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Abstract: Pulmonary hypertension (PH) is a fatal disease—even with state-of-the-art medical treat-
ment. Non-invasive clinical tools for risk stratification are still lacking. The aim of this study was to
investigate the clinical utility of heart rhythm complexity in risk stratification for PH patients. We
prospectively enrolled 54 PH patients, including 20 high-risk patients (group A; defined as WHO
functional class IV or class III with severely compromised hemodynamics), and 34 low-risk patients
(group B). Both linear and non-linear heart rate variability (HRV) variables, including detrended
fluctuation analysis (DFA) and multiscale entropy (MSE), were analyzed. In linear and non-linear
HRV analysis, low frequency and high frequency ratio, DFAα1, MSE slope 5, scale 5, and area 6–20
were significantly lower in group A. Among all HRV variables, MSE scale 5 (AUC: 0.758) had the best
predictive power to discriminate the two groups. In multivariable analysis, MSE scale 5 (p = 0.010)
was the only significantly predictor of severe PH in all HRV variables. In conclusion, the patients
with severe PH had worse heart rhythm complexity. MSE parameters, especially scale 5, can help to
identify high-risk PH patients.

Keywords: pulmonary hypertension; heart rate variability; non-linear analysis; detrended fluctuation
analysis; multiscale entropy

1. Introduction

Pulmonary hypertension (PH) is a progressive, complex, and fatal disease. It involves
heterogenous etiologies and different mechanisms [1], and eventually leads to right heart
failure. The mortality of PH patients is high even after contemporary treatment [2]; however,
timely and intensive management can improve outcomes even in high-risk patients. In
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addition, the dynamic adjustment of PH medications, based on disease status during follow-
up, also plays an important role in PH management [3–5]. Therefore, a useful tool for PH
risk stratification is urgently needed to guide PH treatment. Several prognostic factors of
PH have been verified, including sex, exercise tolerance, right heart hemodynamics, and
functional performance [6–8], and they have been applied in different prediction models.

In 2015, the European Society of Cardiology (ESC)/European Respiratory Society (ERS)
PH guidelines first proposed a dynamic PH risk assessment tool, including a combination
of imaging, biologic, hemodynamic, performance status, and clinical conditions [1]. This
tool has shown good survival prediction between different risk groups [9,10]; however, it
requires right heart hemodynamic measurements, which are invasive and difficult to apply
for continuous monitoring of PH severity in clinical practice. Therefore, in this study, we
propose a non-invasive and convenient tool for PH risk assessment derived from heart rate
variability (HRV), namely, heart rhythm complexity analysis.

Heart rhythm complexity analyzes the complexity of changes in heart rate using
non-linear methods, and it has been shown to have better predictive value for the diagnosis
of PH and heart failure outcomes [11–13] than traditional HRV linear analysis [14]. In our
previous study, we found that heart rhythm complexity was decreased in PH patients, and
that it was useful to differentiate PH patients from normal populations [13]. However,
whether heart rhythm complexity is useful in the risk stratification of PH patients is
unknown. Therefore, we designed this study to investigate the clinical application of heart
rhythm complexity in the risk stratification of PH patients.

2. Materials and Methods
2.1. Patients

We prospectively enrolled 54 Taiwanese patients with PH from a single center, includ-
ing 35 with pulmonary arterial hypertension (PAH) and 19 with chronic thromboembolic
pulmonary hypertension (CTEPH) from May 2012 to April 2018. Based on the ESC guide-
lines [1], the diagnosis of PH was made when the patient had suspicious clinical symptoms,
and with mean pulmonary arterial pressure (mPAP) no less than 25 mmHg in right heart
catheterization. The World Health Organization (WHO) recognizes five groups of PH,
categorized by etiology or comorbidity. The PAH was in the WHO group 1 and CTEPH was
in the WHO group 4. The diagnosis of WHO group 1 was made when the pulmonary artery
wedge pressure (PAWP) less than 15 mmHg, and pulmonary vascular resistance (PVR)
more than 3 Wood Units, and without the evidence of left heart disease. The diagnosis of
WHO group 4 was made when the ventilation-perfusion lung scintigraphy showed filling
defects in PH patients with the same hemodynamics criteria in right heart catheterization
as in PAH. PAH and CTEPH have similar pathophysiological mechanisms as vascular
arteriopathy [15], presenting as elevated pre-capillary vessel pressure and pulmonary
vascular resistance [16]. Other types of PH may involve complex disease mechanisms,
such as lung disease or heart failure, which may result in patient heterogeneity, and were
excluded from this study. Therefore, we only enrolled these two PH subgroups in the
present study to avoid the confounding influence of other pathophysiologies.

All patients underwent echocardiography, blood sampling, right heart catheterization,
and 24-h ambulatory electrocardiogram Holter recording. A full record of medical history
of each patient was documented, including dyslipidemia, diabetes mellitus, hypertension,
and coronary artery disease. The prescription of PH specific medication was recorded
as well. The diagnosis of PH was confirmed by right heart catheterization, based on the
ESC guidelines [1]. Parameters, including mPAP, PAWP, right atrial pressure, cardiac
output, and cardiac index, were all recorded during right heart catheterization. Blood
sampling was obtained during the right heart catheterization. We tested N-terminal pro-
brain natriuretic peptide (NT-proBNP), hemoglobin, and creatinine. Both echocardiogram
and Holter recordings were performed 2 months before or after right heart catheterization.
A six-minute-walk-distance (6MWD) test was recorded 3 months before or after right heart
catheterization if the patient was tolerable.
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The patients were divided into two groups based on PH severity [17]. The high-
risk group was defined as (1) WHO functional class IV or (2) WHO functional class III
with severely compromised hemodynamics (right atrial pressure: Pra > 15 mmHg or
cardiac index < 2.0 L·min−1·m2). PH patients in WHO functional class I to II and in WHO
functional class III without severely compromised hemodynamics were in the low-risk
group [18,19]. There were 20 patients in the high-risk group (group A) and 34 patients in
the low-risk group (group B).

This study was approved by the Institutional Review Board of National Taiwan
University Hospital (approval numbers NTUH REC No. 201003042R), and all subjects
provided written informed consent. All research was performed in accordance with
relevant guidelines and regulations. Reporting of this study followed the Strengthening
the Reporting of Observational Studies in Epidemiology statement [20].

2.2. Echocardiogram

All patients underwent typical transthoracic echocardiography (iE33 x MATRIX
Echocardiography System, Philips, Amsterdam, Netherlands). According to the recom-
mendations of the American Society of Echocardiography, tricuspid regurgitation pressure
gradient (TRPG) was measured as the peak flow velocity of tricuspid regurgitation (TRV)
using a simplified Bernoulli equation: TRPG = 4 × TRV2. Left ventricular ejection fraction
in M-mode was measured in the parasternal long axis view [21]. The presence of pericardial
effusion or not was documented as well.

2.3. 24-h Holter Recording and Data Processing

All patients received 24-h ambulatory electrocardiogram Holter recording (Zymed
DigiTrak Plus 24-Hour Holter Monitor Recorder and DigiTrak XT Holter Recorder 24-Hour,
Philips, Amsterdam, Netherlands) and maintained their original daily activity during the
examination without specific limitations. The data were automatically processed using an
algorithm and then checked by two technicians. The adopted length of RR Intervals for both
linear and non-linear HRV analysis was 4-h and the following criteria was met: (1) between
9 a.m. and 6 p.m.; (2) patients were in awake status; and (3) without sudden increases in
heart rate of more than 40 bpm within 1 min to avoid the potential influences of sleep and
strong physical activities for both linear and nonlinear analysis, while maintaining enough
time length for nonlinear analysis. HRV parameters were processed automatically with
MATLAB software.

Nonstationarity can significantly compromise the results of complexity analysis es-
pecially for the arrhythmias [22]. We identified the QRS complexes by implementing an
adaptive threshold, based on the concept of order-statistic filter, which can be effective for
wide ranges and variations of heart rate [23]. Then, the detected QRS peaks were visually
inspected to avoid automatic misdetections, and the arrhythmic beats, such as atrial pre-
mature contractions, and ventricular premature contractions were removed and replaced
by the estimated RR using cubic spline interpolation. Only the RR intervals segments with
less than 5% removal were used in this study. In addition, to avoid an unwanted effect of
external nonstationarity, we used the empirical mode decomposition method to de-trend
the RR series for the oscillation longer than 1 h [24].

2.4. Linear HRV Analysis

The interpolated normal-to-normal RR intervals were further used to calculate conven-
tional linear HRV based on the recommendations of the North American Society of Pacing
Electrophysiology and the European Society of Cardiology [25]. We analyzed time domain
and frequency domain parameters. Time domain analysis included mean RR interval
(mean RR), standard deviation of RR interval (SDRR), percentage of absolute differences in
normal RR intervals greater than 20 ms (pNN20), and percentage of absolute differences in
normal RR intervals greater than 50 ms (pNN50), representing autonomic nervous system
modulation of heart rhythm. The RR intervals were first linearly interpolated at 4 Hz and
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fast Fourier transform was carried out on the resampled signals. The summation of the
power over a different frequency band, including high frequency, (HF, 0.15–0.4 Hz), low
frequency (LF, 0.04–0.15 Hz), and very low frequency (VLF, 0.003–0.04 Hz), were calculated
as the frequency domain parameters.

2.5. Non-Linear HRV Analysis

For non-linear HRV analysis, we applied the multiscale entropy (MSE) and detrended
fluctuation analysis (DFA) to quantify the fractal properties of the signals, such as long-
term memory effect and information richness over different time-scales. DFA was used
to quantify the correlation property of inter-beat interval dynamics in the time series,
while eliminating the external nonstationarity by removing the linear-fitted trends in a
different time-scale (box-size) [26]. Initially, the average of the normal-to-normal intervals
was removed. The resultant signal was then integrated and then divided into segments
of equal samples n. The fluctuation F(n) of the signal in the corresponding time-scale n
was calculated by the root-mean-square of the integrated signal after removing the fitted
trends in the segments. The procedure was then repeated in a different time-scale from a
small box-size (e.g., n = 4) to a large box-size (e.g., n = 100). On a double log graph of F(n)
and the corresponding box-size (n), the slope of the line was defined as the α exponent,
representing the fractal correlation property of the time series. Both short-range (α1: 4–11
beats) and long-range time scales (α2: 11–64 beats) were calculated [27].

MSE analysis is used to measure the complexity of the finite length time series. Com-
pared to a traditional single scale, entropy estimation only measures the degree of regularity
on a single time scale; MSE uses “coarse graining” proceeding multiple time scales and
provides information richness over different time-scales as the complexity of the system.
To estimate entropy, we calculated sample entropy (SampEn) for each coarse-grained time
series, and then plotted this as a function of the scale factor. To quantify the complexity of
the heartbeat dynamics, in short and long time scales, we calculated the entropy values of
scale 5 (scale 5), the linear-fitted slope of scale 1–5 (slope 5), area under the MSE curve for
scale 1–5 (area 1–5), and area under the MSE curve for scale 6–20 (area 6–20) [28].

2.6. Statistical Analysis

Continuous variables were expressed as mean ± standard deviation for normally
distributed variables, and median (interquartile range, 25th and 75th percentiles) for non-
normally distributed variables. Categorical variables were expressed as absolute and
relative frequencies (percentage). Comparisons were made using the independent t-test
and the Mann–Whitney U test between two groups. The chi-square test or Fisher’s exact
test was used to examine differences between proportions. The discrimination abilities of
HRV parameters to high-risk PH were assessed using the receiver operating characteristic
(ROC) curve analysis. Logistic regression analysis was used to assess associations between
variables and high-risk PH. Significant determinants in univariable logistic regression
analysis (p < 0.05), including creatinine, PAH group 1, serum creatinine level, plasma
NT-proBNP level, mPAP, PVR, LF/HF ratio, DFAα1, slope 1–5, MSE scale 5, and area 6–20,
were then tested in multivariable logistic regression analysis with stepwise selection to
identify independent factors that could predict high-risk PH. Category-free (continuous)
net reclassification improvement (NRI) and integrated discrimination improvement (IDI),
were used to evaluate improvements in the accuracy of the prediction after adding a single
nonlinear parameter into a model using only linear parameters. NRI is equal to the sum
of the increasing probability for survivors and decreasing probability for non-survivors
subtracted by the decreasing probability and increasing probability for non-survivors
after adopting the updated model. IDI is defined as the average improvement of survival
probability for all patients after adopting the updated model [29,30]. The significance
of NRI and IDI statistics was based on approximate normal distributions. All statistical
analyses were performed using R software 4.0.3 (http://www.r-project.org, accessed on

http://www.r-project.org
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10 October 2020) and SPSS version 25 for Windows (SPSS Inc., Chicago, IL, USA). The
significance level was set at 0.05 (p < 0.05).

3. Results
3.1. Patient Characteristics

The clinical, echocardiographic, and hemodynamic variables of the enrolled patients
are listed in Table 1. There were 20 patients in the high-risk group (group A) and 34 patients
in the low-risk group (group B).

Table 1. Clinical Data of the patients.

High-Risk Group
(N = 20)

Low-Risk Group
(N = 34) p Value

Age (years) 43.80 ± 10.70 45.76 ± 11.34 0.533
Male, n (%) 9 (45%) 12 (35%) 0.480

BMI (kg·m−2) 22.09 ± 3.85 24.21 ± 4.41 0.081
CAD, n (%) 1 (5%) 1 (3%) 1.000
DM, n (%) 2 (10%) 3 (9%) 1.000

HTN, n (%) 1 (5%) 5 (15%) 0.395
Dyslipidemia, n (%) 1 (5%) 3 (9%) 1.000

PAH (WHO group 1) 17 (85%) 18 (53%) 0.017
Hemoglobin (g/dL) 13.72 ± 3.15 13.52 ± 3.76 0.835
Creatinine (mg/dL) 1.15 ± 0.67 0.76 ± 0.26 0.024

Log NT-proBNP 3.34 ± 0.54 2.52 ± 0.54 <0.001
NT-proBNP (ng/dL) 1510 (959~6428) 292 (116~1045) <0.001

LVEF (%) 68.55 ± 9.46 68.62 ± 10.07 0.977
TRPG (mmHg) 93.31 ± 31.8 64.67 ± 28.10 0.001

Pericardial effusion, n (%) 7 (35%) 1 (3%) 0.003
6MWD (m) 298.31 ± 128.00 367.42 ± 120.32 0.074

mPAP (mmHg) 58.11 ± 15.46 47.44 ± 15.27 0.021
PVR (Wood Units) 13.63 ± 6.00 8.24 ± 4.23 0.002

CO (L·min−1) 3.71 ± 1.59 4.45 ± 1.30 0.081
CI (L·min−1·m2) 2.26 ± 0.97 2.75 ± 0.86 0.069
PAWP (mmHg) 14.00 ± 4.23 12.09 ± 3.69 0.097

PAH specific medication

Sildenafil, n (%) 8 (40%) 15 (44%) 0.768
Macitentan, n (%) 3 (15%) 1 (3%) 0.138
Riociguat, n (%) 0 (0%) 6 (18%) 0.074
Bosentan, n (%) 2 (10%) 2 (6%) 0.622
Iloprost, n (%) 4 (20%) 1 (3%) 0.057

Epoprostenol, n (%) 1 (5%) 1 (3%) 1.000

Abbreviation: BMI, body mass index; CAD, coronary artery disease; DM, diabetes mellitus; HTN, hypertension;
PAH, pulmonary arterial hypertension; NT-proBNP, N-terminal Pro-Brain Natriuretic Peptide; LVEF, left ventric-
ular ejection fraction; TRPG, tricuspid regurgitation pressure gradient; 6MWD, 6-min-walk-distance; mPAP, mean
pulmonary artery pressure; PVR, pulmonary vascular resistance; CO, cardiac output; CI, cardiac index; PAWP,
pulmonary arterial wedge pressure.

Compared to group B, there were significantly more patients in group A, in WHO
group 1, who had pericardial effusion. In addition, group A had higher levels of serum
creatinine and NT-proBNP, and higher TRPG than group B. In pulmonary hemodynamic
studies, PVR, and mPAP were significantly higher in group A. The PAH specific medication
was listed in Table 1.

3.2. Predictors of Interest: HRV Analysis

In linear HRV analysis, group A had significantly lower LF/HF ratio compared to
group B. Other linear parameters were comparable between the two groups (Table 2). In
non-linear HRV analysis, group A had significantly lower DFAα1, slope 1–5, scale 5 and
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area 6–20 compared to group B (Table 2). The entropies over different time scales in group
A and group B were shown in Figure 1.

Table 2. Holter parameters of the patients.

High-Risk Group
(N = 20)

Low-Risk Group
(N = 34) p Value

Time Domain Analysis

Mean RR (ms) 684.03 (605.77~795.63) 748.63 (678.30~805.53) 0.203
SDRR (ms) 57.14 (43.84~65.88) 64.42 (54.37~87.43) 0.162
pNN20 (%) 19.17 (9.20~26.67) 20.86 (13.94~36.88) 0.463
pNN50 (%) 3.47 (0.32~12.32) 2.21 (0.77~6.64) 0.667

Frequency Domain Analysis

VLF (ms−2) 172.56 (46.43~543.01) 384.16 (169.56~604.98) 0.062
LF (ms−2) 64.99 (19.52~140.02) 98.00 (38.11~174.58) 0.333
HF (ms−2) 42.28 (12.81~227.52) 36.46 (15.94~125.03) 0.629

LF/HF ratio 1.06 (0.56~2.17) 2.14 (1.03~3.61) 0.026

Detrended fluctuation analysis

DFAα1 0.92 (0.56~1.05) 1.04 (0.89~1.23) 0.028
DFAα2 1.12 (1.01~1.19) 1.11 (1.03~1.17) 0.900

Multiscale entropy

Slope 1–5 −0.008 (−0.075~0.039) 0.04 (−0.03~0.07) 0.038
Scale 5 1.01 (0.73~1.14) 1.22 (1.06~1.36) 0.002

Area 1–5 3.30 (2.94~4.44) 4.18 (3.26~4.89) 0.135
Area 6–20 15.94 (12.48~18.40) 18.89 (15.16~20.91) 0.004

Abbreviation: Mean RR, mean RR interval; SDRR, standard deviation of RR interval; pNN20, percentage of
absolute differences in normal RR intervals greater than 20 ms; pNN50, percentage of absolute differences in
normal RR intervals greater than 50 ms; VLF, very low frequency; LF, low frequency; HF, high frequency; DFA,
detrended fluctuation analysis; area 1–5, area under the MSE curve for scale 1–5; area 6–20, area under the MSE
curve for scale 6–20.

Figure 1. The entropy over different time scales in patients in high-risk group (Group A: red) and low-risk group (Group B:
blue). * p < 0.05, comparing entropy at different scale between high-risk and low-risk PH patients with independent T test.

3.2.1. Comparisons of Linear and Non-Linear HRV Parameters to Differentiate the
High-Risk PH Patients

In ROC curve analysis, MSE scale 5 had highest predictive power to predict the high-
risk PH patients. The area under curve (AUC) of MSE scale 5 was 0.758. The AUCs of other
linear and non-linear HRV parameters were 0.604 (mean RR), 0.616 (SDRR), 0.560 (pNN20),
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0.465 (pNN50), 0.653 (VLF), 0.579 (LF), 0.460 (HF), 0.682 (LH/HF ratio), 0.681 (DFAα1),
0.510 (DFAα2), 0.671 (slope 1–5), 0.623 (area 1–5), and 0.737 (area 6–20), which were shown
in Figure 2.

Figure 2. Analysis of the discrimination power of HRV variables for PH risk stratification using
receiver operating characteristic curve analysis. (A) ROC curves by using linear HRV parameters
for predicting high-risk PH patients; (B) ROC curves by using heart rhythm complexity parameters
for predicting high-risk PH patients. (Abbreviations: Mean RR, mean RR interval; SDRR, standard
deviation of RR interval; pNN20, percentage of absolute differences in normal RR intervals greater
than 20 ms; pNN50, percentage of absolute differences in normal RR intervals greater than 50 ms;
VLF, very low frequency; LF, low frequency; HF, high frequency; DFA, detrended fluctuation analysis;
MSE, multiscale entropy.

3.2.2. Logistic Regression Analysis to Predict the Presence of High-Risk PH

In univariable logistic regression analysis, serum creatinine level, PAH, plasma NT-
proBNP level, mPAP, PVR, LF/HF ratio, DFAα1, MSE slope 1–5, scale 5, and area 6–20 were
significantly associated with the presence of high-risk PH. These parameters were further
investigated in multivariable logistic regression analysis, which showed that plasma NT-
proBNP levels (odds ratio [OR]: 1.001, 95% confidence interval [CI]: 1.000~1.002, p = 0.009),
and MSE scale 5 (OR: 0.009, 95% CI: <0.001~0.324, p = 0.010) were remained in the model
and both NT-proBNP level and MSE scale 5 were significantly associated with the presence
of high-risk PH (Table 3).

3.2.3. The Effect of Adding Heart Rhythm Complexity to the Linear HRV Parameters to
Identify High-Risk PH Patients

In both NRI and IDI models, the MSE scale 5 significantly improved the discrimination
power of all linear HRV parameters, including mean RR, SDRR, VLF, LF, HF, and LF/HF
ratio. Area 6–20 significantly improved the discrimination power of mean RR, VLF, and
HF in both NRI and IDI models, and SDRR, LF, and LF/HF ratio in IDI model. DFAα1
significantly improved the discrimination power of SDRR, VLF, LF, and HF in both the
NRI and IDI models, and mean RR in the IDI model (Table 4).

Table 3. Univariable and multivariable logistic regression model to predict the high-risk group in pulmonary hypertension.

Univariable Logistic Regression Multivariable Logistic Regression

OR (95% CI) p Value OR (95% CI) p Value

Age (Year) 0.984 (0.935~1.035) 0.525
Sex (man) 1.500 (0.486~4.631) 0.481

BMI (kg·m−2) 0.884 (0.768~1.017) 0.086



Entropy 2021, 23, 753 8 of 14

Table 3. Cont.

Univariable Logistic Regression Multivariable Logistic Regression

OR (95% CI) p Value OR (95% CI) p Value

PAH group 1 5.037 (1.242~20.43) 0.024
Creatinine (mg/dL) 8.301 (1.358~50.75) 0.022
NT-ProBNP (ng/dl) 1.001 (1.000~1.002) 0.019 1.001 (1.000~1.002) 0.009

6MWD (m) 0.995 (0.990~1.001) 0.080
mPAP (mmHg) 1.046 (1.005~1.089) 0.029

CI (L·min−1·m2) 0.525 (0.258~1.067) 0.075
PVR (Wood Units) 1.232 (1.070~1.418) 0.004

Mean RR (ms) 0.997 (0.992~1.002) 0.198
SDRR (ms) 0.992 (0.973~1.010) 0.373
pNN20 (%) 0.993 (0.961~1.025) 0.647
pNN50 (%) 1.016 (0.971~1.063) 0.503
VLF (ms−2) 0.998 (0.996~1.000) 0.081
LF (ms−2) 0.999 (0.997~1.002) 0.543
HF (ms−2) 1.000 (0.999~1.001) 0.858

LF/HF ratio 0.622 (0.391~0.990) 0.045
DFAα1 0.072 (0.008~0.626) 0.017
DFAα2 0.457 (0.006~33.761) 0.721

Slope 1–5 0.000 (0.000~0.560) 0.036
Scale 5 0.012 (0.001~0.222) 0.003 0.009 (<0.001~0.324) 0.010

Area 1–5 0.705 (0.418~1.189) 0.190
Area 6–20 0.835 (0.714~0.977) 0.024

Abbreviation: BMI, body mass index; CAD, coronary artery disease; DM, diabetes mellitus; HTN, hypertension; PAH, pulmonary arterial
hypertension; NT-proBNP, N-terminal Pro-Brain Natriuretic Peptide; LVEF, left ventricular ejection fraction; TRPG, tricuspid regurgitation
pressure gradient; 6MWD, 6-min-walk-distance; mPAP, mean pulmonary artery pressure; PVR, pulmonary vascular resistance; CO, cardiac
output; CI, cardiac index; PCWP, pulmonary capillary wedge pressure; Mean R-R, mean RR interval; SDRR, standard deviation of RR
interval; pNN20, percentage of absolute differences in normal RR intervals greater than 20 ms; pNN50, percentage of absolute differences in
normal RR intervals greater than 50 ms; VLF, very low frequency; LF, low frequency; HF, high frequency; DFA, detrended fluctuation
analysis; area 1–5, area under the MSE curve for scale 1–5; area 6–20, area under the MSE curve for scale 6–20.

Table 4. AUC, NRI, and IDI models of linear parameters before and after adding DFAα1 and MSE parameters for risk
stratification in pulmonary hypertension.

Parameters AUC R Square NRI NRI p Value IDI IDI p Value

Mean RR 0.604 0.032
+Scale5 0.775 0.051 0.694 0.008 0.194 0.001

+Area 6–20 0.749 0.12 0.535 0.048 0.092 0.026
+DFAα1 0.701 0.126 0.494 0.071 0.095 0.028

SDRR 0.615 0.015
+Scale5 0.781 0.12 0.771 0.003 0.211 0.001

+Area 6–20 0.731 0.121 0.494 0.071 0.107 0.014
+DFAα1 0.681 0.123 0.535 0.048 0.108 0.017

VLF 0.653 0.061
+Scale5 0.782 0.117 0.535 0.048 0.171 0.002

+Area 6–20 0.725 0.147 0.653 0.014 0.082 0.035
+DFAα1 0.699 0.145 0.694 0.008 0.084 0.037

LF 0.579 0.008
+Scale5 0.768 0.086 0.771 0.003 0.209 0.001

+Area 6–20 0.731 0.118 0.494 0.071 0.112 0.012
+DFAα1 0.694 0.134 0.553 0.042 0.129 0.01

HF 0.54 0.001
+Scale5 0.76 0.029 0.871 0.001 0.221 <0.001

+Area 6–20 0.734 0.116 0.553 0.042 0.118 0.01
+DFAα1 0.694 0.129 0.612 0.023 0.132 0.009
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Table 4. Cont.

Parameters AUC R Square NRI NRI p Value IDI IDI p Value

LF/HF ratio 0.682 0.075
+Scale5 0.806 0.077 0.771 0.003 0.184 0.001

+Area 6–20 0.76 0.156 0.394 0.154 0.068 0.039
+DFAα1 0.718 0.114 0.335 0.228 0.027 0.19

Abbreviation: Mean RR, mean RR interval; SDRR, standard deviation of RR interval; VLF, very low frequency; LF, low frequency; HF, high
frequency; DFA, detrended fluctuation analysis.

4. Discussion

The main finding of this study was that heart rhythm complexity was significantly
depressed in high-risk PH patients. In addition, adding heart rhythm complexity predictors
to traditional linear HRV parameters improved the power to predict high-risk PH patients.
This is the first study to demonstrate an association between heart rhythm complexity
and severity of PH, and the better performance of heart rhythm complexity in identifying
high-risk PH patients than traditional HRV parameters.

PH is a critical disease, which needs an early diagnosis and timely management.
Patients classified as being at high risk according to the 2015 ESC/ERS PH guidelines have
a worse prognosis compared to patients at low risk. Sitbon et al. demonstrated that poor
functional status was associated with poor outcomes. In their study, PH patients in WHO
functional class IV and those in class III with severely compromised hemodynamics had
the worst outcomes [19]. Previous studies have demonstrated that early interventions
including both pharmacological and multidisciplinary team care can improve the outcomes
of PH patients, even those with severe disease and poor functional status [5]. Therefore,
identifying high-risk patients is essential for the management of PH. Several survival
prediction models have been proposed for PH patients; however, they are complex and
difficult to use [31]. Currently, the 2015 ESC/ERS PH guidelines advocate assessing the
risk of PH by using a combination of several different tools, and this method is widely used
in daily practice [1]. However, risk assessment requires invasive right heart catheterization,
which is difficult to apply in frequent monitoring during follow-up. Therefore, there is
still a strong unmet need for an easy-to-use tool to allow for both timely and continuous
monitoring of disease status to improve the clinical care of PH patients.

HRV is a useful non-invasive tool, which has been studied in many diseases, including
coronary artery disease, heart failure, and even pulmonary hypertension [32–34]. It has
been correlated with autonomic dysfunction and used as an outcome predictor. Porte
et al. demonstrated that heart rate complexity parameters decreased due to sympathetic
activation during postural change [35]. Another study showed that sympathetic activa-
tion during senescence was associated with impaired heart rate complexity [36]. These
evidences supported that the usefulness of heart rate complexity in monitoring sympatho-
vagal balance. Pulmonary hypertension is characterized by increased pulmonary artery
pressure leading to right ventricular failure [37]. The serum norepinephrine increased in
patients with PAH similar to those with congestive heart failure as the indicator of cardiac
sympathetic activation [38]. Furthermore, sympathetic activation has also been correlated
with the severity of PH [39,40]. Several studies also showing that measuring autonomic
system regulation using HRV could be a predictor of disease severity and long-term out-
comes in PH [41–44]. Since that, overactivation of sympathetic systems is likely to be one
of the major reasons explaining the worse HRV and complexity in severe PH patients.
Bienias et al. demonstrated that patients with arterial or chronic thromboembolic PH had
significantly impaired heart rate turbulence, a linear HRV parameter [45]. Recently, Peng
et al. proposed the heart rhythm complexity derived from two non-linear parameters of
HRV, DFA, and MSE, to evaluate complexity change in the biological systems [26,28,46].
Heart rhythm complexity was shown to have better efficacy and predictive power for
various diseases than traditional HRV [14,47].
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Heart rhythm complexity measures the complexity of changes in the R–R interval,
which contains detailed information derived from heart rate dynamics. Once a biological
system has become diseased, the complexity breaks down, and non-linear HRV analysis,
can detect subtle changes at an early stage [48]. In a retrospective study, abnormal DFAα1
in asymptomatic heart failure patients was associated with the onset of heart failure years
in advance of the first clinical event [49,50]. Tsai et al. recently demonstrated that heart
rhythm complexity had a better prognostic value for cardiovascular events in patients un-
dergoing peritoneal dialysis compared with linear HRV analysis [47]. In recent years, heart
rhythm complexity was extensively studied in many fields, including left heart failure [51],
post-infarction myocardial function [52], patients undergoing dialysis [12,47,53], severity
of abdominal aorta calcification [54], primary aldosteronism [24], stroke [55], and PH [56].
These studies support the importance of heart rhythm complexity in clinical practice and
its potential role in disease risk stratification. In the present study, we demonstrated that
heart rhythm complexity parameters, especially MSE scale 5, were significantly associated
with PH disease severity and could be used in PH risk stratification. To the best of our
knowledge, this is the first study to apply heart rhythm complexity to the prediction of PH
disease severity. Although the improvement of the complexity can be attribute to not only
the enhanced complexity characteristics but the magnitude of HRV [57], combining differ-
ent parameters of MSE can give us better information related to the “quality” (complexity)
or the “quantity” (magnitude of HRV) changes [58]. Furthermore, model-free complexity
can assess the embedded space with variable scales grouped by the K-nearest-neighbor to
avoid coarse-graining that may introduce bias due to the fixed dimensions as well as the
aliasing filter effect [57,59]. Recently, the local version of the sample entropy was proposed
to eliminate the nonstationary effect on the results of complexity analysis [60]. The research
by using those new methods warrants further study. In addition, the cardiopulmonary cou-
pling is another important issue in the HRV analysis focusing on the interaction between
cardiovascular and cardiorespiratory systems. The cardiorespiratory coupling between the
systems is thought to be with each other in a nonlinear way [61]. MSE has been used to
evaluate the cardiorespiratory coupling and the asynchrony. Platiša et al. demonstrated
that primary alterations in the regularity of cardiac rhythm resulted in changes in the
regularity of the respiratory rhythm in heart failure patients [62]. However, there were
limited studies investigating the cardiorespiratory coupling in PH patients. Further studies
may be needed to integrate the role of cardiorespiratory coupling in PH patients.

Compared with heart rhythm complexity, linear HRV parameters, including SDRR,
SDRR index, VLF, LF/HF ratio, and heart rate turbulence have been widely studied to
assess PH [45,63]. Recent studies have also demonstrated an association between impaired
linear HRV parameter, SDRR, and PH disease severity markers, including impaired WHO
functional status, decreased 6MWD, impaired tricuspid annular plane systolic excursion,
right ventricular systolic function, higher TRPG, and NT-proBNP level [64–66]. In this
study, we first demonstrated a better association between heart rhythm complexity and
PH disease severity compared to traditional HRV analysis. Second, the discrimination
power of linear HRV for PH disease severity improved significantly after combining heart
rhythm complexity parameters. The combination of linear and non-linear HRV parameters
to form a new predictive model may have further improved its risk stratification ability
and outcome prediction.

There are several limitations to this study. First, this is a pilot study. The number
of cases was small, and further studies are needed to validate the results. In addition,
model-free complexity analysis or entropy with local characteristics can preserve more
information instead of a one-fit-all algorithm. Those methods should be included for a
large-scale study to probe the underlying pathophysiological mechanisms related to the
changes of the complexity of the PH patients. Second, we only enrolled PH patients in
WHO group 1 and group 4, and future studies should enroll different groups of PH patients
to investigate the potential application of HRV in these patients. Third, this pilot study is a
cross-sectional design and lacks clinical long-term follow-up data. A prospective cohort
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study with clinical end-point follow-up is needed to confirm the utility of heart rhythm
complexity on clinical outcome predictions.

5. Conclusions

This study demonstrated that high-risk PH patients had worse heart rhythm com-
plexity. MSE scale 5 had the best discrimination power to predict high-risk PH patients.
Moreover, adding MSE scale 5, area 6–20 or DFAα1 to linear HRV parameters significantly
improved the predictive power for high-risk PH patients. Heart rhythm complexity can
potentially be used as (i) an indicator of PH disease severity, and (ii) to stratify the risk
of PH.
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