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Recently, computer vision and deep learning technology has been applied in various gait rehabilitation researches. Considering
the long short-term memory (LSTM) network has been proved an excellent performance in learn sequence feature represen-
tations, we proposed a lower limb joint trajectory prediction method based on LSTM for conducting active rehabilitation on a
rehabilitation robotic system. Our approach based on synergy theory exploits that the follow-up lower limb joint trajectory, i.e.
limb intention, could be generated by joint angles of the previous swing process of upper limb which were acquired from Kinect
platform, an advanced computer vision platform for motion tracking. A customize Kinect-Treadmill data acquisition platform
was built for this study.With this platform, data acquisition on ten healthy subjects is processed in four different walking speeds to
acquire the joint angles calculated by Kinect visual signals of upper and lower limb swing. +en, the angles of hip and knee in one
side which were presented as lower limb intentions are predicted by the fore angles of the elbow and shoulder on the opposite side
via a trained LSTM model. +e results indicate that the trained LSTM model has a better estimation of predicting the lower limb
intentions, and the feasibility of Kinect visual signals has been validated as well.

1. Introduction

Stroke is a disease caused by acute rupture of blood vessels or
vascular occlusion [1, 2]. About 15 million people suffer from
it every year globally [3]. Hemiplegia is the major sequela of
most stroke survivors which affects the quality of their daily
life in the home, workplace, and community [4]. It presents
with the weakness of one entire side of the body. Due to limb
weaknesses leading to an inability to properly performing,
hemiplegia patients could lose a number of motor functions
especially the walking function [5, 6]. Walking abnormality
makes performing everyday activities in the home, workplace,
and community more difficult [7, 8].

Recovery of the walking ability for hemiplegia patients is
crucial in order to perform daily activities [9, 10]. Key
components of gait recovery are high-intensity, skill-ori-
ented, and task-specific [11, 12]. Due to physically ex-
haustion of therapists to repeat hundreds of complex gait

cycles in a training session [13], an amount of rehabilitation
gait training robots have been developed to provide robotic
assistance [14]. Robotic-assisted gait training refers to the
rehabilitation therapists how to assist the patient in per-
forming the gait cycle [15]. Considering the limb weaknesses
leading to difficulty in supporting the body weight in
training, current rehabilitation could support body weight to
allow the lower limbs to maintain a pattern during gait
training such as Lokomat [16]. +ese gait robot trainers
passively move the patients on a treadmill. However, the
control systems of most commercial robotic systems are
passive in nature because the training subject is not con-
sidered in the system. By increasing active participation [17],
the dependence of patients on robot assistance can be re-
duced by improving the effectiveness of rehabilitation
training. +us, we should make the robots include the ability
that collects quantitative gait data to generate sensory
stimulation synchronized to gait patterns.

Hindawi
Journal of Healthcare Engineering
Volume 2020, Article ID 8024789, 10 pages
https://doi.org/10.1155/2020/8024789

mailto:danguo@szu.edu.cn
https://orcid.org/0000-0002-0171-5599
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8024789


To develop a noncontact signal prediction for an active
rehabilitation robotic system, the synergy that is initiated by
weight-bearing over the involved limb and supporting the
human body was taken into consideration [18, 19]. Twitchell
et al. proved that abnormal synergy is a motor impairment in
patients with stroke [20]. +e main factor that limited the
motor rehabilitation of patients with stroke is abnormal
synergy [21]. Studies have shown that interlimb and
intralimb coordination of lower limbs in patients after stroke
is diverse from that in normal subjects [22]. In 2018, Zebin
et al. proposed a prediction method via inertial sensors and
LSTM methods to predict the angle trajectory of the im-
paired lower limb [23]. Simultaneously, the security and
privacy of medical data are also crucial. Sandeep et al. de-
veloped a biometric-based security framework for wearable
health monitoring systems to extract ECG signal, and it
proved that time-domain based biometric features plays an
important role in security [24]. Wu et al. proposed an
adaptive computing-based random binary sequences gen-
eration method to provide a balance between processing
time and security in wireless body sensor networks [25]. Cai
et al. quantified the concurrent accuracy and the test-retest
reliability of a Kinect V2-based upper limb functional as-
sessment system [26]. Liao et al. proposed a motion

intention recognition system based on the Kinect V2 sensor.
It can successfully provide an adequate assistance with a
lesser time delay compared with the system without Kalman
filter [27].

Recently, the time series prediction model has been
effectively applied to several studies [28]. Long short-term
memory (LSTM) networks widely used to have done a good
job on this issue in fields including gait recognition owing to
the ability of processing and predicting the time series with
very long intervals [29, 30]. It works effectively to extract the
gait feature [11].

As shown in Figure 1, in this paper, a lower limb joint
trajectory generation framework was proposed to drive the
lower limb robot using the trajectory of healthy upper limbs.
+is study aimed to utilize upper limb Kinect information
during walking to estimate sagittal plane hip and knee ki-
nematics trajectories.+e trajectories will be used for driving
a rehabilitation robotic system in follow-up studies.

2. Methods

2.1. Experimental Setup and Data Acquisition. To obtain
human gait data, we have built and evaluate our model that
used a “virtual skeleton” produced by the Kinect sensor and
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Figure 1: +e framework of our method and follow-up studies.

Virtual avatar

Gait data

Treadmill

Kinect Record application

Figure 2: Treadmill and Kinect layout (the treadmill was angled at 45 with respect to the Kinect sensor, with the front of the treadmill
positioned 140 cm to the right and at a distance of 150 cm in front of the sensor; the base of the Kinect sensor rested 100 cm above the floor).
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software. Kinect 2.0 provides a high-quality skeletal model to
one user in front of the Kinect sensor, and Kinect SDK offers
the tracking and detection of 25 different skeletal points,
which could apply this skeletal data for feature extraction;
the experimental setup is as shown in Figure 2.

Gait data were concurrently recorded by a Kinect sensor
that provides approximately 30 skeleton frames per second
[31]. Each participant wore a fitting and light color suit on
the treadmill. In a 10 participants’ database, they are gen-
erally divided into four walking velocities: 3.0, 3.5, 4.0, and
4.5 km/h.

+e joint angle of the shoulder, ankle, hip, knee, arm of
the right side, left knee, and hip in the sagittal plane were
calculated based on the quaternion. For each joint of the
Kinect virtual model, the x, y, and z coordinates are
recorded. +is study converts the joints into a vector for
angle calculation. For each joint, the current position of the
angle between a joint and a sagittal vector was recorded.
Finally, we generate the following features: the angle in each
of the frames, the difference in angle between consecutive
frames, and these angular displacements providing basic gait
characteristics.

2.2. Gait Joint Angle Design. +e Kinect skeletal joints 3-D
coordinated data reading is less susceptible to noise com-
pared with their distance to the acquisition [32, 33].+us, for
each limb, a shoulder joint angle was determined by con-
sidering the location of the shoulder and elbow in the
Cartesian coordinate. +e shoulder, elbow, hip, and knee
position in Cartesian space are defined with four-vectors, the
Kinect being at the origin of the 3-D space. +e vector
definition is formulated in equations (1)–(5). +e angle of
joints definition is formulated in equations (6)–(9):
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Figure 5: Left upper limb joint angle and right lower limb joint angle during walking at four velocities.
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where v
→

se, v
→

ew, v
→

hk, and v
→

ka are the 3-D vectors con-
necting the participants’ shoulder to the elbow, elbow to the
wrist, hip to the knee, and knee to the ankle, respectively,
that is also depicted in Figure 3.

2.3. Long-Short Term Memory Network for Angle Prediction.
In our proposed approach, trajectory generation is to apply
the interlimb synergy extracted from healthy participants by
LSTM to generate a trajectory-based on gait data [34, 35].

To solve the difficulties in training the RNNmodel caused
by the “vanishing gradient” effect, the long-short term
memory (LSTM) architecture has been proposed. Figure 4
illustrates a typical LSTM neuron. It contains one self-con-
nected memory cell ct and three multiplicative units, i.e., the
input gate it, the forget gate ft, and the output gate ot.

+e memory cell has a self-connected recurrent edge of
weight 1, ensuring that the gradient can pass across many
time steps without vanishing or exploding [29]. +e input
gate and forget gate govern the information flow into and
out of the cell [37]. +e output gate controls how much
information from the cell is passed to the output ht. +e
activations of the memory cell and three gates are given as
follows:

it � σ Wxixt + Whiht−1 + Wcict−1 + bi( 􏼁,

ft � σ Wxfxt + Whfht−1 + Wcfct−1 + bf􏼐 􏼑,

ct � ftct−1 + it tanh Wxcxt + Whcht−1 + bc( 􏼁,

ot � σ Wxoxt + Whoht−1 + Wcoct−1 + bo( 􏼁,

ht � ottanh ct( 􏼁.

(10)

where σ(x) is the logistic sigmoid function and defined as
σ(x) � 1/(1 + e− x), wαβ are the weight matrices connecting
α and β, and bβ denotes the corresponding bias vectors.

3. Experiment

3.1. Experiment Implementation. Since stroke patients show
a lower extremity weakness of walking [38, 39], we target in
studying the spatial correlations of gait features by using
neural networks. To get enough training gait data, 10 healthy
participants (aged 23.3 ± 1.4years, height 169.1 ± 6.9cm,
and weight 55.5 ± 6.5kg) were recruited from our labora-
tory. +ey were free of any physical condition or limitation
which prevented them from walking on the treadmill. +ey
were required to walk for 150s per velocity.
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Figure 6: Estimated left hip and knee trajectories vs. original hip and knee trajectories through using the right shoulder and elbow in
different velocities (3.0, 3.5, 4.0, and 4.5 km/h).
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For maintaining a stable recognition of the human body
[40], the Kinect was placed at a height of 1meter above the
ground and the treadmill was set within 2.6 to 4meters from
the Kinect sensor.

During the experiment, there was a total of 10 (male/
female:6/4) healthy participants enrolled. We prepared 40
gait feature data of upper and lower limbs from 10 subjects,
while their skeletal data were captured by Kinect 2.0. Fig-
ure 5 illustrates a participant walking session and joints
behavior during a gait cycle in different velocities.

Our experiments were implemented on the Tensorflow
framework [36], a popular deep learning framework. +e
base learning rate was set to 0.0005, and the LSTM step size
was set to 10 frames. +e maximum number of iterations
was set to 1000.

3.2. Results. +is study estimated one side’s gait data by
using the other side’s data based on the synergy. Figure 6
shows the estimated result of left hip joint and knee joint
trajectories through using the right shoulder and elbow by
LSTM. To validate the feasibility of LSTM synergy, we used
right side upper limb joints and lower limb joints to predict
left side lower limb and are shown in Figure 7; it shows the

estimated result of one side’s hip and knee trajectories
through using the other side’s shoulder, elbow, hip, and knee
by LSTM. As can be seen from the figure, the error between
the estimated trajectory and the original trajectory of the left
hip and knee is low.

Results show that LSTM is a good approach for person
identification based on gait recognition with Kinect. We also
tested the quality of the prediction of the angular velocity,
and we applied the root-mean-squared error (RMSE) to
evaluate the model after each run. Here, we compared RMSE
between the estimated angle and original angle in four
different velocities on prediction based on LSTM. +e result
is shown in Figures 8 and 9. Especially, RMSE was poor for
hip and knee joint angles at 3.0 km/h than the other three
velocities by using the joints of the upper limb (Table 1);
however, it was relatively good by using the joints of the
upper limb and lower limb (Table 2).

4. Discussion

To estimate the hip and knee trajectory by using the upper
limb joints trajectories, we applied the Kinect 2.0 to track the
upper limb and lower limb sagittal plane movement in the
walking period.+e human body is in a continuous dynamic
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Figure 8: RMSE of LSTM estimation on hip and knee extension and flexion using the right shoulder and elbow in different velocities for
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Figure 9: RMSE of LSTM estimation on hip and knee extension and flexion using the shoulder, elbow, hip, and knee in different velocities
for Kinect.
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state during walking. In this study, the LSTM model was
developed, and its performances were compared using
RMSE. Because there is no need to go through a process of
selecting features and having better stability, we chose it to
estimate our trajectory. +e LSTM model in this study
showed improved results, and RMSE has been introduced
above. It can see that LSTM has a better estimation on
predicting the gait trajectory, which included human
interlimb synergy. +is model showed excellency in mod-
eling that with the change over time such as walking to
predict the data of current time from information in the
previous step.

As the pace velocity increases, we can see that the ac-
curacy of the prediction is getting higher. In the case of
3.0 km/h velocity, the gait prediction trajectory is relatively
poor; however, in the case of 4.5 km/h velocity, LSTM
presents the effect of prediction is quite amazing. +is result
indicates that when humans walk at 4.5 km/h velocity, the
upper and lower limbs on the two sides are highly correlated.

In various velocities, the trajectory prediction effect of
the knee joint is generally higher than that of the hip joint,
except for the velocity in 3.5 km/h.

When using the joints of the upper limb and lower limb
to estimate the hip and knee trajectory, we can get an ob-
vious better estimation accuracy. From Table 2, we can see
that the RMSE is basically maintained within 2, which is
better than merely used the upper limb to predict hip and
knee trajectory. Otherwise, in this case, the accuracy of the
estimated hip trajectory is better than estimated knee tra-
jectory, respectively; compared with the right hip, the left hip
trajectory is great. In Figure 8, the trajectory only based on
the upper limb trajectory still has a good estimation per-
formance. It was concluded that LSTM has good exploita-
tion in gait features.

+is study has a limitation of not applying data of
patients with stroke to the learning model for lower limb
trajectory prediction. However, the study is to suggest the
possibility of estimating the lower limb trajectory by using

the upper limb trajectory and an artificial neural network
model. In the next research, we can apply various data for
the training model.

5. Conclusion

In this paper, an artificial neural network model was de-
veloped to estimate the lower limb joints trajectory of a
complete gait cycle by using the joints of the opposite side.
Accuracies of using the upper limb joints and the upper and
lower limb joints to estimate another side lower limb joints
were compared. As a result, the model showed RMSE values
within 3.0. +ese trials demonstrate that this model can be
used safely as a gait training intervention for those stroke
patients. It suggests that the exoskeletal gait rehabilitation
robot can apply this model to help patients try to walk like
normal people.

Data Availability
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shared at this time as the data also forms part of an ongoing
study.
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