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SUMMARY

Correlation between blood-oxygen-level-dependent (BOLD) and cerebral blood flow (CBF) has been used
as an index of neurovascular coupling. Hippocampal BOLD-CBF correlation is associated with neurocog-
nition, and the reduced correlation is associated with neuropsychiatric disorders. We conducted the first
genome-wide association study of the hippocampal BOLD-CBF correlation in 4,832 Chinese Han subjects.
The hippocampal BOLD-CBF correlation had an estimated heritability of 16.2–23.9% and showed reliable
genome-wide significant association with a locus at 3q28, in which many variants have been linked to neu-
roimaging and cerebrospinal fluid markers of Alzheimer’s disease. Gene-based association analyses
showed four significant genes (GMNC, CRTC2, DENND4B, and GATAD2B) and revealed enrichment for
mast cell calcium mobilization, microglial cell proliferation, and ubiquitin-related proteolysis pathways
that regulate different cellular components of the neurovascular unit. This is the first unbiased identifica-
tion of the association of hippocampal BOLD-CBF correlation, providing fresh insights into the genetic ar-
chitecture of hippocampal neurovascular coupling.

INTRODUCTION

About a half million of studies have applied the blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to

investigate brain function in healthy individuals and patients with neuropsychiatric disorders. BOLD-fMRI depends on the neurobiological

mechanism of neurovascular coupling (NVC) whereby local cerebral blood flow (CBF) rapidly increases following regional neural activity.1,2
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NVC depends on the concerted action of cellular components of neurovascular unit (NVU), including neurons and astrocytes from brain pa-

renchyma, as well as pericytes, smoothmuscle cells and endothelial cells from blood vessels.3 NVC is a critical mechanism for any brain struc-

ture to maintain its normal function and neurovascular uncoupling has been associated with neuropsychiatric disorders, such as Alzheimer’s

disease (AD), stroke, and autism spectrum disorder.4,5

With in vivo brainmagnetic resonance imaging (MRI) techniques, BOLD-CBF correlation has been used as a proxy to reflect NVC. Regional

BOLD-CBF correlation varies across individuals and is correlated with age, sex, and executive function.6 In addition, alterations in regional

BOLD-CBF correlations have been observed in many neuropsychiatric disorders, such as AD,7 schizophrenia,8 subcortical ischemic vascular

disease,9 and generalized anxiety disorder.10 These results indicate that BOLD-CBF correlation may be an individual trait, however, there are

still lacking genome-wide association studies (GWASs) on regional BOLD-CBF correlation.

The hippocampus is critically important for human memory, navigation, and other cognitive functions,11,12 and is implicated in common

brain disorders, such as AD and schizophrenia.13,14 A unique ability of the hippocampus is to generate new neurons throughout life and neu-

rogenesis is regulated by the hippocampal NVC.15 The newborn neurons can be integrated into the existing neural circuitry of cognitive con-

trol, and their dysfunction has been associated with cognitive impairments and dementia.16 The hippocampus shows much lower NVC than

neocortical regions due tomicrovascular differences, which could explain why the hippocampus ismore vulnerable than other regions in brain

disorders with reduced energy supply.17 For instance, the hippocampal NVC reduction is considered as a potential biomarker of AD18,19; the

peak latency of the hemodynamic response function (HRF-PL) of hippocampus is associated with stress response and risk for depression20;

and hippocampal BOLD-CBF correlation is altered in patients with schizophrenia6 and diabetesmellitus.21 Considering the critical role of the

hippocampal NVC, there is an urgent need to investigate the genetic architecture of the hippocampal BOLD-CBF correlation.

In this study, we conducted the first GWAS on the hippocampal BOLD-CBF correlation in 4,832 Chinese Han participants from the Chinese

Imaging Genetics (CHIMGEN) cohort.22 Here, the across-voxel correlation between reginal homogeneity (ReHo) derived from the resting-

state fMRI data and CBF measured by the arterial spin labeling (ASL) MRI data within hippocampal voxels was used as a proxy to represent

hippocampal NVC. The study design is illustrated in Figure S1.

RESULTS

Subjects

This study included 4,832 Chinese Han healthy young subjects with qualified genomic, resting-state fMRI, and ASL data from 17 centers of the

CHIMGEN study. Since the scanner effect which was variability caused by MRI data acquired by different scanners is a major bias in multi-

center neuroimaging studies causing reduced reliability of neuroimaging measurements,23 we divided subjects into the discovery and repli-

cation samples based on the types ofMRI scanners.Of the 4,832 subjects, 4,406 subjects (2,778 females; age: 23.6G 2.4 years) were defined as

the discovery sample since their MRI data were acquired by the same type (GE Discovery MR750) of scanners with the same scanning param-

eters, in which the bias from the scanner effect was expected to be small. We defined other 426 subjects (283 females; age: 24.0G 2.4 years)

whose MRI data were acquired by different types of scanners as the replication sample. The mixed replication sample can test whether the

discovered results are applicable forMRI data acquired by different types ofMRI scanners. The demographic data of the included subjects are

shown in Table S1 and the distribution of these subjects across centers is presented in Table S2.

Hippocampal blood-oxygen-level-dependent-cerebral blood flow correlation calculation

In the main analysis, the hippocampal BOLD-CBF correlation of each subject was measured by ReHo-CBF correlation, the across-voxel cor-

relation coefficient between ReHo and CBF, in bilateral hippocampal voxels defined by the automated anatomical atlas (AAL)24 in the stan-

dard space. Here, ReHo was used to measure spontaneous neuronal activity and was calculated based the preprocessed fMRI data without

global signal regression (GSR). The distribution of the average ReHo-CBF correlations across AAL regions are presented in Figure S2,

revealing that ReHo-CBF correlation was disparate in different brain region and was consistent with previous study.6 Since MRI data were

acquired from different scanners, we used the Combat approach25 with sex and age as covariates to alleviate the scanner effects on these

brain imaging measures and found that Combat harmonization could reduce between-scanner variations of hippocampal ReHo and CBF

(Figure S3). After harmonization, the age, sex, and site explained 0.038% (b = �0.019, p = 0.18), 1.14% (b = �0.13, p = 1.43 3 10�13), and

0.11% (b = �0.033, p = 0.021) variance of ReHo-CBF correlation, respectively. The calculation process of the hippocampal BOLD-CBF corre-

lation is illustrated in Figure 1.

Since there is no standard pipeline to calculate the hippocampal NVCbased onMRI data, we also used other four approaches to compute

the measure to verify our main findings in these analyses. To test the impact of the selection of fMRI measure to represent spontaneous

neuronal activity, we also used the amplitude of low-frequency fluctuation (ALFF) of BOLD signals and fractional ALFF (fALFF) to represent

spontaneous neuronal activity and defined the hippocampal BOLD-CBF correlation as ALFF-CBF correlation and fALFF-CBF correlation. To

test the impact of selecting brain atlas to extract the hippocampal voxels, we also extracted the hippocampal voxels from the Brainnetome

atlas (BNA)26 and recalculated the hippocampal ReHo-CBF correlation. To test the impact of GSR during the fMRI data preprocessing, we

regressed out global BOLD signals and recalculated ReHo-CBF correlation (ReHo-CBF-GSR). The hippocampal BOLD-CBF correlations esti-

mated by the five methods were highly correlated (r values ranged from 0.84 to 0.98) (Figure S4). We also tested the intra-class correlation

coefficients (ICC) of thesemeasures based onMRI data from eight participants who receivedMR scans at two different time points. We found

that the ICC was 0.914 (p = 0.015), 0.986 (p = 0.0029), and 0.973 (p = 0.007) for the ReHo-CBF, ALFF-CBF, and fALFF-CBF correlations,

respectively.
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In 100 subjects randomly selected from the discovery sample, we also tested the associations of ReHo-CBF correlation with the previously

proposed resting-state fMRI NVC markers,27 three shape parameters of the hemodynamic response function (HRF) including the response

height (RH), time to peak (TTP), and full width at half maximum (FWHM). Across AAL regions, the correlations of ReHo-CBF coupling with

the three shape parameters showed broad distributions (Figure S5), ranged from �0.62 to 0.68 for RH, from �0.37 to 0.25 for TTP, and

from�0.34 to 0.25 for FWHM, indicating that the relations between ReHo-CBF coupling and HRF shape parameters are different across brain

regions. For the bilateral hippocampal region, we found correlations of the ReHo-CBF coupling with TTP (r = �0.47, p = 6.07 3 10�7) and

FWHM (r = �0.28, p = 4.4 3 10�4), but not with RH (r = �0.17, p = 0.097), indicating that ReHo-CBF coupling is partially associated with

the latency and duration of HRF. In the 4,832 subjects, we also tested the correlation of the ReHo-CBF coupling with the absolute and relative

volumes for the bilateral hippocampi and found that the ReHo-CBF coupling was not correlated with the absolute hippocampal volume

(r = �0.0016, p > 0.05) but showed a weak correlation with relative hippocampal volume (r = 0.052, p = 3.22 3 10�4).

Heritability of the hippocampal blood-oxygen-level-dependent-cerebral blood flow correlation

We used the GREML-LDMSmethod28 to estimate the single-nucleotide polymorphism (SNP) heritability (h2) for the hippocampal BOLD-CBF

correlation in the 4,832 unrelated individuals. In these subjects, the imputed 6,830,145 autosomal variants explained 20.7% (standard error

(s.e.) = 7.6%) of the variance for the hippocampal BOLD-CBF correlation and the SNP heritability was significantly different from zero at

the nominal 5% significance level (p = 6.663 10�3). When we used other four approaches to calculate the hippocampal BOLD-CBF correla-

tion, the estimated h2 values (16.2–23.9%, p = 0.001–0.024) for the hippocampal BOLD-CBF correlation were still significant (Table S3).

Genome-wide association studies of the hippocampal reginal homogeneity-cerebral blood flow correlation

A two-stage GWAS was conducted to find genetic associations with the hippocampal ReHo-CBF correlation, while controlling for age, age,2

sex, age3 sex, age2 3 sex, fMRI frame-wise displacement (FD), and the first ten genetic principal components. We used genome-wide sig-

nificance (p < 53 10�8) as the discovery criterion and nominal significance (p < 0.05) as the replication criterion due to the small sample size. In

the discovery stage (n = 4,406), we found two genome-wide significant loci associated with the hippocampal ReHo-CBF correlation with an

inflation factor (lGC) of 1.005 indicating the well control of population substructure. One locus was at 3q28 with a lead SNP of rs13323015

(p = 4.82 3 10�8) and the other locus was at 12p11.22 with a lead SNP of rs10843101 (p = 5.25 3 10�9). In the replication stage (n = 426),

the association of rs13323015 with the hippocampal ReHo-CBF correlation was replicated (consistent direction, p = 5.793 10�3), but we failed

to replicate the association of rs10843101 with the hippocampal ReHo-CBF correlation (beta values in the same direction, p = 0.396). It was

likely because limited sample size in the replication stage was difficult to have enough power to replicate the result, but it was found that

association with lead SNP rs10843101 had the same direction of beta value, which was suggestive. We also conducted a GWASmeta-analysis

to make full use of the available data to generate GWAS results for the gene-based association and enrichment analyses. We found that the

Figure 1. Calculation of the hippocampal BOLD-CBF correlation representing neurovascular coupling

(A–D) For each subject, the voxel-wise CBFmap is calculated fromASL data and the voxel-wise ReHomap is computed from resting-state fMRI data without GSR.

After ComBat harmonization, the harmonized CBF and ReHo maps are used to calculate the hippocampal BOLD-CBF correlation. The hippocampal voxels are

extracted from the AAL and the hippocampal NVC is measured by BOLD-CBF correlation defined as the across-voxel correlation coefficient between ReHo and

CBF in all hippocampal voxels. The hippocampal NVC is also calculated by other four approaches: (A) using ALFF to measure spontaneous neuronal activity;

(B) using fALFF to measure spontaneous neuronal activity; (C) conducting GSR during the fMRI data preprocessing; (D) using the BNA to extract the

hippocampal voxels. Abbreviations: AAL, automated anatomical atlas; ALFF, amplitude of low-frequency fluctuation; ASL, arterial spin labeling; BOLD,

blood-oxygen-level-dependent; BNA, Brainnetome atlas; CBF, cerebral blood flow; fALFF, fractional ALFF; fMRI, functional magnetic resonance imaging;

GSR, global signal regression; NVC, neurovascular coupling; ReHo, regional homogeneity.
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two loci identified in the discovery stage also showed genome-wide significant associations (p = 1.793 10�9 for the lead SNP rs13323015 at

3q28 and p = 5.65 3 10�9 for the lead SNP rs10843101 at 12p11.22) (Table S4) with the hippocampal ReHo-CBF correlation and quantile–

quantile plots did not indicate genomic inflation (lGC = 1.003) (Figure 2).

Robustness of genome-wide association studies results

We also used other four approaches to calculate hippocampal BOLD-CBF correlation of these subjects and re-performed two-stage

GWASs with the same covariates as the main analysis to confirm GWAS findings of the hippocampal ReHo-CBF correlation. In all the

four analyses, the genome-wide significant association between rs13323015 at 3q28 and hippocampal BOLD-CBF correlation was

confirmed in the discovery stage (n = 4,406; p = 1.40–4.25 3 10�8), replication stage (n = 426; consistent direction of effects,

p = 0.0025–0.0094), and meta-analysis of the two stages (n = 4,832; p = 5.34–8.04 3 10�10) (Table S4). However, the association between

rs10843101 at 12p11.22 and hippocampal BOLD-CBF correlation was not confirmed in the analyses (discovery stage: p = 0.50–1.87 3 10�7,

Figure 2. Genome-wide significant associations for the hippocampal BOLD-CBF correlation

(A) Manhattan plots show genome-wide significant associations (red line: p = 5 3 10�8) in the discovery stage for the hippocampal BOLD-CBF correlation

measured by five methods. Each point represents a single genetic variant plotted according to its genomic position (x axis) and its -log10(P) value for the

association (y axis).

(B) The comparisons of the hippocampal BOLD-CBF correlation among the genotypic groups of the lead variant (rs13323015 at 3q28) in replication stage and the

y axis means the residuals of normalized hippocampal BOLD-CBF correlation while controlling for covariates used in genome-wide associations.

(C) Manhattan plots show genome-wide significant associations (red line: p = 5 3 10�8) in the meta-analysis for the hippocampal BOLD-CBF correlation

measured by the five methods. Abbreviations: ALFF, amplitude of low-frequency fluctuation; BOLD, blood-oxygen-level-dependent; BNA, Brainnetome

atlas; CBF, cerebral blood flow; CHR, chromosome; fALFF, fractional ALFF; GSR, global signal regression; NVC, neurovascular coupling; ReHo, regional

homogeneity.
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replication stage: p = 0.28–0.75, meta-analysis: p = 0.41–3.30 3 10�7, Table S4). Although a few lead SNPs at 12p11.22 showed genome-

wide significant association (p < 5 3 10�8) with hippocampal BOLD-CBF correlation in the discovery stage and/or meta-analysis, none of

the tested associations was confirmed in the replication stage (all p > 0.05) (Table S5). Moreover, none of other SNPs outside the two loci

reached genome-wide significant (p < 5 3 10�8) in any of these four GWASs (Figure 2). QQ-plots of the four GWASs showed good control

of population substructure in both discovery and meta-analysis (lGC = 0.997–1.016, Figure S6). These results indicate that the association of

3q28 with hippocampal BOLD-CBF correlation is reproducible and the association of 12p11.22 with hippocampal BOLD-CBF correlation

needs to be further confirmed in larger samples. We also used the CompCor approach29 to remove white matter (WM) and cerebrospinal

fluid (CSF) signals and then recalculated the ReHo maps, based on which we recalculated hippocampal ReHo-CBF correlation. We found

significant correlation (r = 0.95, p < 0.001) between ReHo-CBF correlations in the hippocampal voxels derived from the two fMRI prepro-

cessing approaches. We also re-performed GWAS in the 4,832 participants and found the same two loci with same lead SNPs of

rs13081641 (b = 0.139, p = 1.16 3 10�9) and rs11049363 (b = 0.1952, p = 9.06 3 10�9, Figure S7). In addition, we used the same steps

to conduct GWAS for the ReHo-CBF correlation of the bilateral precentral gyri defined by the AAL atlas in the 4,832 participants, however,

we did not find any significant association at p < 5 3 10�8 (Figure S8). Compared with previous GWASs of the bilateral hippocampal vol-

ume,30,31 there was not overlapping SNP between hippocampal ReHo-CBF correlation and hippocampal volume in mono-ancestry, but we

found an overlapping SNP rs14474594 (3:190642839:A:G) in 3q28 near to GMNC (hippocampal ReHo-CBF correlation: b = 0.13, p = 2.34 3

10�8; right hippocampal volume: b = 0.038, p = 2.18 3 10�8; left hippocampal volume: b = 0.042, p = 5.04 3 10�10) between hippocampal

ReHo-CBF correlation and bilateral hippocampal volume in cross-ancestry.30

Single- and multi-trait genome-wide association studies

In the 4,832 subjects, we also conducted GWAS for the hippocampal CBF and ReHo, respectively. Although we failed to identify genome-

wide significant association for hippocampal ReHo (Figure S9A), we found a significant locus at 3q28 (rs78054167: b = �0.14, p = 1.38 3

10�9) for hippocampal CBF (Figure S9B). However, the effect was in the opposite direction compared to that for the ReHo-CBF correlation.

We used three multivariate methods to conduct genetic association analyses by integrating the three neuroimaging phenotypes. Although

the multi-trait analysis of GWAS (MTAG)32 failed to find any significant genome-wide associations at p < 53 10�8 (Figure S9C), both CGWAS

and MinGWAS33 replicated our results (rs74712405 at 3q28: p = 2.26 3 10�10 in CGWAS, p = 3.20 3 10�9 in MinGWAS and rs11049363 at

12p11.22: p = 2.81 3 10�8 in CGWAS, p = 1.16 3 10�8 in MinGWAS, Figure S9D) but failed to find any new genetic associations.

Functional annotation for genome-wide association studies significant loci

In the main GWAS meta-analysis (ReHo-CBF), we found 183 genome-wide significant SNPs (p < 5.0 3 10�8) at 3q28 (lead SNP: rs74712405)

and 12p11.22 (lead SNP: rs11049363) (Table S6; Figure S10). Most of the 152 genome-wide significant SNPs at 3q28 were mapped to an

intergenic region between GMNC (Geminin Coiled-Coil Domain Containing) and OSTN (Osteocrin), of which 21 significant SNPs at 3q28

were associated with the expression of GMNC in the hippocampus from the Braineac dataset (p = 0.03–0.045, Table S7) and GMNC is an

essential gene for neurogenesis after birth.34 A portion of significant SNPs at 3q28 have been associated with neuroimaging markers (e.g.,

hippocampal CA1-body volume, fornix microstructure, and ventricle volume) and biomarkers (e.g., cerebrospinal P-tau level) of AD. The 31

significant SNPs of the suggestive locus (12p11.22) were mostly in the intergenic region between PTHLH (Parathyroid Hormone Like Hor-

mone) and CCDC91 (Coiled-Coil Domain Containing 91) and partly in the intronic region of CCDC91. Several SNPs have been associated

with cortical surface area and thickness (Table S6). The HaploReg database showed that rs28380759 in strong linkage disequilibrium (LD)

(r2 = 0.81) with significant SNP rs10843111 was overlapped with the H3K4me3 promoter peaks in the hippocampus, indicative of transcrip-

tionally active. Furthermore, rs10843111 was associated with the expression of CCDC91 in the hippocampus (p = 9.23 3 10�16). Therefore,

our results indicate a potential role of GMNC and CCDC91 in regulating hippocampal ReHo-CBF correlation, however, further confirma-

tion is needed.

Gene-based association analysis of the hippocampal blood-oxygen-level-dependent-cerebral blood flow correlation

We performed gene-based association analysis to identify genes associated with the hippocampal ReHo-CBF correlation in the 4,832 sub-

jects and a Bonferroni method was used to adjust for the number of genes (n = 18,000) with a significant threshold of p = 2.78 3 10�6. We

found that GMNC was the most significant gene associated with the hippocampal ReHo-CBF correlation (p = 4.65 3 10�11). Moreover, six

additional genes including CRTC2 (CREB Regulated Transcription Coactivator 2), DENND4B (DENN Domain Containing 4B), CREB3L4

(CAMP Responsive Element Binding Protein 3 Like 4),GATAD2B (GATA Zinc Finger Domain Containing 2B), SLC39A1 (Solute Carrier Family

39 Member 1) on chromosome 1, and IL43 (Interleukin 34) on chromosome 16, were also significantly associated with the hippocampal ReHo-

CBF correlation (p < 2.78 3 10�6). Based on the hippocampal BOLD-CBF correlation obtained from four additional methods, we re-per-

formed gene-based association analyses with the same covariates and confirmed four genes that were consistently significant (p < 2.78 3

10�6) in these robustness analyses, including GMNC, CRTC2, DENND4B, and GATAD2B (Figure 3; Table S8).

Enrichment analyses

To gain more biological insight of the hippocampal BOLD-CBF correlation, we performed a series of enrichment analyses based on the main

(ReHo-CBF) gene-based association results (18, 000 background genes). The tibial artery (p = 0.0029), coronary artery (p = 0.0031), and aorta
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artery (p = 0.0096) were the top-ranked three items in the tissue-specific enrichment analysis (Figure 4A), of which only tibial artery was

confirmed in all the four robustness analyses (p < 0.05, Table S9). The radial glia-like cells (RGCs) in the subventricular zone (SVZ-RGCs,

p = 0.0035), RGCs in the dentate gyrus (DG-RGCs, p = 0.0261), and oligodendrocytes (p = 0.0306) showed nominally significant enrichment

in the cell-specific enrichment analysis (Figure 4B), of which DG-RGCs were also nominally significant (p = 0.0066–0.0484) in three robustness

analyses (Table S10). In the pathway enrichment analysis, we found five pathways with significant enrichment (p < 4.88 3 10�6, Bonferroni

correction for the 10,226 pathways), including the pathways of the role of LAT2/NTAL/LAB on calcium mobilization, the negative regulation

of activity of TFAP2 (AP-2) family of transcription factors, the microglial cell proliferation, the endosomal sorting complex required for trans-

port (ESCRT) system, and the ubiquitin dependent protein catabolic process via the multivesicular body sorting pathway (Figure 4C;

Table S11). Of these pathways, the LAT2/NTAL/LAB on calciummobilization, microglial cell proliferation, and ESCRT system were confirmed

in all robustness analyses (p < 0.05). In addition, we found 38 pathways with nominal significance (p < 0.05) in all the five pathway enrichment

analyses (Table S12).

Figure 3. Genes associated with the hippocampal BOLD-CBF correlation in gene-based association analyses

Manhattan (left) and quantile-quantile (QQ) (right) plots show genes with significant associations with the hippocampal BOLD-CBF correlation in the gene-based

association analyses. The red line indicates a Bonferroni-corrected threshold (p = 2.78 3 10�6) for gene-based analysis. Abbreviations: ALFF, amplitude of low-

frequency fluctuation; BOLD, blood-oxygen-level-dependent; BNA, Brainnetome atlas; CBF, cerebral blood flow; CHR, chromosome; fALFF, fractional ALFF;

GSR, global signal regression; NVC, neurovascular coupling; ReHo, regional homogeneity.
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DISCUSSION

This is the first GWAS to explore the genetic architecture of hippocampal BOLD-CBF correlation with an estimated heritability of 16.2–23.9%.

We identified two genome-wide significant loci (3q28 and 12p11.22) associated with hippocampal BOLD-CBF correlation in 4,406 Chinese

Han healthy individuals, of which the 3q28 was replicated in an independent sample of 426 subjects and confirmed by all the four robustness

analyses. In gene-based association analyses, we discovered and confirmed four genes (GMNC,DENND4B,CRTC2, andGATAD2B) showing

consistent associations with hippocampal BOLD-CBF correlation. The related genes enriched for vasculature, DG-RGCs, and biological path-

ways associated with calcium mobilization, microglial cell proliferation, and ESCRT system. These findings provide novel biological insight

into the individual differences in hippocampal BOLD-CBF correlation.

The most important finding of this study was the discovery of a reliable association between the locus at 3q28 with the lead SNP of

rs74712405 and the hippocampal BOLD-CBF correlation. Several significant SNPs in the locus have been associated with the biomarkers

(such as cerebrospinal fluid P-tau level) and neuroimagingmarkers (e.g., cortical thickness and surface area, hippocampal and ventricular vol-

umes, and white matter integrity) of AD.35–45 For example, rs150434736 has been associated with the hippocampal CA1 volume38; and

rs150434736, rs141962260 and rs12727448 were associated with the white matter microstructure in the fornix38 that is the major output fibers

of the hippocampus and the fractional anisotropy reduction in the fornix is an important feature of AD, even at an early stage of the disorder.46

In terms of genes, we provided converging evidence for the association of GMNC with the hippocampal NVC, including significant SNPs at

3q28 were around GMNC; significant SNPs at 3q28 were associated with GMNC expression in the hippocampal tissue; and GMNC showed

the strongest correlation with the hippocampal BOLD-CBF correlation in gene-based association analysis.GMNC also calledGEMC1 encode

Figure 4. Enrichment analyses for genes associated with hippocampal BOLD-CBF correlation

(A) The top five tissue types enriched by genes associated with hippocampal BOLD-CBF correlation assessed by ReHo-CBF correlation (main analysis) and their

significance in the robustness analyses. The y axis shows -log10(P) values, the x axis shows tissue types, the bar colors represent tissue types, and the red line

means nominally significant threshold (p < 0.05).

(B) The top five cell types enriched by genes associated with hippocampal BOLD-CBF correlation (ReHo-CBF correlation) and their significance in the robustness

analyses. The y axis shows -log10(P) values, the x axis shows cell types, and the same color represents same cell type. The red line means nominally significant

threshold (p < 0.05).

(C) The top five pathways enriched by genes associated with hippocampal BOLD-CBF correlation (ReHo-CBF correlation) and their significance in the robustness

analyses. The y axis represents -log10(P) values in pathway-specific enrichment analyses, and the x axis shows different pathways with different color bar. The red

line means nominally significant threshold (p < 0.05). Abbreviations: ALFF, amplitude of low-frequency fluctuation; BOLD, blood-oxygen-level-dependent; BNA,

Brainnetome atlas; CBF, cerebral blood flow; DG, dentate gyrus; fALFF, fractional ALFF; GSR, global signal regression; NVC, neurovascular coupling; ReHo,

regional homogeneity; RGCs, radial glia-like cells; SVZ, subventricular zone.
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Geminin coiled-coil domain-containing protein 1, which is essential for DNA replication47 and regulates the balance between neural stem cell

generation and ependymal cell differentiation in the postnatal brain.34 We also found a suggestive locus at 12p11.22, which was mapped to

CCDC91. CCDC91 encoding p56, an accessory protein of the Golgi associated, g-adaptin ear containing, Arf binding proteins (GGAs), is

involved in transportation from Golgi to lysosome48 and regulates the delivery of lysosomal enzymes in large neurons such as the hippocam-

pal pyramidal neurons.49

In gene-based association analysis, we additionally identified three genes (CRTC2, DENND4B, GATAD2B) consistently associated with

hippocampal BOLD-CBF correlation in all the five analyses.DENND4B is a GDP-GTP exchange factor (GEF) targeting to a tubular membrane

compartment adjacent to the Golgi and activating RAB1050 and RABGTPases control membrane transport in neurons and astrocytes and are

associated with cognitive functions and brain disorders including AD.51GATAD2B encodes a protein involved in chromatin modification and

transcription regulation, which is required in neurons for normal cognitive performance and synapse development.52CRTC2 encodes amem-

ber of the family of the cAMP-response element binding (CREB)-regulated transcription coactivators (CRTC), and the cAMP pathway can sta-

bilize endothelial barrier and maintain vascular physiology. CRTC2 was highly expressed in endothelial cells and related to angiogenesis

acting as a protective molecule for the integrity of endothelium under ischemic condition.53

The significant enrichment of genes associated with the hippocampal BOLD-CBF correlation for vascular tissue may reflect that NVC is

regulated by vascular component of the NVU. The significant enrichment for RGCs in subventricular zone and dentate gyrus, the only two

regions with neurogenesis in adult brain,54 indicates that the adulthood neurogenesis may be regulated by hippocampal BOLD-CBF corre-

lation. We also identified three biological pathways associated with the genetic regulation of the hippocampal BOLD-CBF correlation in both

main and robustness analyses. For example, the association of the hippocampal BOLD-CBF correlation with the regulatory pathway of mast

cell calcium mobilization is consistent with the blood flow regulation of mast cells by releasing vasoactive substance55 and the preferential

location of mast cells in mature vessels surrounding by astrocytes,56 two core components of the NVU. Microglial and endothelial cells are

bidirectionally and permanently communicated with each other and excessive microglia response impairs endothelial cells, neurons, and as-

trocytes in the pathogenesis of many neurological disorders including AD,57 supporting the link of the hippocampal NVC to themicroglial cell

proliferation. The ubiquitin-proteasome system of intracellular proteolysis is central to the regulation of cellular homeostasis including neu-

rons, astrocytes, endothelial cells, all of which are the main components of the NVU. These mechanisms may underlie the associations of this

system with brain functions (such as memory) and disorders (such as AD).58,59

In conclusion, this study identified one reliable locus (3q28) and four reliable genes (GMNC, CRTC2, DENND4B, and GATAD2B) associ-

ated with hippocampal BOLD-CBF correlation. Enrichment analyses indicate that the hippocampal BOLD-CBF correlation is regulated by

several biological processes such as calcium mobilization by mast cells, ubiquitin-related proteolysis, and microglial cell proliferation, which

impact the NVU components of neurons, astrocytes, and endothelial cells separately or in combination. These findings may improve our un-

derstanding of the genetic architecture underlying the hippocampal BOLD-CBF correlation and provide potential therapeutic targets for

brain disorders with severe neurovascular uncoupling.

Limitation of the study

There are several limitations that should be mentioned in this study. First, there are lacking putative neuroimaging markers for in vivo assess-

ment of NVC, although several proxies of NVC have been used previously.27 The large variation between BOLD-CBF correlation and HRF

shape parameters across brain regions further indicate that these neuroimaging markers may reflect different aspects of NVC. Second,

although we conducted internal validation and sensitivity analyses, we cannot conduct external validation due to the lack of qualified neuro-

imaging datasets. Third, the sample size used in this study was small and only has power to detect common variants with very strong

associations.
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M. (2009). Assessment of the increase in
variability when combining volumetric data
from different scanners. Hum. Brain Mapp.
30, 355–368. https://doi.org/10.1002/hbm.
20511.

24. Rolls, E.T., Joliot, M., and Tzourio-Mazoyer,
N. (2015). Implementation of a new
parcellation of the orbitofrontal cortex in the
automated anatomical labeling atlas.
Neuroimage 122, 1–5. https://doi.org/10.
1016/j.neuroimage.2015.07.075.

25. Fortin, J.P., Cullen, N., Sheline, Y.I., Taylor,
W.D., Aselcioglu, I., Cook, P.A., Adams, P.,
Cooper, C., Fava, M., McGrath, P.J., et al.
(2018). Harmonization of cortical thickness
measurements across scanners and sites.
Neuroimage 167, 104–120. https://doi.org/
10.1016/j.neuroimage.2017.11.024.

26. Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J.,
Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A.R.,
et al. (2016). TheHuman Brainnetome Atlas: A
New Brain Atlas Based on Connectional
Architecture. Cereb. Cortex 26, 3508–3526.
https://doi.org/10.1093/cercor/bhw157.

27. Wu, G.R., Colenbier, N., Van Den Bossche, S.,
Clauw, K., Johri, A., Tandon, M., and
Marinazzo, D. (2021). rsHRF: A toolbox for
resting-state HRF estimation and
deconvolution. Neuroimage 244, 118591.
https://doi.org/10.1016/j.neuroimage.2021.
118591.

28. Yang, J., Bakshi, A., Zhu, Z., Hemani, G.,
Vinkhuyzen, A.A.E., Lee, S.H., Robinson, M.R.,
Perry, J.R.B., Nolte, I.M., van Vliet-
Ostaptchouk, J.V., et al. (2015). Genetic
variance estimation with imputed variants
finds negligible missing heritability for human
height and body mass index. Nat. Genet. 47,
1114–1120. https://doi.org/10.1038/ng.3390.

29. Behzadi, Y., Restom, K., Liau, J., and Liu, T.T.
(2007). A component based noise correction
method (CompCor) for BOLD and perfusion
based fMRI. Neuroimage 37, 90–101. https://
doi.org/10.1016/j.neuroimage.2007.04.042.

30. Liu, N., Zhang, L., Tian, T., Cheng, J., Zhang,
B., Qiu, S., Geng, Z., Cui, G., Zhang, Q., Liao,
W., et al. (2023). Cross-ancestry genome-wide
association meta-analyses of hippocampal
and subfield volumes. Nat. Genet. 55, 1126–
1137. https://doi.org/10.1038/s41588-023-
01425-8.

31. Hibar, D.P., Adams, H.H.H., Jahanshad, N.,
Chauhan, G., Stein, J.L., Hofer, E., Renteria,
M.E., Bis, J.C., Arias-Vasquez, A., Ikram, M.K.,
et al. (2017). Novel genetic loci associated
with hippocampal volume. Nat. Commun. 8,
13624. https://doi.org/10.1038/
ncomms13624.

32. Turley, P., Walters, R.K., Maghzian, O.,
Okbay, A., Lee, J.J., Fontana, M.A., Nguyen-
Viet, T.A., Wedow, R., Zacher, M., Furlotte,
N.A., et al. (2018). Multi-trait analysis of
genome-wide association summary statistics
using MTAG. Nat. Genet. 50, 229–237.
https://doi.org/10.1038/s41588-017-0009-4.

33. Xiong, Z., Gao, X., Chen, Y., Feng, Z., Pan, S.,
Lu, H., Uitterlinden, A.G., Nijsten, T., Ikram,
A., Rivadeneira, F., et al. (2022). Combining
genome-wide association studies highlight
novel loci involved in human facial variation.
Nat. Commun. 13, 7832. https://doi.org/10.
1038/s41467-022-35328-9.

34. Lalioti, M.E., Kaplani, K., Lokka, G.,
Georgomanolis, T., Kyrousi, C., Dong, W.,
Dunbar, A., Parlapani, E., Damianidou, E.,
Spassky, N., et al. (2019). GemC1 is a critical
switch for neural stem cell generation in the
postnatal brain. Glia 67, 2360–2373. https://
doi.org/10.1002/glia.23690.

35. van der Meer, D., Frei, O., Kaufmann, T.,
Shadrin, A.A., Devor, A., Smeland, O.B.,
Thompson, W.K., Fan, C.C., Holland, D.,
Westlye, L.T., et al. (2020). Understanding the
genetic determinants of the brain with
MOSTest. Nat. Commun. 11, 3512. https://
doi.org/10.1038/s41467-020-17368-1.

36. Vojinovic, D., Adams, H.H., Jian, X., Yang, Q.,
Smith, A.V., Bis, J.C., Teumer, A., Scholz, M.,
Armstrong, N.J., Hofer, E., et al. (2018).
Genome-wide association study of 23,500
individuals identifies 7 loci associated with
brain ventricular volume. Nat. Commun. 9,
3945. https://doi.org/10.1038/s41467-018-
06234-w.

37. Zhao, B., Luo, T., Li, T., Li, Y., Zhang, J., Shan,
Y., Wang, X., Yang, L., Zhou, F., Zhu, Z., et al.
(2019). Genome-wide association analysis of
19,629 individuals identifies variants
influencing regional brain volumes and
refines their genetic co-architecture with
cognitive and mental health traits. Nat.
Genet. 51, 1637–1644. https://doi.org/10.
1038/s41588-019-0516-6.

38. Smith, S.M., Douaud, G., Chen, W., Hanayik,
T., Alfaro-Almagro, F., Sharp, K., and Elliott,
L.T. (2021). An expanded set of genome-wide
association studies of brain imaging
phenotypes in UK Biobank. Nat. Neurosci. 24,
737–745. https://doi.org/10.1038/s41593-
021-00826-4.

39. Zhao, B., Zhang, J., Ibrahim, J.G., Luo, T.,
Santelli, R.C., Li, Y., Li, T., Shan, Y., Zhu, Z.,
Zhou, F., et al. (2021). Large-scale GWAS
reveals genetic architecture of brain white
matter microstructure and genetic overlap
with cognitive and mental health traits (n =
17,706). Mol. Psychiatry 26, 3943–3955.
https://doi.org/10.1038/s41380-019-0569-z.
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Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Chunshui Yu

(chunshuiyu@tmu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The raw brain imaging and genotype data are available from the authors upon reasonable request and with permissions of the

CHIMGEN consortia. The raw brain imaging and genotype data reported in this study cannot be deposited in a public repository

because the local raw. To request access, the raw data was available with the permission of the CHIMGEN consortia by contact with

lead contact. In addition, the GWAS summary for hippocampal BOLD-CBF correlation have been deposited at https://doi.org/10.

6084/m9.figshare.23551605.v1 and is publicly available as of the date of publication.

� This paper does not report original code. We made use of publicly available software and tools in this study. All relevant software and

code are described in the text and can be found at the URLs or references cited.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study reports the results of a GWAS conducted on 48,32 Chinese Han subjects. The procedure including recruitment and quality control

of data are described in themethoddetails section. The demographic characteristics are reported in Table S1. The study was approved by the

Ethics Committee of each site, and all participants signed the written informed consent.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

GWAS Summary statistics This study https://doi.org/10.6084/m9.figshare.23551605.v1

Individual level genotype,

imputed markers and MRI data

The CHIMGEN study http://chimgen.tmu.edu.cn/

Software and algorithms

Matlab 2017b Mathworks https://login.mathworks.com/embedded-login/

landing.html?cid=getmatlab&s_tid=gn_getml

R 4.1.3 R Foundation https://cran.r-project.org/bin/linux/

Python 3.11.0 Python Software Foundation https://www.python.org/

rsHRF Matlab toolbox Wu et al.27 https://github.com/compneuro-da/rsHRF

GCTA-LDMS Yang et al.28 https://yanglab.westlake.edu.cn/software/gcta/

#GREMLinWGSorimputeddata

PLINK v2.0 Chang et al.60 https://www.cog-genomics.org/plink/2.0/

METAL Willer et al.61 http://csg.sph.umich.edu/abecasis/Metal/

LocusZoom Pruim et al.62 http://locuszoom.org/

ANNOVAR Wang et al.63 https://annovar.openbioinformatics.org/en/latest/

MTAG Turley et al.32 https://github.com/JonJala/mtag

CGWAS Xiong et al.33 https://github.com/TianTTL/CGWAS

MAGMA v1.09 de Leeuw et al.64 https://ctg.cncr.nl/software/magma
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METHOD DETAILS

Subjects

All subjects were recruited from the CHIMGEN study, which has collected genomic and neuroimaging data from 7,306 healthy Chinese Han

individuals aged 18 to 30 from 32 centers in 21 cities.22 The protocols of the CHIMGEN study were approved by the ethics committee of each

site, and written informed consent was obtained from each subject. The inclusion and exclusion criteria of the CHIMGEN subjects are pro-

vided in Table S13. After excluding subjects without qualified genomic and neuroimaging (ASL and fMRI) data, 4,832 subjects from 17

research centers were finally included in this study.

Genotyping and imputation

Subjects were genotyped on the Illumina Infinium ASA-750K (Asian Screening Array). We excluded SNPs with a call rate <95% or minor allele

frequency (MAF) < 0.001 and SNPs significantly deviated from Hardy-Weinberg equilibrium (p < 1 3 10�6). We excluded subjects with gen-

otyping call rate <97%, excess heterozygosity (> meanG5 standard deviations), or sex mismatch, and duplicated or related subjects (identity

by decent >0.1875) with lower genotyping call rate. Principal component analysis (PCA) was used to evaluate genetic population substructure.

Subjects with significant deviation from the population was removed and the top 10 principal components (PCs) were used as the covariate in

the GWASs. After these quality control procedures, a total of 7,163 subjects and 549,309 variants (Figure S11) were included in imputation.

Pre-phasing was performed using SHAPEIT65 in chunks of 5000 kb with 250 kb overlap between chunks. Genotype imputation of autosomal

SNPs was conducted with the IMPUTE266 with a merged panel of the 1000 Genomes Project (1KGP)67 and the SG10K project.68 After

excluding variants with MAF <0.01 and information score (info) < 0.9, 6,830,145 autosomal SNPs were finally included in the GWASs.

Imaging data acquisition

All MRI data used in this study were acquired by three types of 3.0-Tesla MRI scanners (GE Discovery MR750, GE Discovery MR750w, and GE

Signa HDxt). Foam padding was used tominimize headmotion and earplugs were used to reduce scanner noise. All subjects were instructed

to keep eyes closed, to move as little as possible, and to stay awake during scanning. The resting-state fMRI data were acquired using a

gradient-echo single-short echo planar imaging sequence and were used to assess spontaneous neuronal activity; the resting-sate ASL

data were acquired using a three-dimensional pseudo-continuous ASL sequence with a spiral fast spin-echo acquisition and were used to

assess regional CBF; and the three-dimensional T1-weighted imaging (T1WI) data were acquired by a brain volume sequence and were

used for estimating parameters for spatial normalization and calculating hippocampal volume. The specificMRI scanning parameters are pro-

vided Tables S14–S16.

Estimating parameters for spatial normalization

CAT12 (version r1364, http://dbm.neuro.uni-jena.de/cat) was used to preprocess T1WI images to estimate spatial normalization parameters.

After the image inhomogeneity correction, we segmented the images into graymatter (GM), WM and CSF based on an adaptiveMaximumA

Posterior technique.69 With SPM12 (http://www.fil.ion.ucl.ac.uk/spm), the Diffeomorphic Anatomical Registration Through Exponentiated Lie

Algebra (DARTEL) algorithm70 was applied to create the population-specific tissue probability templates for GM, WM, and CSF in the Mon-

treal Neurological Institute (MNI) space based on the 5,743CHIMGENparticipants. The segmented T1WI imageswere spatially normalized to

the population-specific templates using the DARTEL algorithm and were resampled into a cubic voxel of 1.5 mm. The estimated transforma-

tion parameters were also used for spatial normalization of fMRI and ASL images. Modulation was performed on the normalized GM images

to preserve the absolute GM volume (GMV), from which we calculated the bilateral hippocampal volume defined by the AAL template.

CBF calculation

The ASL sequence can simultaneously generate the CBF, ASL, and proton density (PD) images. Since the signal to noise ratio (SNR) and

contrast of CBF images were too low to perform skull stripping and spatial normalization, we generated the merged images to estimate

the spatial normalization parameters of the CBF images. Based on the ASL images with good contrast but poor SNR and the PD images

with good SNR but poor contrast, wemerged the two sets of images to obtain a set of merged images with both high SNR and contrast using

the following equation: merged images = (ASL images 3 PD images)/the mean value of all voxels in the ASL images. The merged images

were just used to improve spatial normalization. Specifically, non-brain tissues in the merged images were stripped using the brain extraction

tool. Individual skull-stripped images were aligned to the T1WI images using a boundary-based registration (BBR) function71 and then were

non-linearly normalized to theMNI space with the parameters estimated for T1WI images. Based on deformation parameter derived from the

merged images, the CBF images of each subject were written into theMNI space and resampled to 3-mm isotropic voxels, and then spatially

smoothed with a Gaussian kernel of 6-mm FWHM.

fMRI data preprocessing and metric calculation

The SPM12was used to preprocess the fMRI data. The first 5 volumes of each subject were discarded to avoid unstable signals. The remaining

volumes were corrected for the acquisition time delay between slices so that the collection times of all voxels were consistent within a repe-

tition time. Then, we checked the headmotion of each subject to ensure that it met the requirement (translation < 2mmand rotation < 2�) and
realignment was performed to correct for head motion by rigid body transformation. The same method for the normalization of the CBF
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images from the individual space to the MNI space was used to normalize fMRI images into the MNI space and the normalized images were

resampled to 3-mm isotropic voxels. We calculated frame-wise displacement (FD) indexing volume-to-volume changes in head position. For

each volume with FD > 0.5 mm, we defined this volume and one forward and two backward volumes as the imperfect volumes. We regressed

out nuisance covariates including the average fMRI signals of WM (90% probability) and CSF (70% probability) defined by default masks in

SPM12, 24 head motion parameters, imperfect volumes and linear trend of volumes. Finally, the fMRI data were band-pass filtered using a

frequency range of 0.01 to 0.08 Hz. Since there are different signal sources in WM and CSF that cannot be reflected by themean fMRI signals,

we also used the CompCor approach29 to estimate the first 10 principal components of the combinedmask ofWMand CSF, which were used

to replace the mean fMRI signals of WM and CSF in the regression of nuisance covariates.

From the preprocessed fMRI data, we calculated threemetrics (ReHo, ALFF, and fALFF) to assess spontaneous neuronal activity. ReHowas

defined as the Kendall’s coefficient of concordance (KCC) of the fMRI time series of this voxel with its nearest 26 voxels within the GMmask72

ALFF was defined as the average square root of power spectrum in a low-frequency range (0.01–0.08 Hz),73 and fALFF was the ratio of power

spectrum of low-frequency to that of the entire frequency range to reduce the noise.74 A 6-mm FWHM Gaussian kernel was used to smooth

these maps. All preprocessing details are provided in Table S17.

Quality assessment for spatial normalization

Since distortion and signal wipeouts of the CBF and fMRI images may affect the quality of spatial normalization, we provided the following

proof for proper preprocessing. First, we showed the T1WI, merged, and fMRI images (Figure S12) of a randomly selected subject to confirm

that image quality was acceptable for spatial normalization. For this subject, we also showed successful co-registration of the merged and

fMRI images with T1WI images (Figure S12). Second, we presented the segmented group-averaged GM images of 100 subjects and the

6th generation DARTEL template in MNI space (Figure S13), which indicates that segmentation and spatial normalization were successful.

Third, we provided an overlay display of the group-averaged GM images with the bilateral hippocampal mask in MNI space (Figure S14),

indicating good match in the hippocampi between the normalized images and the masks. Finally, we provided a parallel display for the

group-averaged spatially normalized T1WI, CBF, and fMRI images (Figure S15) of the subjects, indicating satisfactory spatial normalization

of CBF and fMRI images.

Calculation of hippocampal BOLD-CBF correlation

After reslicing the 1-mm3 AALmask24 of the hippocampus into a 3-mm3 hippocampalmask by the function of ‘‘reslice’’ in SPM12, we obtained

a hippocampalmask of 552 voxels inMNI space. Before calculating hippocampal BOLD-CBF correlation, we usedCombat25 to harmonize the

CBF, ReHo, ALFF and fALFF images that were calculated based on MRI data acquired by different scanners while adding age and sex as co-

variates to protect the variance of these two biological indicators. The harmonized CBF, ReHo, ALFF and fALFF images of each subject were

normalized into z-scores to make them comparable across subjects. The hippocampal BOLD-CBF correlation was defined as the voxel-wise

spatial correlation of ReHo, ALFF, and fALFF with CBF in this subject, which reflects the voxel-level consistency between spontaneous

neuronal activity and blood flow in the hippocampus during rest. A rank-based inverse normal transformation was applied to these coupling

measures. In this study, the ReHo-CBF correlation was used for discovery and the ALFF-CBF and fALFF-CBF correlations were used for robust-

ness analyses. We also calculated ReHo-CBF correlation in each AAL region for the 4,832 participants. After removing WM and CSF signals

with the CompCor approach,29 we recalculated ReHo and hippocampal ReHo-CBF correlation. Pearson correlation was then used to test the

consistency of hippocampal ReHo-CBF correlation calculated by the different approaches of nuisance regress. In eight participants with MRI

data acquired at two different time points, we also calculated these coupling measures (ReHo-CBF, ALFF-CBF, and fALFF-CBF) and

computed the intra-class correlation coefficient (ICC) of each measure. In the 4,832 subjects, we also tested the correlation of the ReHo-

CBF correlation with the absolute and relative volumes for the bilateral hippocampi calculated by FreeSurfer v7.0 (https://surfer.nmr.mgh.

harvard.edu/) using Pearson correlation.

Calculation of HRF shape parameters

Tomake comparison, we also calculated three shape parameters of the hemodynamic response function (HRF) including the response height

(RH), time to peak (TTP), and full width at half maximum (FWHM) for 100 subjects randomly selected from the discovery sample. For each

subject, the rsHRF toolbox27 was used to calculate the three HRF shape parameters of each AAL region. We then calculated the Pearson cor-

relation between ReHo-CBF correlation and HRF shape parameters in each brain region across the 100 subjects. Similarly, we also calculated

and tested the correlation between ReHo-CBF correlation and HRF shape parameters in the bilateral hippocampal region.

QUANTIFICATION AND STATISTICAL ANALYSIS

Heritability of hippocampal BOLD-CBF correlation

Based on the 6,830,145 autosomal SNPs, we estimated the SNP heritability of the hippocampal BOLD-CBF correlation in 4,832 subjects with

the GREML-LDMS method.28 The covariates used in the SNP heritability estimation were the same as those used in the GWAS, including the

age, sex, age,2 age3 sex, age2 3 sex, first ten PCs, and FD. The SNP heritability estimation was conducted for the hippocampal BOLD-CBF

correlation measures derived from all five approaches.
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GWAS design and statistical methods

For the 6,830,145 autosomal SNPs, a two-stage GWAS was designed to explore genetic associations of the hippocampal ReHo-CBF cor-

relation. The discovery and replication samples included 4,606 and 426 subjects, respectively. In each GWAS, linear regression with an

additive model was conducted to investigate the association between the dosage of each variant and each imaging phenotype by Plink260

with age, sex, age,2 age 3 sex, age2 3 sex, first ten PCs, and FD as covariates. In the discovery stage, genome-wide significance was

defined as p < 5 3 10�8. In the replication stage, we replicated each genome-wide significant SNP identified in the discovery stage

with a threshold of p < 0.05. Finally, we combined the GWAS results of the two samples by fixed-effects inverse-variance weighted

meta-analysis using METAL.61 In this study, significant SNPs were defined as those met the following two criteria: p < 5 3 10�8 in the dis-

covery sample and p < 0.05 in the replication sample with the same direction of the effect. Details about genetic associations were pre-

sented using regional plots generated by LocusZoom.62 We compared GWAS results on ReHo-CBF correlation with previous GWASs on

the bilateral hippocampal volume30,31 to find overlapping SNP, which was in the same position and had the same alleles, meanwhile was

significant in both GWASs (p < 5 3 10�8) because of the difference LD structure among different ancestry.

Robustness analyses by variation of the NVC phenotype

Four robustness analyses were conducted to confirm the identified genome-wide significant associations for hippocampal BOLD-CBF cor-

relation assessed by the ReHo-CBF correlation. Since we don’t know which fMRI measure is the best indicator for regional spontaneous

neuronal activity, we also used other two fMRI measures (ALFF and fALFF) to reflect regional spontaneous neuronal activity and calculated

ALFF-CBF and fALFF-CBF correlations to represent hippocampal BOLD-CBF correlation and re-performed GWASs to verify the main results.

Since the spatial range of the hippocampus is slightly varied in different brain atlases, we also extracted the hippocampal voxels based on

another atlas (BNA)26 and recalculated hippocampal ReHo-CBF correlation and re-performed GWASs. Since the GSR during preprocessing

is matter of debate in the field of resting-state fMRI data analyses,75 we also regressed out global signals during fMRI data preprocessing and

recalculate ReHo and ReHo-CBF correlations and re-performed GWASs. Based on the hippocampal ReHo-CBF correlation calculated from

fMRI data preprocessed by the CompCor approach,29 we re-performed GWAS in the 4,832 participants. In addition, we also conducted

GWAS for the ReHo-CBF correlation of the bilateral precentral gyri in the 4,832 participants.

Single- and multi-trait GWASs

In the 4,832 subjects, we also conductedGWAS for the hippocampalmeanCBF andmean ReHo, respectively. Moreover, we used threemulti-

variate methods (MTAG,32 CGWAS and MinGWAS33) to conduct genetic association analyses by integrating the three phenotypes (ReHo,

CBF, and ReHo-CBF correlation). The significance threshold and covariates were the same as the GWAS for ReHo-CBF correlation.

Functional annotations

To characterize variants’ functions, significant SNPs were annotated by Variant Effect Predictor (https://www.ensembl.org/info/docs/tools/

vep/index.html) and ANNOVAR.63 HaploReg v476 and RegulomeDB77 were used to assess chromatin state and functional motifs of variants

in LD (r2 R 0.8 in EAS of 1KGP3) with the lead SNPs. We also searched the roles of the identified significant SNPs as expression quantitative

trait loci from the QTLbase78 and checked their relations with brain gene expression in the Braineac database (http://www.braineac.org/).

Gene-based association analysis and enrichment analyses

Translation of the genome-wide association signals of SNPs into genes contributes to the identification of biological pathways and functional

mechanisms of complex human traits. Therefore, we conducted gene-based association analysis based on the meta-analysis results by the

MAGMA1.09.64We assigned genetic variants to protein-coding genes based on their positions according to theNCBI 37.3 (hg19) build. After

excluding SNPs in the major histocompatibility complex (MHC), 18,000 genes containing at least one qualified genetic variant were included

gene-based association analysis. Themultiple testingwas adjusted for the number of genes (n = 18,000) with a Bonferroni corrected threshold

of p = 2.783 10�6. Andwe also performed robustness analyses with additional four hippocampal BOLD-CBF phenotypes to confirm themain

results. Next, all the 18000 genes for the gene-based association analysis were included in tissue-specific and cell-specific enrichment ana-

lyses. In tissue-specific enrichment analysis, gene expression profiles of 54 different types of tissues were derived from GTEx v8.79 The cell-

specific enrichment analysis was conducted based on the gene expression data of 39 cell types.80,81 Pathway enrichment involved in 10,226

pathways derived from the KEGG, REACTOME, BIOCARTA and GO Terms pathway-gene data (downloaded via the Molecular Signatures

Database 7.4, http://www.gsea-msigdb.org/gsea). These enrichment analyses also conducted for four additional hippocampal BOLD-CBF

correlations to test the reliability of these results.
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