF-Beta: Significant 
(p<0.05) correlations with aesthetic interest (Pearson’s r = -0.305), a subscale of openness. c. 
Correlations for the Residue: Significant (p<0.05) correlations with self-approach (Pearson’s 
r = 0.327), a neuroticism subscale, and orderliness (Pearson’s r = 0.343), a conscientiousness 
subscale. 

 

Figure 7. Association between the Protocol 2-predictive signature and NEO-FFI. a. Correlations 
for IMF-Alpha: No significant (p<0.05) correlations.  b. Correlations for IMF-Beta: No 
significant (p<0.05) correlations. c. Correlations for the Residue: Significant (p<0.05) 
correlations with extraversion (Pearson’s r = 0.235), openness (Pearson’s r = 0.254) and its 
subscale intellectual interest (Pearson’s r = 0.351), and conscientiousness (Pearson’s r = 0.248). 
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Discussion 

In this study, we presented a novel methodology for revealing multimodal EEG signatures to 

predict rTMS treatment outcome for MDD patients. By combining itEMD and SBLEST, our 

EMD-SBL method captured more variability in treatment outcome compared to traditional 

bandpass filtering-based approaches. Traditional methods may lose clinically relevant 

information by assuming that neuro-oscillations are consistent across participants within the 

same frequency bands. EMD-SBL, in contrast, demonstrated significant prediction accuracy 

(p<0.05) for rTMS treatment outcome in both Protocols, highlighting its effectiveness. While our 

models for both Protocols demonstrated significant predictions, the model for Protocol 2 (1Hz R-

DLPFC, N=73) performed worse than Protocol 1 (10Hz L-DLPFC, N=44). This discrepancy 

may be because IMF-Alpha is not as predictive for Protocol 2 and instead including a lower 

frequency IMF may have been more appropriate for Protocol 2. As shown in Figure 3, feature 

weights for IMF-Beta for Protocol 2 are negligible, whereas the Residue, derived by subtracting 

IMF-Beta and IMF-Alpha from the original signal, shows much higher feature importance. This 

suggests that other oscillations in the rsEEG may better predict treatment outcome for Protocol 2.  

IMF-Alpha, closely associated with the alpha band, proved to be the most important oscillation 

for predicting treatment outcome in both protocols. This finding aligns with previous literature, 

which has identified alpha oscillations as highly predictive of treatment outcome in MDD 

treatments27,32,35. Other studies have also found a link between the alpha band frequency and 

treatment response in TMS. Conca et al. 41 found that initial lower mean alpha frequency of EEG 

was a possible predictor of TMS response as an add-on therapy. Arns et al. 42 found that a slower 

anterior individual alpha peak frequency was one of the differentiating factors between 

responders and non-responders in rTMS. In our dataset, participants received concurrent rTMS 
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and psychotherapy for both protocols25. Therefore, the shared oscillation could also be predictive 

of psychotherapy response. Spatially F7 and P7 proved to have the highest importance in the 

alpha oscillations in both models, consistent with previous findings indicating alpha oscillations 

in the frontal and parietal areas as predictive of treatment response38,39,40. 

IMF-Beta, similar to the beta band, was only predictive of Protocol 1. This oscillation may 

capture features specific to 10 Hz rTMS at the L-DLPFC. Previous research has indicated that 

beta oscillatory events in pretreatment EEG could indicate treatment response28,43. Additionally, 

we found that channels FC3, C3, and P4 contributed most to IMF-Beta for predicting treatment 

outcome, supporting the observation that frontal beta can predict rTMS treatment outcomes28. 

Our further exploratory analysis correlated the predictive signature of each oscillation with NEO-

FFI personality scores. Previous literature33  had indicated that traits such as neuroticism, 

extraversion and conscientiousness are associated with treatment outcomes in MDD patients who 

were treated with combined antidepressant-psychotherapy. However, the same could not be said 

for rTMS treatments, where no significant correlation between rTMS treatment response and the 

NEO-FFI items were found42.  Our study aligns with this as our most informative features, IMF-

Alpha and IMF-Beta, had no correlation with personality scores.  

In summary, our combined itEMD and SBLEST methodology (EMD-SBL) showed promise in 

predicting rTMS treatment outcomes in MDD using rsEEG data from the TDBRAIN dataset. 

Our data-driven approach revealed critical brain signatures by jointly modeling multiband spatio-

temporal filters from multichannel EEG. Many of the signatures are further validated by their 

appearance in existing literature. Our work advances the potential for treatment response 

prediction in rTMS, moving towards creating generalizable, cost-effective frameworks for more 

personalized treatments and better outcomes for individuals with MDD. 
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Materials and Methods 

Participants 

Participant data and demographics were obtained from the TDBRAIN dataset17. Only 

participants who were diagnosed with MDD and received rTMS were included (N=117) from the 

naturalistic open label study. Participants received either of the two rTMS protocols: high 

frequency rTMS (10Hz) at the left dorsolateral prefrontal cortex (DLPFC) (Protocol 1) or low 

frequency rTMS (1 Hz) at the right DLPFC (Protocol 2). For Protocol 1, 1500 pulses were 

administered at each rTMS session, while 1200 pulses were administered for Protocol 2.  

Sessions occurred two to three times a week. Depression severity was measured using the Beck 

Depression Inventory (BDI)18. If no response was observed by sessions 20–25, treatment is 

discontinued. If the BDI score indicated remission (defined as score ≤12) for five consecutive 

sessions, the patient was given the option to end treatment, phase out sessions by gradually 

reducing their frequency, or extend with maintenance sessions occurring once every 6–8 weeks. 

The primary treatment outcome was measured by pre-minus-post-treatment change in BDI. It is 

important to note that the original study found no significant difference in treatment outcome 

between these two protocols25. The NEO-FFI was used to assess the personality traits of the 

participants.  

EEG Recordings 

 Both eyes-open and eyes-closed resting state EEG (rsEEG) data was recorded from all the 

selected participants. Only the pre-treatment rsEEG was used. Data was collected from 26 

channels of EEG for two minutes at a sampling rate of 500 Hz using a Neuroscan NuAmps 

amplifier. The electrode labels, based on the 10-10 electrode international system, are as follows: 
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Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T7, C3, Cz, C4, T8, CP3, CPz, CP4, P7, P3, Pz, 

P4, P8, O1, Oz, O2.  

EEG Preprocessing 

All the EEG data was preprocessed using an EEGLAB-based pipeline19. The preprocessing steps 

are as follows. The data was downsampled from 500 Hz to 250 Hz, followed by removal of 50 

Hz line noise using notch filtering20. Low frequency noise near DC was removed from the data 

using a 0.01-Hz high-pass filter. Bad segments were rejected by thresholding the magnitude of 

each segment. Bad channels were detected by thresholding the spatial correlations among the 26 

EEG channels and interpolated via the spherical spline interpolation22. Any individuals with 

more than 20% of channels detected as bad were excluded from our analysis. Independent 

component analysis (ICA) was further applied to remove artifacts such as eye blinks, muscular 

activity, and cardiac activity (ECG)23. Lastly, the EEG channels are re-referenced to the common 

average.  

Iterated Masked Empirical Mode Decomposition 

In this study, we seek to utilize a multiband approach to fully leverage oscillation features in 

EEG data. Traditional bandpass filtering divides the data into canonical neural oscillation 

frequency bands, assuming uniform oscillation frequencies across patients. In contrast, EMD 

allows us to gain more detailed insights by decomposing the signal into intrinsic mode functions 

(IMFs). This method may help identify more effective biomarkers for predicting treatment 

outcomes by capturing patient-specific oscillatory modes. Each decomposed IMF represents a 

narrowband oscillatory mode with distinct frequency and amplitude characteristics. EMD 

decomposes a signal into a set of IMFs through an iterative process: 1) Identify the local extrema 
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for one channel 𝑋(𝑡). 2) Fit the maxima and minima to an envelope. 3) Calculate the mean of the 

upper and lower envelopes. 4) Subtract this mean from the original signal to obtain signal 𝐻(𝑡). 

5) Check if 𝐻(𝑡) satisfies the conditions for an IMF. If yes, subtract the IMF from 𝑋(𝑡) and 

repeat steps 1-5 with the resulting signal. If not, repeat steps 1-5 with 𝐻(𝑡). 6) Continue this 

cycle until the residual signal no longer contains significant oscillations. 

A limitation of traditional EMD is mode mixing, where one frequency component can appear in 

multiple IMFs15. To address this, we used masked EMD, which involves adding a masked signal 

to the original signal 𝑋(𝑡), in step 1. By iterating this process with different masking signals, we 

obtain distinct IMFs. Iterated masked empirical mode decomposition (itEMD) further improves 

the masking technique by determining masked frequencies specific to the data, enabling a purely 

data-driven decomposition of the EEG signal. We follow the steps laid out by Fabus (2021)16: 1) 

Select an initial set of mask frequencies based on the dyadic masking technique. 2) Perform 

masked EMD to obtain IMFs. 3) Use the Hilbert Transform to calculate the Instantaneous 

Frequency (IF) for each IMF. 4) Calculate the amplitude-weighted average of each IF and set it 

as the next masked frequency. 5) Repeat steps 2-4 until the relative difference between the 

current and previous masked frequencies is minimal. 

EMD-SBL Multiband Prediction 

Conventionally, decoding EEG spatial features involves algorithms such as CSP, which create 

spatial filters to maximize variance between classes and isolate brain activity from specific 

regions. Although this method enhances the signal-to-noise ratio for decoding task-relevant EEG 

patterns, it is limited by its reliance on assumptions about EEG sources and scalp potential 

distributions, which are not fully data-driven.  
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SBLEST is a novel EEG decoding algorithm employing a low-rank weight matrix within a 

sparse Bayesian learning framework12, which simultaneously optimizes spatio-temporal filters 

and prediction models. The SBLEST prediction model can be represented by the equation: 𝑦! =

𝑡𝑟[𝑊𝑅!] + 𝜖, where 𝑊 is a symmetric weight matrix decomposable into spatial filters and 

regression weights, and 𝑅! is the covariance matrix of the EEG data and enhanced by trace 

normalization, whitening, and logarithm transform. The optimal model hyperparameters can be 

automatically estimated under a Bayesian framework based on all available training data without 

the need for cross-validation. This algorithm has shown superior performance, compared to 

contemporary methods, including deep learning approaches, on revealing meaningful 

neurophysiological patterns in five motor imagery datasets and one emotion recognition 

dataset12. Thus, we chose this model to predict treatment outcome and identify the underlying 

brain activity associated with the outcome. To leverage multiple EEG oscillations after itEMD 

decomposition, we modified SBLEST (Figure 1) to jointly learn spatio-temporal patterns from 

various oscillations, creating a multiband brain signature for robustly predicting rTMS treatment 

outcome. We constructed a block diagonal matrix using the enhanced (trace normalization, 

whitening, and logarithm transform) covariance matrices of different oscillations: the oscillation 

closest to beta (IMF-Beta), the oscillation closest to alpha (IMF-Alpha), and the residual 

oscillation after subtracting both oscillations from the original signals. We focused on IMF-Beta 

and IMF-Alpha based on previous literature showing statistical correlations between treatment 

outcome and alpha and beta oscillations26,27,28,29,35. The residue accounts for any remaining 

oscillations or signal components that might also be important in treatment outcome prediction. 

This approach assumes that the alpha, beta, and residual oscillations are independent of each 

other. The weight matrix 𝑊 learned by the SBLEST model can be decomposed to generate 
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spatial maps for different oscillations, providing a comprehensive view of the brain activity 

associated with treatment outcome.  

 

Figure 1. Illustration of the proposed EMD-SBL model for treatment outcome prediction and 
brain signature identification. The preprocessed EEG data was first decomposed using itEMD 
into multiple oscillation components: IMF-Beta, and IMF-Alpha, Residue (Original signal with 
IMF-Beta and IMF-Alpha subtracted). For each component, we calculated the covariance matrix 
and enhanced it using trace normalization, whitening, and logarithm transform. These matrices 
are combined to form a block diagonal matrix, which serves as the input for the SBLEST model. 

 

Model Evaluation 

To reliably evaluate the machine learning models, we performed 10 repetitions of 10-fold cross-

validation. During training, the training set was further augmented using the time reversal 

strategy30. The prediction model was evaluated by first taking the mean of the predicted value for 

each subject across all repetitions of the cross-validation. Then, we proceeded by calculating the 

Pearson's correlation coefficient (r) and r-squared value (R2) between the predicted pre- minus 

post-treatment BDI change and the actual change. 
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Data Availability 

The TDBRAIN data is publicly available through: https://brainclinics.com/resources/. 
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Supplementary Figure 1. In blue, BDI score change distribution after patients with MDD 

received 10 Hz rTMS at the left DLPFC (Protocol 1 N=44). In orange, BDI score change 

distribution after patients with MDD received 1 Hz rTMS at the right DLPFC (Protocol 2 N=73). 
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Supplementary Figure 2. FFT of IMF2, IMF1, and the Residue for Protocol 1 at electrode F3 

for each subject. From visual inspection, IMF2 is nearest to the canonical alpha band while IMF1 

is closest to the canonical beta band. The Residue signal resulting from subtracting IMF2 and 

IMF1 from the original signal contains mostly delta and some theta peaks as expected.   

 

Supplementary Figure 3. FFT of IMF2, IMF1, and the Residue for Protocol 2 at electrode F3 

for each subject. Similar to Protocol 1, from visual inspection, IMF2 is nearest to the canonical 

alpha band while IMF1 is closest to the canonical beta band. The Residue signal resulting from 

subtracting IMF2 and IMF1 from the original signal contains mostly delta and some theta peaks 

as expected.   
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Supplementary Table 1 | Prediction Model Comparison Protocol 1 

Prediction of treatment outcome specific to Protocol 1 using various methods. For EMD-SBL we 
use IMF1, IMF2, and the residue signal of the EEG. Note that IMF1 and IMF2 typically was 
inside the Beta and Alpha frequency bands for this dataset. For SBLEST + Band filtering, we 
replace IMF1 and IMF2 with the original signal bandpass filtered at 13-40 Hz and 8-13 Hz 
respectively. Only EMD-SBL achieved a significant (p<0.05) Pearson’s r value. 

Model 

 

PEARSON’S CORRELATION 

COEFFICIENT (R) 

p 

SBLEST -0.00160 0.992 

SBLEST w/ Bandpass 0.0199 0.898 

Ridge Regression w/ itEMD 0.166 0.280 

EMD-SBL 0.401 0.00705 

Supplementary Table 2 | Prediction Model Comparison Protocol 2 

Prediction of treatment outcome specific to Protocol 2 using various methods. For EMD-SBL we 
use IMF1, IMF2, and the residue signal of the EEG. Note that IMF1 and IMF2 typically was 
inside the Beta and Alpha frequency bands for this dataset. For SBLEST + Band filtering, we 
replace IMF1 and IMF2 with the original signal bandpass filtered at 13-40 Hz and 8-13 Hz 
respectively. Only EMD-SBL achieved a significant (p<0.05) Pearson’s r value. 

Model 

 

PEARSON’S CORRELATION 

COEFFICIENT (R) 

p 

SBLEST 0.121 0.309 

SBLEST w/ Bandpass 0.151 0.201 

Ridge Regression w/ itEMD 0.159 0.179 

EMD-SBL 0.255 0.0292 
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Supplementary Table 3 | Prediction Model Comparison Eyes Closed vs Eyes 
open 

Prediction of treatment outcome for both Protocol 1 and Protocol 2 using eyes-open or eyes-
closed rsEEG. EMD-SBL with IMF1, IMF2, and the residue signal of the EEG was used for both 
rsEEG cases. Both modalities were validated using 10 run 10-fold cross validation.  

rTMS 
Protocol Eyes- Open Eyes- Closed 

Protocol 1 Pearson's r = 0.401, p = 0.00705 Pearson's r = -0.194, p = 0.235 

Protocol 2 Pearson's r = 0.255, p = 0.0292 Pearson's r = 0.188, p = 0.161 
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